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Abstract. This paper provides an algorithm which computes the nor-
mal form of a rational differential fraction modulo a regular differential
chain if, and only if, this normal form exists. A regularity test for polyno-
mials modulo regular chains is revisited in the nondifferential setting and
lifted to differential algebra. A new characterization of regular chains is
provided.

1 Introduction

This paper is concerned by methods for deciding whether a polynomial f (mul-
tivariate, over a field, say, Q) is regular (i.e. not a zerodivisor) modulo a polyno-
mial ideal defined by a regular chain C, which is a set of polynomials. For casual
readers, this regularity property may seem quite exotic, compared to (say) the
membership property to polynomial ideals. It is however very important and is
pretty much related to the problem of computing the solutions of the system
of polynomial equations C = 0. For instance, if f is proved to be a zerodivisor,
then a factorization of some element of C is exhibited, which permits to split
the set of equations to be solved, into two simpler sets. Moreover, as we shall
see, regularity testing is strongly related to the problem of computing normal
forms of polynomials modulo the ideal defined by the regular chain C, which
are canonical representatives of the residue class ring defined by C. These com-
ments are stated in the nondifferential case, for simplicity. However, they all have
a counterpart for polynomial differential equations, i.e. in differential algebra.

Normal forms have many applications. In differential algebra, they make it
easier to compute power series solutions, as pointed out in [2]. In both non-
differential and differential algebra, they permit to search linear dependencies
between rational fractions modulo regular chains, by searching linear dependen-
cies between their normal forms, modulo “nothing” (one of the key ideas of [10],
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developed in the differential case in [3]). The very same principle, applied on the
derivatives of rational differential fractions, may help to find first integrals.

The motivation for this paper comes from very fruitful remarks of a few
reviewers of [2]. In that paper, a normal form algorithm is given for rational
differential fractions modulo regular differential chains [2, Figure 2, Algorithm
NF]. This normal form algorithm ultimately relies on an algorithm for comput-
ing the inverse of a nondifferential polynomial, modulo the ideal defined by a
nondifferential regular chain. However, the algorithm provided in [2] may fail to
compute the inverse, even if the inverse does exist [2, last comments of section 4].
A few reviewers of [2] then asked if it is possible to provide a complete algorithm,
based on regular chains related methods1, for computing normal forms if, and
only if, these normal forms exist. In this paper, we provide the following results:

1. a complete normal form algorithm (Figure 1 and Theorem 4) ;
2. a revisited algorithmic characterization of the polynomials which are regular

modulo the ideal defined by a nondifferential regular chain (Theorem 1) and
its generalization in differential algebra (Theorem 3) ;

3. a new characterization of regular chains (Theorem 2).

The first result is an answer to the reviewers request. The second one improves
former results of [18] and [8] in the nondifferential setting. It completes the proof
of [14, Theorem 2.4] and extends this theorem in differential algebra. The third
one permits to generalize [14, Theorem 2.4] and [1, Theorem 6.1].

2 Basics of Differential Algebra

The reference books are [16] and [13]. A differential ring R is a ring endowed
with finitely many, say m, abstract derivations δ1, . . . , δm i.e. unary operations
which satisfy the following axioms, for each derivation δ:

δ(a+ b) = δ(a) + δ(b), δ(a b) = δ(a) b+ aδ(b), (∀ a, b ∈ R)

and which are assumed to commute pairwise. This paper is mostly concerned
with a differential polynomial ring R in n differential indeterminates u1, . . . , un

with coefficients in a commutative differential field K of characteristic zero, say
K = Q. Letting U = {u1, . . . , un}, one denotes R = K{U}, following Ritt
and Kolchin. The set of derivations generates a commutative monoid w.r.t. the
composition operation. It is denoted:

Θ = {δa1

1 · · · δam

m | a1, . . . , am ∈ N}

where N stands for the set of the nonnegative integers. The elements of Θ are
the derivation operators. The monoid Θ acts multiplicatively on U , giving the
infinite set ΘU of the derivatives.

1 Observe that, in principle, each required inverse could be easily obtained by using
Rabinowitsch’s trick and by running the Buchberger algorithm. However, Gröbner
bases are not regular chains related methods. Moreover, the method could be costly.



If A is a finite subset of R, one denotes (A) the smallest ideal containing A
w.r.t. the inclusion relation and [A] the smallest differential ideal containing A.
Let A be an ideal and S = {s1, . . . , st} be a finite subset of R, not containing
zero. Then

A : S∞ = {p ∈ R | ∃ a1, . . . , at ∈ N, sa1

1 · · · sat

t p ∈ A}

is called the saturation of A by the multiplicative family generated by S. The
saturation of a (differential) ideal is a (differential) ideal [13, chapter I, Corollary
to Lemma 1].

Fix a ranking, i.e. a total ordering over ΘU satisfying some properties [13,
chapter I, section 8]. Consider some differential polynomial p /∈ K. The highest
derivative v w.r.t. the ranking such that deg(p, v) > 0 is called the leading
derivative of p. It is denoted ld p. The leading coefficient of p w.r.t. v is called
the initial of p. The differential polynomial ∂p/∂v is called the separant of p. If
C is a finite subset of R \ K then IC denotes its set of initials, SC denotes its
set of separants and HC = IC ∪ SC .

A differential polynomial q is said to be partially reduced w.r.t. p if it does not
depend on any proper derivative of the leading derivative v of p. It is said to be
reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q, v) < deg(p, v). A set
of differential polynomials of R \K is said to be autoreduced if its elements are
pairwise reduced. Autoreduced sets are necessarily finite [13, chapter I, section 9].
To each autoreduced set C, one may associate the set L = ldC of the leading
derivatives of C and the set N = ΘU \ ΘL of the derivatives which are not
derivatives of any element of L (the derivatives “under the stairs” defined by C).

The following definition is borrowed from [2, Definition 3.1].

Definition 1. The set C = {c1, . . . , cn} is a regular differential chain if it sat-
isfies the following conditions:

a the elements of C are pairwise partially reduced and have distinct leading
derivatives ;

b for each 2 ≤ k ≤ n, the initial ik of ck is regular in K[N ∪ L]/(c1, . . . , ck−1) :

(i1 · · · ik−1)
∞ ;

c for each 1 ≤ k ≤ n, the separant sk of ck is regular in K[N ∪ L]/(c1, . . . , ck) :

(i1 · · · ik)
∞ ;

d for any pair {ck, cℓ} of elements of C, whose leading derivatives θku and θℓu
are derivatives of some same differential indeterminate u, the ∆-polynomial

∆(ck, cℓ) = sℓ
θkℓ
θk

ck − sk
θkℓ
θℓ

cℓ ,

where θkℓ denotes the least common multiple of θk and θℓ, is reduced to zero
by C, using Ritt’s reduction algorithm [13, chapter I, section 9].

Triangularity plus condition b is the regular chain condition of [1]. Autore-
duced regular differential chains are the same objects as Ritt characteristic sets.
See [2, Proposition 3.2].



3 The Normal Form of a Rational Differential Fraction

All the results of this section are borrowed from [2]. Let C be a regular differential
chain of R, defining a differential ideal A = [C] : H∞

C . Let L = ldC and N =
ΘU \ΘL. The normal form of a rational differential fraction is introduced in [2,
Definition 5.1 and Proposition 5.2], recalled below.

Definition 2. Let a/b be a rational differential fraction, with b regular mod-
ulo A. A normal form of a/b modulo C is any rational differential fraction f/g
such that

1 f is reduced with respect to C ;
2 g belongs to K[N ] (and is thus regular modulo A),
3 a/b and f/g are equivalent modulo A (in the sense that a g − b f ∈ A).

Proposition 1. Let a/b be a rational differential fraction, with b regular mod-
ulo A. The normal form f/g of a/b exists and is unique. In particular,

4 a belongs to A if and only if its normal form is zero ;
5 f/g is a canonical representative of the residue class of a/b in the total fraction

ring of R/A.

Moreover,

6 each irreducible factor of g divides the denominator of an inverse of b, or of
some initial or separant of C .

Recall that the normal form algorithm relies on the computation of inverses
of differential polynomials, defined below.

Definition 3. Let f be a nonzero differential polynomial of R. An inverse of f
is any fraction p/q of nonzero differential polynomials such that p ∈ K[N ∪ L]
and q ∈ K[N ] and f p ≡ q mod A.

4 On the Regularity Property of Polynomials

Though this section only addresses algebraic (i.e. nondifferential) questions, we
state it with the terminology of the differential algebra. Consider a triangular
set C in the polynomial ring S = K[N ∪ L]. The ideal defined by C, in S, is
B = (C):I∞C . Assume that C = {c1, . . . , cn}, that the leading derivative (leading
variable) of ck is xk and that x1 < · · · < xn. It is possible to define the iterated
resultant of any polynomial f w.r.t. C as follows. See [18, Definition 5.2] or [19,
Definition 1.2]. See [8, Definition 4] or [15, Definition 1] for a close definition.
See [7] for a definition in a more general setting.

res(f, C) = res(· · · res(f, cn, xn), . . . , c1, x1) (1)

where res(f, ck, xk) denotes the usual resultant of f and ck w.r.t. xk. The next
lemma is borrowed from [18, Lemma 5.2]. Together with the two following ones,
it prepares the proof of Theorem 1.



Lemma 1. Let f be any polynomial. There exist polynomials p, q1, . . . , qn such
that

p f = q1 c1 + q2 c2 + · · ·+ qn cn + res(f, C) . (2)

Proof. By [17, section 5.8, identity (5.21)], there exist two polynomials pn and gn
such that

pn f = gn cn + res(f, cn, xn) . (3)

There exist two polynomials pn−1 and gn−1 such that

pn−1 res(f, cn, xn) = gn−1 cn−1 + res(res(f, cn, xn), cn−1, xn−1) (4)

hence such that

pn−1 pn f = pn−1 gn cn + gn−1 cn−1 + res(res(f, cn, xn), cn−1, xn−1) . (5)

Continuing, we obtain (2).

The two following lemmas are easy.

Lemma 2. Let f, g be two polynomials. Then res(f g, C) = res(f, C) res(g, C).

Proof. By induction on the number n of elements of C. If n = 1 then the lemma
is the well-known multiplicativity property of resultants. See [9, section 3.1, ex-
ercises 3, 8 and 10] or [7, page 349]. If n > 1, assume inductively that the lemma
holds for Cn−1 = {c1, . . . , cn−1}. Then res(f g, C) = res(res(f g, cn, xn), Cn−1).
Then, by the induction hypothesis and the multiplicativity property of resul-
tants, res(f g, C) is equal to res(res(f, cn, xn), Cn−1) res(res(g, cn, xn), Cn−1),
which, in turn, is equal to res(f, C) res(g, C).

Lemma 3. Let 2 ≤ k < n be an index and f be any polynomial such that
deg(f, xℓ) = 0, for k < ℓ ≤ n. There exists a positive integer m such that
res(f, C) = res(f, Ck)

m.

Proof. It is an easy consequence of Lemma 2 and of the fact that, if deg(f, x) = 0
and deg(g, x) > 0 then res(f, g, x) = fdeg(g, x).

In the sequel, a polynomial f ∈ S is said to be regular modulo B (recall
B = (C) : I∞C ) if it is a regular element of the ring S/B. Regular elements and
zerodivisors of a ring are defined as in [21, chapter I, § 5].

Theorem 1. Assume C is a regular chain. A polynomial f is regular modulo B

if, and only if, res(f, C) 6= 0. Together with the iterated resultant q = res(f, C),
one can compute a polynomial p such that

p f = q mod B

If f is a zerodivisor modulo B then q = 0, else p/q is an inverse of f modulo B.



Proof. The triangularity of C ensures that res(f, C) ∈ K[N ]. Thus, if the first
part of the Theorem is proved, the second one follows immediately by Lemma 1.

In order to prove the first part of the Theorem, we first show that we can
reduce our problem to the zerodimensional case2. Denote S0 = K(N)[L], and
B0 = (C) : I∞C in the ring S0. By [5, Theorem 1.6], the multiplicative family
of the nonzero elements of K[N ], is regular modulo B. Thus the ring S0/B0

is a subring of the total ring of fractions of S/B [21, chapter IV, § 9]. Thus, f
is regular modulo B in S if, and only if, f/1 is regular modulo B0 in S0 [21,
chapter I, § 19, Corollary 1].

Assume C is a regular chain in S. Then it is a zerodimensional regular chain
in S0. By [8, Lemma 4], an element f/1 is regular modulo B0 in S0 if, and only
if, res(f, C) 6= 0. Therefore, a polynomial f is regular modulo B if, and only if,
res(f, C) 6= 0.

The next three lemmas prepare Theorem 2, which gives a necessary and
sufficient condition that a triangular set C needs to satisfy in order to be a
regular chain. Thus, recall that C is only supposed to be a triangular set.

Lemma 4. Assume B is proper. Let f be any polynomial. If res(f, C) 6= 0
then f is regular modulo B.

Proof. Let p be any associated prime ideal of B (such a p exists for B is proper).
Take Formula (2) modulo p. The triangularity of C implies that res(f, C) ∈
K[N ]. By [5, Theorem 1.6] and the hypothesis, res(f, C) 6= 0 mod p. Since the
elements of C are zero modulo p, the polynomial f is nonzero modulo p, i.e. is
regular modulo B by [21, chapter IV, § 6, Corollary 3].

The following lemma is new.

Lemma 5. Assume B is proper. Assume that, for any polynomial f which is
regular modulo B, we have res(f, C) 6= 0. Then C is a regular chain.

Proof. The initials of the elements of C = {c1, . . . , cn} are regular modulo B by
[21, chapter IV, § 6, Corollary 3, and § 10, Theorem 17] and the fact that B is
proper. Thus, by assumption, for each 1 ≤ k ≤ n, we have res(ik, C) 6= 0, where
ik denotes the initial of ck. Thus, by Lemma 3 and the fact that deg(ik, xℓ) = 0
for k ≤ ℓ ≤ n, we have res(ik, Ck−1) 6= 0, where Ck−1 = {c1, . . . , ck−1}. Then,
by Lemma 4, the initial ik is regular modulo (Ck−1) : I

∞
Ck−1

. Thus C is a regular
chain.

The following lemma is part of [8, Theorem 1].

Lemma 6. Let h denote the product of the initials of the elements c2, . . . , cn
of C. If res(h, C) 6= 0 then C is a regular chain.

2 We are actually proving a very close variant of [5, Theorem 1.1].



Proof. Denote Ck = {c1, . . . , ck}, for 1 ≤ k ≤ n. By Lemma 2, Lemma 3 and
the hypothesis, res(ik, Ck−1) 6= 0, for all 2 ≤ k ≤ n. The ideal (C1) : I

∞
C1

is
proper. By Lemma 4, and the fact that res(i2, C1) 6= 0, the initial i2 is regular
modulo (C1) : I

∞
C1

. The set C2 is thus a regular chain and (C2) : I
∞
C2

is proper.
By Lemma 4, and the fact that res(i3, C2) 6= 0, the initial i3 is regular modulo
(C2) : I

∞
C2

. Continuing, one concludes that C is a regular chain.

In the following theorem, the implication 2 ⇒ 1 is new. The equivalence
between the other points is a consequence of [8, Theorem 1] and [14, Theorem
2.4].

Theorem 2. Let C be a triangular set. The three following properties are equiv-
alent.

1. C is a regular chain ;
2. a polynomial f is regular modulo B if, and only if, res(f, C) 6= 0 ;
3. res(h, C) 6= 0, where h denotes the product of the initials of the elements

c2, . . . , cn of C.

Proof. The implication 1 ⇒ 2 is a corollary to Theorem 1. The implication
2 ⇒ 1: since res(1, C) 6= 0 for any triangular set C, Property 2 implies that B is
proper ; the implication is thus a corollary to Lemma 5. The implication 3 ⇒ 1
is Lemma 6. The implication 2 ⇒ 3: Property 2 implies that B is proper ; thus h
is regular modulo B by [21, chapter IV, § 6, Corollary 3, and § 10, Theorem 17].
Thus res(h, C) 6= 0.

Comparison of Theorem 1 with other works. Inspecting the proof of Lemma 6,
we see that Property 3 is equivalent to [19, Definition 1.3 (normal ascending
chains)], which refers to [20], i.e. that res(ik, C) 6= 0 for 2 ≤ k ≤ n, where ik
denotes the initial of ck. Therefore, normal ascending chains and regular chains
are exactly the same objects.

An algorithm for computing the inverse of a polynomial modulo a regular
chain can be found in [15, Algorithm 3]. This algorithm relies on the hypothesis
that the polynomial to be inverted is regular modulo the ideal defined by the
chain. It relies on a different method (linear system solving) and is not proved.

Another algorithm for computing the inverse of a polynomial modulo a reg-
ular chain can be found in [6, Algorithm Invert]. It is based on a Gröbner basis
computation. It is based on Kalkbrener’s definition of regular chains [12] and
thus computes an inverse of a polynomial modulo the intersection of all the
prime ideals which contain the ideal defined by the chain, which have dimension
|N | and do not meet the multiplicative family M generated by the nonzero ele-
ments of K[N ], i.e. modulo the radical of the ideal defined by the regular chain.
However, [6] misses [5, Theorem 1.6] which implies that B has the same set of
associated prime ideals as its radical, hence that the computed inverse also is an
inverse modulo B.

Theorem 1 enhances [8, Lemma 4] which is stated in the zerodimensional
case only, and does not provide the inverse computation.



Theorem 1 enhances also [18, Proposition 5.3]. Indeed, this Proposition states
that res(f, C) 6= 0 if, and only if, the polynomial f does not annihilate on any
“regular zero” of C, where “regular zeros” are defined as generic zeros of the
associated prime ideals of B which have dimension |N | and do not meet the
multiplicative family M generated by the nonzero elements of K[N ] (see [18,
Definition 5.1]). However, [18] misses [5, Theorem 1.6] which states that this
property is held by all the associated prime ideals of B. See the comments on
[6, Algorithm Invert].

The fact that a polynomial f is regular moduloB if, and only if, res(f, C) 6= 0
is already stated in [14, Theorem 2.4]. However, the proof of that Theorem just
refers to [8] and [18] and thus misses the use of [5, Theorem 1.6].

Relationship between Theorem 1 and [5, Theorem 1.6]. Theorem 1 implies “eas-
ily” [5, Theorem 1.6] in the particular case of regular chains, i.e. that the asso-
ciated prime ideals of B have dimension |N | and do not meet the multiplicative
family M generated by the nonzero elements of K[N ]. This remark is interest-
ing for [5, Theorem 1.6] is one of the most difficult results of the regular chains
theory. See [5]. It stresses, moreover, the strong relationship between the two
theorems.

Proof. The regular chain C is a triangular set. Thus, for any nonzero f ∈ K[N ]
the iterated resultant res(f, C) also is a nonzero element of K[N ]. Thus, by
Theorem 1, for any associated prime ideal p of B, we have p ∩M = ∅ whence
dim p ≥ |N |. Since the initials of the element of C do not lie in p, the deriva-
tives x1, . . . , xn are algebraically dependent over N modulo p and dim p ≤ |N |.
Therefore, dim p = |N |.

Observe that Theorem 1 does not hold for general triangular sets, while [5,
Theorem 1.6] does. This claim is easily proved by an example. Take f = x − 1
and C = {x2 − 1, (x − 1) y2 − 2} with x < y. The set C is triangular but
is not a regular chain, for the initial x − 1 of the second element of C is not
regular modulo the ideal defined by the first element. The ideal B is generated
by {x+ 1, y2 + 1}. It is prime, hence equal to its unique associated prime, if we
assume K = Q. The polynomial f is regular modulo B. However, res(f, C) = 0.

Computational comment. For computational purposes, it is desirable to avoid
computing the resultant with respect to xk of polynomials which do not both
depend on xk, as in [8, Definition 4] and [15, Definition 1]. The iterated resultant
is then defined as follows:

res(f, C) = res(· · · res(f, cn, xn), . . . , c1, x1) , (6)

where res(f, ck, xk) is equal to res(f, ck, xk) if deg(f, xk) > 0 else is equal to f .
Lemma 1 still holds with this definition of iterated resultants. By Lemma 2 and
Lemma 3, the vanishing conditions of the iterated resultant res(f, C) are the
same with Formula (1) as with Formula (6). Therefore, Theorems 1 and 2 also
hold with Formula (6).



Computation of algebraic inverses and normal forms. Consider the triangular
set C = {(x − 1) (x − 2), y2 − 1} for the ordering y > x. Since the initials are
equal to 1, it is a regular chain. Consider the polynomial f = (x− 1) y+(x− 2).
We have p f = −1 = res(f, C), where p = (−y x + y + x − 2) (2x − 3). Thus f
is regular modulo the ideal B = (C) : I∞C . Its inverse is −p modulo B. Observe
that the function [2, Inverse] would have failed to compute the inverse of f ,
since it would have tried to invert the initial x − 1 of f modulo B, which is a
zerodivisor modulo B, before computing the remainder of y2 − 1 by f in the
algorithm provided in [2, Figure 5]. Therefore, NF(1/f, C) succeeds with the
new algorithm, given in Figure 1, while it fails with the old one, because of the
inverse computation of f , w.r.t. C.

5 On the Regularity Property of Differential Polynomials

In this section, C denotes a regular differential chain of the differential poly-
nomial ring R, defining a differential ideal A = [C] : H∞

C . Let L = ldC and
N = ΘU \ΘL.

The following Theorem provides an algorithm for deciding if a differential
polynomial is regular modulo a differential ideal defined by a regular differential
chain, and, if it is, for computing an inverse of it.

Theorem 3. Let f be any differential polynomial, r be its partial remainder
w.r.t. C and h a product of initials and separants of C such that h f = r mod A.
Together with the iterated resultant q = res(r, C), it is possible to compute a
polynomial p such that

p r = q mod (C) : I∞C

If f is a zerodivisor modulo A then q = 0, else h p/q is an inverse of f modulo A.

Proof. The key arguments are the following: on the one hand, by [4, Corollary 4
to Theorem 3], a differential polynomial is regular modulo A if, and only if, its
partial remainder with respect to C is regular modulo B = (C) :H∞

C ; on the
other hand, B = (C) : I∞C by [11, Lemma 6.1].

If f is a zerodivisor modulo A, then r is a zerodivisor modulo B and q = 0 by
Theorem 1. Assume f is regular modulo A. Then r is regular modulo B and q
is a nonzero element of K[N ] by Theorem 1. Since B ⊂ A, we have h p f = q
mod A. Thus h p/q is an inverse of f modulo A.

A complete algorithm for computing the normal form of a rational differential
fraction is presented in Figure 1. This algorithm is obtained from [2, The NF
function, Figure 2] by udpating the method applied for computing inverses.

Theorem 4. Let a/b be a rational differential fraction and C be a regular dif-
ferential chain. If b is a zerodivisor modulo A, then NF(a/b, C) raises an error,
else NF(a/b, C) returns the normal form of a/b modulo C.

Proof. The Theorem is simply a restatement of [2, Proposition 5.3], taking into
account the fact that inverses are computed using a method (Theorem 3) which
succeeds if, and only if, the polynomial to be inverted is invertible.



Comment. The algorithm presented in Figure 1 has a drawback with respect to
[2, The NF function, Figure 2]: if the denominator of the rational fraction is a
zerodivisor, the algorithm does not exhibit a factorization of some element of C.
This drawback may be easily overcome if one computes resultants by means of
pseudoremainder sequences.

function NF(a/b, C)
Parameters

a/b is a rational differential fraction such that a, b ∈ R.
C is a regular differential chain, defining a differential ideal A.

Result
if b is regular modulo A, then the normal form of a/b modulo A, else an error

begin

Regularity test and inverse computation of the denominator
Apply Theorem 3 over b:
if b is a zerodivisor modulo A then

error ”the denominator is a zerodivisor modulo A”
end if

Denote pb/qb an inverse of b modulo A

Inverse computation of the separants (they are necessarily regular)
Apply Theorem 1 over each separant si of C = {c1, . . . , cn} and

denote pi/qi an inverse of si modulo A

(fn+2, gn+2) := (pb a, qb)
Using Ritt’s partial reduction algorithm, compute d1, . . . , dn ∈ N and

rn+1 ∈ K[N ∪ L] such that sd11 · · · sdnn fn+2 ≡ rn+1 mod A

fn+1 := pd11 · · · pdnn rn+1

gn+1 := qd11 · · · qdnn gn+2

Denote xi = ld ci (1 ≤ i ≤ n) and assume xn > · · · > x1

for ℓ from n to 1 by −1 do

rℓ := prem(fℓ+1, cℓ, xℓ)
Let iℓ denote the initial of cℓ
Let dℓ ∈ N be such that ı

dℓ

ℓ
fℓ+1 ≡ rℓ mod (cℓ)

Inverse computation of an initial (it is necessarily regular)
Apply Theorem 1 over iℓ and denote pℓ/qℓ an inverse of iℓ modulo A

fℓ := p
dℓ

ℓ
rℓ

gℓ := q
dℓ

ℓ
gℓ+1

end do

return f1/g1
the rational fraction may be reduced by means of a gcd computation
of multivariate polynomials over the field K
end

Fig. 1. The NF function
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