N

N

Volume Preserving FFD for Programmable Graphics
Hardware
Stefanie Hahmann, Georges-Pierre Bonneau, Sébastien Barbier, Gershon

Elber, Hans Hagen

» To cite this version:

Stefanie Hahmann, Georges-Pierre Bonneau, Sébastien Barbier, Gershon Elber, Hans Hagen. Volume
Preserving FFD for Programmable Graphics Hardware. The Visual Computer, 2011, 28 (3), pp.231-
245. 10.1007/s00371-011-0608-5 . hal-00599442v1

HAL Id: hal-00599442
https://hal.science/hal-00599442v1
Submitted on 9 Jun 2011 (v1), last revised 27 Feb 2012 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00599442v1
https://hal.archives-ouvertes.fr

Preprint (to appear in The Visual Computer 2011)

Volume Preserving FFD for Programmable Graphics Hardware

Stefanie Hahmarin Georges-Pierre Bonneau Sébastien Barbiér
Laboratoire Jean Kuntzmann Laboratoire Jean Kuntzmann Laboratoire Jean Kuntzmann
INRIA, University of Grenoble INRIA, University Grenoble INRIA, University Grenoble
Gershon Elbér Hans Hageh
Technion, Israel TU Kaiserslautern
Abstract

Free Form Deformation (FFD) is a well established technique for
deforming arbitrary object shapes in space. Although more re-
cent deformation techniques have been introduced, amongst them
skeleton-based deformation and cage based deformation, the simple
and versatile nature of FFD is a strong advantage, and justifies its
presence in nowadays leading commercial geometric modeling and
animation software systems. Since its introduction in the late 80's,
many improvements have been proposed to the FFD paradigm, in-
cluding control lattices of arbitrary topology, direct shape manip-
ulation and GPU implementation. Several authors have addressed
the problem of volume preserving FFD. These previous approaches
either make use of expensive non-linear optimization techniques, or
resort to first order approximation suitable only for small-scale de-
formations. In this paper we take advantage from the multi-linear
nature of the volume constraint in order to derive a simple, exact
and explicit solution to the problem of volume preserving FFD.
Two variants of the algorithm are given, without and with direct
shape manipulation. Moreover, the linearity of our solution enables
to implement it efficiently on GPU.

1 Introduction

Freeform deformation is a versatile and powerful shape deforma-
tion method. Most of leading commercial geometric modeling and
computer animation systems such as Maya, Softimage XSI, 3DS
MAX have integrated an FFD tool. FFD is a global space defor-
mation method. Herein, an object is embedded into a deformable
space such that each point of the object has a unique parameter in
the space. The object is then deformed accordingly to a deformation
defined on the space. It works independently of the representation
of the embedded object.

Traditionally, the deformations are defined by parametric poly-
nomial trivariate functions parameterized over the unit cube. The
control points of a Bzier or B-spline representation form a paral-
lelepipedical lattice which serves as deformation tool. The posi-
tions of the deformed object are calculated as the image of their Figure 1:Animation of an deformable object (called RedBox) flatteneid ou
initial parameterization using the control points and the basis func- on the ground. Frames 1, 25, 30, and 35 are shown. Left colurandaitd
tions. While the deformation is independent of the representation FFD without volume preservation. Loss of volume 28%, 51% arfth 64
of the embedded geometry, FFD is commonly used to deform poly- in the frames 2.5,30.and 35. Right colump: vo!ume preserving FRD w
gonal models. Even very complex models with hundreds of thou- volume correcting displacements of the grid points restii¢tehorizontal
sands of vertices can be deformed quite intuitively by moving only directions.

a few control points.

*INRIA - Laboratoire LIK
655 Avenue de I'Europe, 38330 Montbonnot, France,
e-mail:Stefanie.Hahmann@inria.fr, Georges-Pierre.Ban@inria.fr

TComputer Science Department, Technion, Haifa 32000, Israel
e-mail: gershon@cs.technion.ac.il

tFB Informatik, Postfach 3049, D-67653 Kaiserslautern, Gegma

Preprint (to appear in The Visual Computer 2011)

Many extensions and improvements of the basic FFD method achieve this goal by making the following two contributions:
[?] have been proposed. Extensions are generally concerned with
modifications of the structure of the lattice. Improvements aim to o first, based on the trilinearity of the volume constraint, we

increase the realism of the deformations obtained with FFD. A first propose arexplicit closed form solution for exact volume
extension P] allows a user to generate non-parallelepipedical lat- preservation which optionally can include a point constraint
tices and the combination of many lattices to form arbitrary shaped for direct shape manipulation. No linear system has to be
spaces. However, the linear precision property gets lost, numerical solved and no iterative optimization method is necessary;

techniques have to be employed for object embedding and continu-

ity constraints are reducing the flexibility. A second extension intro- e second, we provide for the first time a GPU implementation
duces deformation methods defined on lattices of arbitrary topology for volume preserving FFD.

[?]. The deformable space is defined by using a volumetric analogy

of subdivision surfaces. This method gains in flexibility but looses

in efficiency. The subdivision steps and embedding procedure are2 FFD

quite time consuming. Furthermore the construction of the lattice _

is complex. An FFD is defined as a mapping : Q@ ¢ R* — R?, deform-

Shape improvements for FFD seek to increase realism of de-Nd @ region ofR® into another region oR®. An object which
formation and animation of 3D objects either by proposing di- IS €mbedded in the parameter dom&inundergoes the same de-
rect shape manipulation tools, by using physical-based deformationformation. Even thougt can be an arbitrary function, trivariate
techniques, or by introducing volume preservation methods. Direct {€NS0r product Bzier or B-spline functions are usually used due to
shape manipulation offers the possibility to place exactly the object their robustness and direct control via control points. The partition
points instead of manipulating FFD control points. Shape manip- of unity property of the basis functions ensures linear precision. B-
ulation becomes thus more intuitive?, [?] propose to manipulate splines how_ever offer more flexibility and low degree functions. We
the embedded object directly by specifying source points on the ob- US€ @ B-spline FFD defined as
ject and the target points. Repositioning of the lattice control points iy T
is computed using a least-squares formulation. Hsu ePplide a B _ = _
pseudo-inverse matrix and perform iterative computations. Hu et al. D(u,v,w) = Z Z Z PieBik(w), = (u,0,w) €9,
[?] add linear constraints to the least-squares formulation and derive
an explicit closed form solution. The objective of physical-based \ynere

i=0 j=0 k=0

animations is to increase realism by generating plausible behaviors. Bijr(w) := Bi(u)B; (v) By, (w) 1)
However, real-time animations are generally limited to small mod- Y ! /
els with a thousand of control pointg][and whereP;;;, are the control points an®; (u) are the univari-

Volume preservation is a well known principle in Computer ate B-spline basis functions of degréeelative to some knot se-
Graphics and Animation leading to more realistic looking defor- quenceT. In the rest of the paper we replace the triple sum
mations P]. It is a popular tool not only for FFD. Rappaport et ;o >_1~ >oxo Py the notationy -, . Letu = (u,v,w) de-
al. [?] introduce volume preserving parametric free-form solids. note the parameter value. Without loss of generality we assume the
The volume preservation of the lattice cells is obtained by least- parameter domaif2 = [0, 1] to be the unit cube. More details
squares with non-linear constraint. A non-linear optimization algo- about B-splines can be found in standard text bo@k8][o
rithm is employed. Convergence is not guaranteed and many time Let S be a polygonal surface model to be deformed By
consuming iterations are necessary to approximate the given vol-The exact deformation of a polygonal model is approximated by
ume up tol0~*. Aumann and Bechman?][propose a volume applying the deformation functio®» only to the verticese; =
preserving FFD combined with position constraints for triangular (z:,v:,2z:)” € R® of S. S is supposed to be embedded in the para-
models. A least-squares problem with linear constraints is solved metric domain ofD, otherwise an affine transformation is applied
using a pseudo-inverse matrix. However, the volume constraint is to the verticese;.
linearized by a first order Taylor approximation, which is valid only
for small scale deformations. Several iterations are necessary with-
out any guarantee of convergence. Hirota et gl splve volume 3 Volume Preserving FFD
preserving FFD on triangular models by using non-linear minimiza-
tion techniques. Convergence is not guaranteed. An extension toOur goal is to conserve the volunié.; embedded inside a given
parametric surfaces uses multi-level optimization techniques. Both model, when the model is deformed by an FFD. We propose to pro-
approaches are extremely time consuming. ceed intwo steps First, a classical FFD given b (u, v, w) =

All of these methods propose a volume correction step by re- >_;; PijrBi(u)B;(v) Br(w) is applied to the model. Let us de-
computing the FFD lattice as close as possible to the user definednote the deformed model by/. This operation may change the
deformation. However, either the use of non-linear optimization volume enclosed by the model, thus in gendr’aW) # Viey.
techniques is required which is very time consuming, or the volume In a second step, ®olume correctiorstep, the FFD grid is ad-
constraint is linearized by using a first order approximation, which justed in order to recover the original volume. The adjustment
limits the method to small scale deformations. Many iterations are to the FFD grid should be minimal in order to respect the de-
generally needed in order to get acceptable precision, whereas ndormation prescribed by the user. To this end a set of offsets
guarantee of convergence can be given. Sijk = (071, 60;1,,05,)" is computed that will be applied to the

Although CPUs have become more powerful, it is still a chal- original control points ofD so that the volume of the embedded

lenge to obtain both realism through volume preservation, and real- opject is conserved. Let us denote the final volume preserving FFD
time FFDs for complex objects. I/?] a first step towards real-time

is made by providing an implementation of FFD on programmable
graphics hardware but without volume preservation.

The goal of the present paper is to propose a volume preserv-
ing FFD which exactly preserves the volume and which makes a and M the resulting surface model deformed PBywhich satisfies
step further towards real-time FFD with volume preservation. We the volume constrairit (M) = V...

D(u,v,w) = Z(R]k + dijk)Bijr (u), (2

ijk

Preprint (to appear in The Visual Computer 2011)

Additionally, the volume preservation part can be coupled with
a direct manipulationmechanism ¥, ?]. Direct manipulation is
related to the process where the user picks a source [Somn
the model and moves it to a target positidnin space. Then, the

system computes a set of offsets that is compatible with the targetand their projections onto they-plane.

where face(l,m,n) = A(xi, m,xy) is a triangle ofS. This
trilinear expression can be derived from the volume functional
for smooth surfaces, se€][It corresponds to the sum of the
(signed) volumes of the prisms spanned by the surface triangles
The verticese; of

position. As stated above, the requirements on the unknowns arethe resulting volume preserving surfade are obtained by
twofold, satisfying the volume constraint and keeping the surface applying the FFD functiorD to the vertices of the initial model,

as close as possible to the deformed surfate Mathematically
the problem states as follows:

Problem 1 Volume preservation
Compute offsets (displacements);, for the volume correcting
FFD (2) such that

min » " [|d;;x[> subjectto AV(M) =0

ijk

®)

whereAV (M) := V(M) — V,.y, see also Section 4.

Problem 2 Volume preservation and direct manipulation
Compute offsets (displacements), for the volume correcting
FFD (2) such that

min » |8 |
ik

AV(M)=0

T=S+ ZaijkBijk(us)

ijk

subject to

(4)

and

where(u;) is the parameter value of the constraint surface point
S in the parameter domaif® of D.

Remark 1: Cost functions
Instead of minimizing squared distancgd;;|*> between FFD

ie. s = Zijk(Pijk + 62‘jk)Bi(u5)Bj (vS)Bk(wS), where

(us, vs,ws) are the parameter values of the initial surface model
in Q. Injecting these vertices into (5) shows the dependence of the
volume of M on the unknown offset vectors:

VOLUME of M
2L+ 6 + Zm + 05, + Zn + 0%
vy = 30 S G!
face(l,m,n)eM
(@m —Z1) + (O — 7)) (Fm — 50) + (637 — 6))
(@n—2)+ (07 —0) (o =) + (65 —6)) |
where

OF 1= 2245 Oijr Bi(w) B (vr) B (wi)
®s =3, PijkBi(us) Bj(vs) B (ws).

The volume ofM is therefore a trilinear function of the offset vec-
tor’'s coordinates.

5 Closed form solutions

In this section we derive an exact and closed form solution of prob-
lems 1 and 2 defined in Section 3. We avoid solving a time con-
suming non-linear optimization problem which is caused by the

grid points it could also be possible to minimize the squared non-linear volume constraint. Instead we propose to transform the
distance between surface mesh points before and after adjustmentproblem into a least-squares fitting problem with linear constraints.
But it can be easily shown that this implies to solve a linear system But we don’t linearize the volume constraint by a first order Tay-
of equations. Our method based on the FFD grid distance howeverlor approximation as it has been done #}.[Instead, we use the
leads to an explicit solution and avoids inverting a linear system. trilinearity of the volume constraint in order to satisfy the volume
Other quadratic cost functions could be used, such as least squaregonstraint exactly. Furthermore, we do not solve a linear system of
edge lengths7] or classical linearized bending energy functionals equations, instead we develop closed form solutions.
[?]. The way to solve the problem would be analogous to the The volume constrainAV/ (M) = 0 is a trilinear function of
present solution. The resulting surface however would not be asthe unknownss{;,, 5§’jk, 071, See equation (6). Thus separating
close as possible to the user’s defined deformation as it is our goalthe volume correcting deformation according to the axes makes it
here. linear in each axis. We therefore set equal to zero two coordinate
functions, for examplé'j’jk, 0751, and express the volume linearly

Remark 2: Local volume preservation with respect to the remainingf;,., i.e. 85 = (6%;,0,0). This

Alternatively we can use weighted least-squavgs ||&;;x|/?, and
use the weightsy; ;. in order to localize the measure of deforma-
tion. For example, a large weight ;. tends to keep the FFD point
P;;i, fixed. This weighted version thus enables to control where
the adjustment takes place. It still leads to an explicit solution. An
illustration of local volume preservation is given in Figure 7 with
including comments in Section 5.2.

4 Volume computation

The oriented interior volume of a closed, orientable, piecewise tri-
angular surfac& with verticesz; is given by

V(S)

21+ Zm + Zn [(Tm — 1) (Ym — Y1)
D md AU F o B

Q)

face(l,m,n)eS

amounts to replace the trilinear volume constraint by a linear con-
straint in the optimization problems (3) and (4). In order to avoid a
non-symmetric solution, we perform three successive deformations
by repeating the volume correction successively according to the
x,y andz-axes separately.

In order to better visualize the linearity, let us introduce the fol-
lowing linearized butexact volume formulas for the volume cor-
recting surfacé\/:

VEM) = > o i + V(M) (7)
ijk

VU(M) =) Bk 6%y + V(M) (8)
ijk

VAM) =) i 05 + V(M))
ijk

Preprint (to appear in The Visual Computer 2011)

where
agei= 3 (Bijk (ut) + Biji(um) + Bijr(un))
i . 6
face(l,m,n)€M
gm - ?]z gn - Zjl (10)
Zm — 2l Zn — 21
Bis = Z (Bijr(ui) + Bijk(tm) + Bijr(un))
ijk +—
6
face(l,m,n)eM
Zm — 21 Zn — 21
Im — T Tp — T 11
o (Bijk(wi) + Biji(um) + Bijr(un))
Vijk += Z 6

face(l,m,n)eM
Tn — X1
gn - gl

Tm — T
?]m*?}l

(12)

A detailed development of the preceeding formulas can be found in
Appendix A.

Problems 1 and 2 can now be re-formulated exylicitly solved
as follows: in each step the amount of the volume will be corrected
by a third with respect to one of the three axes. Therefore, we
solve the problem three times by replacing the volume constraint
AV (M) = 0 successively by one of the followirgear volume

constraints V%% (M) = V(M) + 2 (Veey — V/(M)) which are
equivalent to
Zaijk (5231c = a (13)
ijk
> Bijk 6 =a (14)
ijk
> ik 65k = a, (15)
ijk

with a = £ (V,ey — V(M)). These equations are linear dfi,
6fjk and ¢;;,, respectively. Note that after the three steps the
volume will be satisfied exactly with’ (M) = V.cy.

5.1 Solution of Problem 1

The first of the three optimization steps solves

min Z((Sf]k)Q

ijk

subject to (16)

volume constraint: >~ aiji, 05, = a.
ijk

Proof:
The solution satisfie¥ £ = 0 which is equivalent to

oL

— =0 < Z Qrst 6:3t =a (18)
a>\ rst

ijk

Inserting (19) into (18) gives the value dfand thus the resultO

The same procedure is then repeated by replacing the linearized
volume constraintin (16) by (14) and then by (15). Note tha of

the second volume constraint (14) is computisthg the output of

the first step And analogously fory; ;.. The corresponding closed
form solutions are obtained analogously. The final soluti®ns

will precisely satisfy the volume constraitdV’ (M) = 0 (to within
machine precision).

Figure 2:Sculptured cup with volume preservation.

Examples:

We applied our algorithm to various FFDs and analyzed its results
in terms of design effects and visual realism. We used the fact that
the linearization of the volume constraint results from applying the
volume correction step only in one axis direction at the time, pos-
sibly followed by the other directions. The possibility of selecting
only one or two axis directions in order to satisfy the volume con-
straint can have a desired design effect which we will show in the
following examples.

The problem can be converted to a saddle point problem usinga General volume preservation is achieved by applying the

Lagrangian multipliet\:
max 1(;1%]111 L6755 N)
where

L(S555:A) = D> _(056)7 + A aign 65 — a).
ijk ijk
A closed form solutionof (16) is given by
a
2

L ==
e ert a

rst

an

Qjjk-

volume correction successively following they, andz-axis, i.e.

by computingdijx = (371,07, ;%) in three steps. Figure 2
shows such a general volume preserving deformation. On the left
the original model (5.668 vertices) is shown with its initial grid.
Then a specific deformation has been applied combined with a
general volume correction. The result is shown in Figure 2-right.

Sometimes it might be desirable to limit the volume correction
displacementd; ;. of the grid points to one or two axis directions.
A typical example is the "bouncing ball”, see Figure 1. The ball
when falling on the ground (e.g. in-direction) is flattened out
and simultaneously stretched horizontally {in and y-direction)

Preprint (to appear in The Visual Computer 2011)

while the inner volume is maintained constant. Thus when sim-
ulating the bouncing ball, volume correction should be limited to
horizontal directionsi- andy-directions in the present case). Vol-

T
+—
i
1
]
1

H=—t1—=
\ \

\

ume correction in verticat-direction here would act against the L — ———— .

natural physical behavior. Such a volume correction limited to hor- I Y T TN il
izontal directions can be achieved with our method by computing ‘ ‘ |

dije = (05, 97;5,0) in two steps by using constraints (13) and ; 1 3l]

(14) witha = (Vs — V/(M)) when solving problem (16). In [HEIC ’1/ :E :E : > ol
Figure 1 four frames of a bouncing ball animation are shown, except == =

that we replaced the geometrically simple sphere by the complex

RedBox example (710.322 vertices) which has many fine details.

This model as well as the cup and the screw driver are provided Figure 4: RedBox squared. Left: standard FFD with 40% loss of vol-
via the Aim@ Shaperepository. The three deformations on the left yme. widdle: Volume preserving FFD with volume correction tisp-
column.of Figure 1 represent a loss of volume of 28%, 51% and ments only in horizontal directions; j;, = (5fjk,5gjk,0), Right: Volume
64% using standard FFD. The right column shows the correspond- correction displacements only in vertical directidg; = (0,0,6%,,).
ing volume preserving deformations. Y

Figure 3:RedBox flattened. Leftimage shows the user defined FFD with-
out volume preservation. The volume increased by 300% wither@sto

the initial model. Right: The flattening effect can be mainggirthrough
volume preserving FFD as well. To this end the displacemert@fgtrid
points has been limited to horizontal directions.

The next two Figures 3 and 4 used the same RedBox model and
applied some FFDs where the grids have been deformed by displac-
ing some of the grid points in order to achieve special deformations,
see Figures 3,4-left. In Figure 3-left the standard FFD is shown.
The object triples the volume. In Figure 3-right the volume pre-
serving FFD is shown. It can be observed that the flattening of the
model is further enforced by the volume preservation. This effect
is achieved by limiting the displacements of the grid points in hori-
zontal directions only (i.ex andy directions here). In Figure 4-left
the FFD transforms the RedBox model into a squared object with a
loss of volume of 60%. This squared effect is maintained through
volume preservation. In Figure 4-middle volume correction limited
to horizontal displacements of the grid points is applied. In Fig-
ure 4-right volume correction limited to vertical displacements is
applied. The vertical volume correctidin;x = (0,0, 6;;) is ob-
tained by solving problem (16) only ig-direction with constraint
(15) wherea = (Vrey — V(M)).

5 Figure 5: Screwdriver redesigned. Left: initial model with 27.152-ver
" tices. Middle: volume preserving deformation with volume ecting

displacements restricted to horizontal directiaghg, = (5fjk,6fjk,0)
. Right: Correction displacements restricted to verticaéction§;;, =

Continuously twisting an object is a classical FFD. We applied (0,0, 85)-
this deformation in Figure 6 to a cube model (6146 vertices) with

Further special FFDs are applied to a screw driver in Figure
The original model is shown on the left, the two volume preserving
deformations can be seen on the right.

lhtt p: // shapes. ai m at - shape. net

Preprint (to appear in The Visual Computer 2011)

and without volume preservation. In the first row the volume de-

explicit solution of the system is calculated and inserted into (24).

creases during the animation. At the last frame 66% of the initial O

volume is lost. In the second row volume preservation is enforced

along the vertical axis only, i.edj;;, = 6§’jk = 0. The third row

We then repeat this step by replacing the linearized volume con-

shows the same animation with exact volume preservation usingstraint in (20) by (14) and then by (15) and by applying the position

only the z- andy-directions, i.e. by keeping;;, = 0. The ad-

constraint to the; and z-coordinate. The final solutions ;x will

vantage is that the upper and lower face of the cube remain flat satisfy exactly the volume constraiafi’ (1) = 0 and the position
during animation. This might be a desired effect, which can not be constraintT” = S.

achieved with general volume preservation.

5.2 Solution of Problem 2

In addition to the volume constraint, a position constraint is added Example:

in Problem 2. Once again, a closed form solution can be derived by

decomposing the prob'em accordingly to a correction with respect Figure 7 illustrates two effects: direct Shape manipu|ati0n and

to thex, y andz-axes. In a first step we solve

minZ((Sfjk)Q

ijk

subject to (20)

volume constraint: » " cvijk 6, = a

ijk
position constraint: T* = S* + 65, Bijk (ws)
ijk

where(us, vs, ws) is the parameter of' in the parameter domain
of D. Using Lagrangian multipliers andu we solve the minmax
problem:

maxmin L£(075, A, 1)
A 8T
L]

with the Lagrangian function

L(S50 A 1) =D (655)* + AT = S) = > 655 Big (us))

ijk ijk
+ () i 65 — a).
ijk
A closed form solutionof (20) is given by
ML UL L (21)
where
\— 2(T* - Sz)(Zz‘jk az?jk) —2a Zijk ijeBijk(us)
(Zijk a?jk)(zijk B?jk(“’s)) - (Z”k @ijeBijr(us))?

and

AT 57 (D, gk Bk (us)) — 205, B (us)
e Cr @) (e B () — (2 it Bk (us))?
Proof:

The solution satisfie§¥’ £ = 0 which is equivalent to the following
three equations:

8£ T T T
a =0 = T = S + Z(srstBy-st(us)

rst
oL
— =0 s 67;?3 =
a# < Zt:a t ¢ a
oL
067

ijk

(22)

(23)

=0

<~ 25fjk —)\Bi]'k('us) + pojr = 0. (24)

4751, from equation (24) is inserted into (22) and (23). One obtains
a linear system of two equations in two unknownand . An

local volume preservation. The top left picture shows the original
armadillo model (52.971 vertices). In the top middle picture, the
tip of the ear is constraint to a position chosen by the user, but no
volume correction is applied. Two undesired effects occur: first the
inner volume increases, second the head is deformed by the FFD.
We successfully solve both unwanted behaviors by using a local
volume correction, as explained in Section 3, Remark 2. In order
to localize the deformation along the ear, we use large weights
wijr for FFED pointsP;j;, far away from the constraint point. In
practice we set in this example the weights for each FFD point
P;;;, as an exponential function of the distance betw&tn and

the constraint point at the tip of the ear.

Figure 7:Direct shape manipulation with one specified position. Tdip le
original model. Top middle: the position of the tip of the eacdmstrained,
without volume preservation. Top right: same position caistr with a
local volume preservation. Bottom left (resp. bottom rigigme as top
middle (resp. top right), with the FFD grid in red.

Conclusion: It has been illustrated with many examples the pos-
sibility offered by our method to compute volume correction dis-
placements of grid points only in horizontal or only in vertical di-
rection. This may be a benefit for FFD where a privileged direction
can be figured out. In other cases the general volume correction has
to be applied.

We want however draw attention to the main advantage of our
method : it presents an explicit solution to volume preserving FFDs
and thus allows for an efficient GPU implementation, as explained
in the next section.

Preprint (to appear in The Visual Computer 2011)

Figure 6:Animation of Twisting cube. First row is without volume pregation. At the last frame 66% of volume is lost. Second row widlume preservation

displacement are limited to horizontal directiahg, = (6fjk, 5%1« 0). Third row with volume preservation limited to vertical ditem d;;,, = (0,0, 6fjk).

6 GPU accelerated volume preserving FFD grid is given either by user interaction or by some animation
FED technique (we have implemented twist, bend, and simple physical-

based deformation of the FFD-grid). The overall pipeline of the

volume preserving FFD grid adjustment is given in Figure 8.

Most existing surface deformation techniques, including - .)
The following four steps are implemented on the graphics card:

FFD [?], skinning [?], physically-based deformation&,[?, 7],
deformation displacement map3,[cage-based deformationg][.
have been implemented on the GPU. Because the technique is not ® the computation of the current volume (5),

adapted to parallelism, or due to memory limitations, some of these) o

deformation methods have a GPU implementation that is less effi- ® the computation of the coefficients;;x, 3i;x, vi;x (10-12),
cient or less general than the CPU implementatidy ?[?7]). In

[?] it has been shown that FFD can be accelerated significantly us- ¢ the computation of the offse®;. by (17) or (21) and the

ing programmable graphics hardware, but without volume preser- update of the FFD grid according to these offsets,
vation. In the present section we will focus on how to perform our
volume preserving FFD fully on GPU. e the computation of the FFD deformation (1).
In contrast to previous works on volume preserving FFD our
method has the following advantages: The three first steps are implemented using CUDA kernels and

the last one using a vertex shader. Context switches are done dur-
1. the volume is precisely preserved (to within machine preci- ing the pipeline without new GPU memory allocation. The final
sion), rendering is performed using GLSL shaders. We detail more pre-
cisely these four steps in the following subsections.
2. the method is linear (non-linear optimization techniques are

not needed),
6.1 Volume Computation Kernels

3. an explicit solution is provided (no linear system has to be])])
solved). The current volume is obtained using two CUDA kernels directly

from the equation (5). This formula can be decomposed into two
These properties turn out to be essential for an efficient GPU successive steps: the computation of
implementation.
o the termszltemten (@m = 21) (Ym — 1) (volume below

In section 3 we have described the framework in which our vol- (Tn — 1) (Yn — Y1)
ume preservation procedure is applied. An FFD grid given as input each face),
is adjusted in such a way that the volume inside the resulting mesh
M has a given valu&,..¢. In our current implementation the input e their sum.

Preprint (to appear in The Visual Computer 2011)

@ FFD Grid

FFD Shader

(section 6.4)

i

Volume Computation Kernel
(section 6.1)

[Volume below each face]

Sum Reduction

]

Coefticient Computation Kernel
(section 6.2)

volume

current [
V(M)

Area of each face]

!

Coefficient computation (o.,B,y)
sparse matrix-vector multiplication

A for each axis
XY,z

FFD Grid Adjusment

Computation of az,ﬁz,yz
+ Sum Reduction

coefficients and square

Update FFD Grid Kernel]

(section 6.3)

4.[

FFD Shader
(section 6.4) |

Adjusted FFD Grid

Figure 8:GPU Pipeline of our volume preserving FFD.

each coefficient, which is prohibitively time-consuming. Instead,
we compute all coefficienta;;, in one step using the following
sparse matrix-vector multiplication:

A=BYV
where
Bnxr) = (Bijk(ul)+B'ijkéUM)+Bijk(un))
— ' _ gm - Zjl gn - Qz
A(N) - igh ’V<F> - Z'm - Zl zn - Zl

B is a sparse rectangular matrix of sizZ¥ F') where N =
n.nyNy, denotes the FFD grid size, see Section 2, &hs the
number of mesh faces &f. V is a vector of sizeF". A is the
resulting(V)-vector containing thev; ;, coefficients.

Note thatB is a sparse-matrix due to the local support property
of the B-Spline basis function®]. B is precomputed once and
loaded into the GPU memory in a sparse matrix format. Uniform
basis functions can be evaluated efficiently directly from their ana-
lytic, piecewise polynomial form?, ?]:

Bo(t) 1 -3 3 -1 1
Bit) | 114 0 -6 3 t

B2(t) | "6 1 3 3 -3 t?
Bs(t) 0 0 0 1 t3

V' is computed on-the-fly with a CUDA kernel applied to each face,
Then a sparse-matrix-vector multiplication is applied followifihy [
in order to compute all coefficients in parallel.

The third step computes the square of the coefficients using a
parallel-scan algorithnf?].

The coefficientsy; ;, and their sum squark,
in the GPU memory.

o2, are stored

rst

The first step is performed for each face where each face is consid-

ered independently as a thread. An array of dizes generated,
where F' is the number of faces. The resulting sum is computed
using aparallel scan[?]. The current volume is then recorded into
the GPU memory.

6.2 Coefficient Computation Kernels

The computation of the volume preservation coefficients given in
equations (10-12) is performed in three steps: computation of

e the term% Ym = Yo Yn = Ul
Zm — Rl Zn — 2
Zm— % En—Z Ton — Tl Tp — T
(resp.| -m™ % Zn 7l fop| Tm T AL Iy
Tm — Ty Ty — Iy Ym — Y. Yn — Ui

o the coefficientsy; ;.. (resp.Bijr Or Yijk),

e sumof squarey_, _, a2, (resp.>", ., Bra O S ., Vrst):

To compute the coefficients;;x, equation (10) is rewritten
for efficiency. Indeed, implementing directly the sum as in for-
mula (10) would require the computation of a parallel scan for

6.3 FFD grid update kernel

The current voluméV/ (M), the coefficientsw,;, and their sum
squared_, ., a2, as well as the reference volurhg. s are already
computed at this step. A CUDA kernel is launched for each vertex
of the FFD grid in order to compute and add the offsets given by
(17) or (21). Notice that in our implementation, the FFD grid is
stored as a 2D texture to efficiently compute the mesh transforma-
tion. The texture is consequently transformed into a CUDA array
using pixel buffer object and is then remapped as texture at the end
of the kernel execution.

6.4 FFD deformation shader

The FFD deformation (1) is implemented in a vertex shader, as first
proposed in P]. Contrary to [?], the parameters of the mesh
vertices do not change in our framework. Therefore we precompute
the B-Spline coefficient®; ;. (us), and we stored them as a buffer
object. The new mesh vertices are stored into a transform feedback
buffer and can be used for the final rendering.

Preprint (to appear in The Visual Computer 2011)

7 Experimental results

The benefits of volume preservation for getting more plausible

matrix B is non-zero, if one of the vertices of the fagées in the
support of one basis function corresponding to lirie the matrix.
If the three vertices of a facglie in the same FFD cell, there are

deformations have been pointed out by many authors and need noexactly 64 non-zero elements in the corresponding column. This
be proven anymore. We therefore focus on experiments on theis the case for almost all faces in the mesh, for reasonableNsize
performance estimation of our volume correction step onto current of the FFD grid. This is confirmed by Table 1. This table reports

graphics hardware. All models have been put into a FFD grid of
sizeN = nyun,n., whereN = 6 andN = 10° has been chosen

for establishing the tables below. The same FFD deformation is
applied to all models. The statistics we report on in this section
don’t depend on the particular FFD applied, but only on the grid

size and the size of the model. We therefore have chosen publiclythe o’s, 8’s and+'s is thus O(F).

available modefswith known sizes, but we don’t show the FFD

the exact number of non-zero elements in matBixfor all test
models. It can be observed that the number of non-zero elements
inthe N = 6° grid and in theN = 10 grid is very similar and
approximatively equal t64 x F for each test model.

The cost of the matrix-vector multiplication applied to compute
The squared sum of these
coefficients and the FFD grid updating cog¥$N). The total

we applied in order to compute the performances. We performed complexity ofO(F + N) for the GPU version is thus the same as

a series of experiments with models of varying size on a PC Intel,
2.13 GHz with 3.5 GB Ram equipped with a GForce 8800 GTS,
512 MB with 128 Cuda cores. The computation time we measure
only includes the time needed for a volume preservation in one
privileged direction, i.e. the time needed to computesthg”. The

time needed for computation of the FFD is computed separately.

The quantitiesB;;,(us) are pre-computed for all vertices,
of the input model since they stay fix when several succeeding
deformations are applied to the same model.

for the sequential CPU implementation.

Efficiency:

In our GPU implementation, the sparse-matrix-vector multiplica-
tion (SpMV) (see section 6.2) is the most expensive step. Since
the matrix B is sparse with variable number of non zeros per row
but without any particular sparsity pattern, we useddahpressed
sparse rowCSR-format for matrix representation. It explicitly
stores column indices and nonzero values in arrays. A third array of

For the sake of completeness, and because a sequential CPUow pointers takes the CSR representation. We mapped the SpMV

implementation might be useful on mobile terminals without GPU,
we first briefly study the sequential complexity of our algorithm.

Sequential complexity:

The complexity to solve problems 1 and 2 (see Section 3) is the
same. We give the details for problem 1. First the volume of the
deformed mesh (M) must be computed. According to Section
4 this costsO(F). Then the coefficientsy; i, 3ijx and ~ij

to the GPU using the CSR implementation proposed by Bell and
Garland P]. Our matrix B has the particularity that the number

of rows is limited and much smaller than the number of columns
(NN << F). The comparison of several SpMV kernels #h $hows

that efficiency decreases for non-square matrices but that the CSR
kernel performs best for these unstructured non-square mathices
our case however, increasing the number of rows, i.e. the grid size,
from 6° to 10% e.g. in order to equilibrate the matrix sizes may re-

have to be computed, using equations (10), (11) and (12). In aduce the computation time for the matrix-vector multiplication, but

CPU implementation this can be done efficiently by traversing the

it is compensated by increasing the cost for the remaining opera-

faces of the mesh, and for each face by updating the contribution tions of orderO (V). Thus finally, we didn’t observe any influence

of this face to the coefficiente;x, Bijx and v:;x. Due to the

of the grid size on the computation time of our volume preserving

compact support of the B-Spline functions, one face contributes to FFD kernel and therefore chodé = 10 for all timings.

a constant number of coefficients;x, 5ijx and~;;,. Therefore

the cost of computing the’s, 3’s andy’s is O(F'). The squared
sum of these coefficients must be computed. This cO3®).
Finally, the FFD grid points must be updated using the values of
ik In (17). This cost®(N). The total complexity of a sequential
implementation of volume preserving FFD is thereforg + N).

Parallel complexity:

Note that in order to allow for parallelization, the GPU implemen-
tation imposes to compute all offsels, independently from each
other (see Sect. 6.2). It is not possible in a GPU implementation

model # facesF # non zeros # non zeros
(grid size10%) (grid size6?)
Sphere 5,120 322,598 (6.3%) 301,916 (27,3%)
Porsche 10,474 680,098 (6.5%) 635,637 (28,1%)
Horse 39,698 2,306,680 (5.8%)| 2,304,791 (26,9%)
Bunny 69,451 4,026,316 (5.8%)| 4,006,614 (26,7%)
BallJoint 274,120 | 15,716,692 (5.7%) 15,649,260 (26,4%
HandSkel| 654,666 | 37,662,714 (5.8%) 37,474,881 (26,5%
Dragon 871,414 | 49,929,232 (5.7%) 49,674,401 (26,4%
Happy 1,087,716| 62,388,900 (5.7%) 62,479,049 (26,6%

to traverse the faces in parallel and to update the contribution
of this face to different’s, 3’s and+’s. Here a matrix-vector _ _ ,
multiplication is used. However, the matrix of siz&/ x F) is Tablell:Sparsm_/ o_f the matrixB of S|ze(N x F). The_number of non
sparse and the sparse matrix encoding ensures that the number c§¢'0S in the matrix is compared to two different FFD grid sizsis:= 10°

basic operations for such a matrix-vector multiplication is linearly andN = 6°.

proportional to the number of non-zero elements in the matrix. o)) _)
Furthermore, for our particular application it can be shown that the Table 2 reports the model statistics and computation times in mil-
number of non-zero elements essentially depends of the numberiséconds. We measured the times needed for computing one FFD
of mesh faces® and not on the FFD grid siz&. In fact, the and a volume preservation in one pnvnleged dlrectlon_on CP_U_and
grid nodes corresponds to the knots on which the B-spline basisO" GPU. The times needed for computing an FFD is negligible.
functions are defined. Each mesh vertex lies in the support of e computed in the last column the factor which tells how many

exactly 64 cubic B-spline basis functions. An elemgnt) in the times the GPU volume preservation is faster than a volume preser-
vation performed on CPU. For example, volume preservation for

the HandSkel model is 6.5 times faster on GPU than on CPU. Fig-
ure 9 compares the computation time for both implementations as
linear functions of the number of mesh vertices. This plot also il-
lustrates the linear complexity for both CPU and GPU implementa-
tions.

Our CPU algorithm can manage interactive rates uittjl000

2porsche : www-roc.inria.frlgamma/gamma.php
happy, bunny : graphics.stanford.edu/data/3Dscanrep
horse : shapes.aim-at-shape.net
handskel, dragon : www.cc.gatech.edu/projects/|langelels
balljoint : www.cs.caltech.edunjlitke/meshes
sphere : icosahedron, subdivided 4 times, projected on phérs.

Preprint (to appear in The Visual Computer 2011)

model #vertices | GPU | CPU | GPU | factor implementation. As with every other algorithm, our GPU volume
FFD | VOL | VOL preserving FFD has its limitations. Even though the gain in compu-
Sphere 2,562 | 0.02 6 10 0.6 tation time is respectable, the method is limited by the performance
Porsche 5,247 | 0.05 12 12 1.0 of the matrix-vector multiplication on the GPU. In fact, a recent
Horse 19,851 | 0.23 46 16 2.9 study of Bell and Garland?] states this problem in case of our gen-
Bunny 31,947 0.34 96 19 5.1 eral unstructured matrices with a great disparity between number of
Armadillo 52,971 | 0.45 154 27 5.7 rows and columns. This disparity could be reduced by adapting the
BallJoint 137,062| 1.84 383 59 6.5 algorithm to locally correct the volume, e.g. only in regions where
HandSkel 327,323| 2.66 749 116 6.5 the loss of volume is the most important. In this case the number of
Dragon 437,645 356 | 1,206 156 | 7.7 mesh faces involved would decrease and so the number of columns

in the matrix. We would expect the efficiency of the matrix-vector
- R . multiplication to increase. How to detect these regions and how
Table 2: Timings (in milliseconds). Column "GPU FFD” shows the time . .
to compute the FFD on GPU, without volume correction. ColumnUCP ’;ota;r)erle the volume correction locally should be approached in the
VOL” (resp. "GPU VOL") indicates the time to adjust the FFD dyifior uture.
volume correction, on CPU (resp. GPU). Column “factor” sholes ratio Another direction to be considered for reducing the cost of the
between GPU and CPU volume correction timings. We use a PG, Intel Method is approximation and multiresolution. In the case where
2.13GHz, 3.5 GB RAM equipped with an NVIDIA GeForce 8800 GTS, an approximate volume correction is sufficient, one could create a
512 MB with 128 Cuda cores. Grid size = 103 for all tests. coarse approximation of the model and apply the method to this
approximation. The resulting volume correcting FFD would thus
approximately preserve the volume of the fine mesh.

vertices (7 fps for a volume preserving FFD). Using the GPU im- Further extensions are possible which are concerned with gen-
plementation, more tha#00, 000 vertices are deformed with vol- eral free-form deformations and thus apply to volume preserving
ume preservation at the same frame rate. FFD as well : First, one could improve visual quality of the defor-

mation by adaptively subdividing the triangles following the defor-
= mation. Indeed, a large triangle will stay flat even if the deforma-
1200 | /} tion bent it and should be tesselated adaptively. Second, a negative

s ZEL’ Jacobian in the FFD function would hint on the possibility of creat-
1000 | ing self intersections in the mapped model (and negative volume).
One could detect a negative Jacobian by computing the Jacobian

aoo: / function of the mapping as a trivariate spline (on the GPU) only

to examine its zeros. If the Jacobian has only positive coefficients

clearly there is no self-intersection. Otherwise one can still do a
L more closer examination (like insert a certain number of knots in

aoo | / the suspected area and reexamine). Doing it on the fly could cre-

ate an FFD system that prevents self-intersections in the deformed
B M
R

mesh.
T vy Acknowledgements

0 100000 200000 300000 400000
Vertices

600

Time (ms)

This work was partially supported by the DFG (IRTG 1131, INST
248/72-1).

Figure 9: Computation time of a volume preserving FFD as a function of

the number of mesh vertices. The red (resp. blue) line correlspto the .

CPU (resp. GPU) implementation. Appendix A

Volume preserving FFD in real-time (20 fps) for large meshes is The volume formula in equation (5) is obtained by computing for
thus still a challenge, even though this GPU implementation im- mesh faces the prism between the face and its projection following
proves the computation time with respect to an analogous CPU the z-axis onto ther — y-plane. The volume of the model is then
implementation and provides interactive frame rates even for large the sum of the signed volumes of all prisms. The same volume is
models. Different directions for further research in order to reduce obtained by projecting the faces to the- z-plane or they — z-
the computational cost will be discussed in the next section. plane. Therefore we have the following three identical formulas
for the volume of a triangular mesh whether the projection is done
. following thez-, y-, or z-axis:

8 Conclusion and future work
(ym —y) (2m — 21)

Z T+ Tm + Tn
(yn —w) (20— 21)

6

We have presented a novel algorithm for computing volume pre- V(S) =
serving FFD exactly and proposed an implementation on pro- face(l,m,n)€S
grammable graphics hardware. We derived an exact and explicit
solution to the problem of volume preserving FFD including the
possibility of direct shape manipulation. We further demonstrated — Z Yot Ym +yn
that an efficient implementation on the GPU is possible thanks to 6
the explicit formulas we derived.
It turns out that most models can be deformed with exact volume

(zm —2z1) (zm —x1)
(#n—2) (zn—m)

face(l,m,n)eS

preservation in real-time (20 fps), while large models can still be 24 Zm 20 [(@m — 1) (Ym — y1)
deformed at interactive frame rates (7 fps). The gain with respect to = T 6 |@wa—z) (ym—wm)|’
standard CPU implementation is thus important and justifies a GPU face(l,m,n)es

10

Preprint (to appear in The Visual Computer 2011)

where face(l,m,n) = A(x;, xm,x,) is a triangle of M. Re- The expression in square brackets is denoted py. £i;. (resp.
member that the deformed model is obtained by applying avol- ~;;x) in equation (8) (resp. equation (9)) are computed analogously
ume preserving FFD to the vertices of the original model, using by setting equal zergj;,,, 67, (resp.djy, 5;ij).

equation (2). Thus the volumE (M) can also be expressed in

terms of the deformed control poinis and the volume correcting

termsd; ;. as follows, see also (6):

V(M)

= T+ + T+, + T +05
- face(l,m,n)eM 6

NGm = 90) + (5 = 6) (Zm — Z1) + (05, — 67)
@n =90+ (67 = 6/) (2 —2) + (67 — &7)

_ QS 4 Tm A6y, +Un Y
- Zface(l,m,n)é]% 6

NGEm —2) + (07 = 67) (Bm — 1) + (6 — 07)
(Zn - El) + (5721 - 65) (i'n - i’l) + ((Sﬁ - 5?:)

=3 R+ +Em A5, +En A+
- face(l,m,n)eM 6

N @ = Z0) + (07, = 67) (Gm — W) + (05, — 67)
(@n —T1) + (67 —67) (g — 1) + (08 — 67)

with 63, 075, 055, @s unknowns.V*(M) is the linearized vol-
ume function ofM, wheredfjk and o7, are set to zero There-
fore V*(M) is a linear function in the unknowng’,. In Sec-

tion 5, equation (7) we have denoted the linearized volume formula
V?(M) as follows:

VE(M) =V (X +6X,Y,Z)

ijk
Let us now compute the coefficients;:
VEM) =V (X +0X,Y,Z)
_ Z (@i +67) + (Zm + 6im) + (& + 07)

face(l,m,n)eM

(Ym =) (Yn — %) ’
(Zm - él) (Zn - zl)

57 + 6%, + 6%
—ven o+ Y %

face(l,m,n)eM

‘ (G = 51) (G = 51) ’
(Zm —2) (20 —21)

Replace now;” = 3~ ., 075, Bijk(w) anddy,, 67 analogously:

Ve (M) = DS i Bijk (W) + 075, Bije (wm) + 6555 Biji (un)

face(l,m,n)eM ijk

_ _ l) J—
G —2) (o 2) ‘*V(m

(Zm — 21)

_ . Biji(wi) + Bijk(um) + Bijk(Un) | (Gm —51) (§n — 1)
=2 %kLMZ 6 ‘ z (’]

ijk 1,m,n)EM

+ V(M)

11

