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On the Regularity Property of Differential Polynomials Modulo Regular Differential Chains ⋆

This paper provides an algorithm which computes the normal form of a rational differential fraction modulo a regular differential chain if, and only if, this normal form exists. A regularity test for polynomials modulo regular chains is revisited in the nondifferential setting and lifted to differential algebra. A new characterization of regular chains is provided.

Introduction

This paper is concerned by methods for deciding whether a polynomial f (multivariate, over a field, say, Q) is regular (i.e. not a zerodivisor) modulo a polynomial ideal defined by a regular chain C, which is a set of polynomials. For casual readers, this regularity property may seem quite exotic, compared to (say) the membership property to polynomial ideals. It is however very important and is pretty much related to the problem of computing the solutions of the system of polynomial equations C = 0. For instance, if f is proved to be a zerodivisor, then a factorization of some element of C is exhibited, which permits to split the set of equations to be solved, into two simpler sets. Moreover, as we shall see, regularity testing is strongly related to the problem of computing normal forms of polynomials modulo the ideal defined by the regular chain C, which are canonical representatives of the residue class ring defined by C. These comments are stated in the nondifferential case, for simplicity. However, they all have a counterpart for polynomial differential equations, i.e. in differential algebra.

Normal forms have many applications. In differential algebra, they make it easier to compute power series solutions, as pointed out in [START_REF] Boulier | A Normal Form Algorithm for Regular Differential Chains[END_REF]. In both nondifferential and differential algebra, they permit to search linear dependencies between rational fractions modulo regular chains, by searching linear dependencies between their normal forms, modulo "nothing" (one of the key ideas of [START_REF] Faugère | Efficient computation of Gröbner bases by change of orderings[END_REF], developed in the differential case in [START_REF] Boulier | Efficient computation of regular differential systems by change of rankings using Kähler differentials[END_REF]). The very same principle, applied on the derivatives of rational differential fractions, may help to find first integrals.

The motivation for this paper comes from very fruitful remarks of a few reviewers of [START_REF] Boulier | A Normal Form Algorithm for Regular Differential Chains[END_REF]. In that paper, a normal form algorithm is given for rational differential fractions modulo regular differential chains [2, Figure 2, Algorithm NF]. This normal form algorithm ultimately relies on an algorithm for computing the inverse of a nondifferential polynomial, modulo the ideal defined by a nondifferential regular chain. However, the algorithm provided in [START_REF] Boulier | A Normal Form Algorithm for Regular Differential Chains[END_REF] may fail to compute the inverse, even if the inverse does exist [2, last comments of section 4]. A few reviewers of [START_REF] Boulier | A Normal Form Algorithm for Regular Differential Chains[END_REF] then asked if it is possible to provide a complete algorithm, based on regular chains related methods1 , for computing normal forms if, and only if, these normal forms exist. In this paper, we provide the following results:

1. a complete normal form algorithm (Figure 1 and Theorem 4) ; 2. a revisited algorithmic characterization of the polynomials which are regular modulo the ideal defined by a nondifferential regular chain (Theorem 1) and its generalization in differential algebra (Theorem 3) ; 3. a new characterization of regular chains (Theorem 2).

The first result is an answer to the reviewers request. The second one improves former results of [START_REF] Wang | Computing Triangular Systems and Regular Systems[END_REF] and [START_REF] Chen | Comprehensive Triangular Decompositions[END_REF] in the nondifferential setting. It completes the proof of [START_REF] Lemaire | When does (T) equal sat(T) ?[END_REF]Theorem 2.4] and extends this theorem in differential algebra. The third one permits to generalize [START_REF] Lemaire | When does (T) equal sat(T) ?[END_REF]Theorem 2.4] and [1, Theorem 6.1].

Basics of Differential Algebra

The reference books are [START_REF] Fels | Differential Algebra[END_REF] and [START_REF] Robert | Differential Algebra and Algebraic Groups[END_REF]. A differential ring R is a ring endowed with finitely many, say m, abstract derivations δ 1 , . . . , δ m i.e. unary operations which satisfy the following axioms, for each derivation δ:

δ(a + b) = δ(a) + δ(b), δ(a b) = δ(a) b + aδ(b), (∀ a, b ∈ R)
and which are assumed to commute pairwise. This paper is mostly concerned with a differential polynomial ring R in n differential indeterminates u 1 , . . . , u n with coefficients in a commutative differential field K of characteristic zero, say K = Q. Letting U = {u 1 , . . . , u n }, one denotes R = K{U }, following Ritt and Kolchin. The set of derivations generates a commutative monoid w.r.t. the composition operation. It is denoted:

Θ = {δ a1 1 • • • δ am m | a 1 , . . . , a m ∈ N}
where N stands for the set of the nonnegative integers. The elements of Θ are the derivation operators. The monoid Θ acts multiplicatively on U , giving the infinite set ΘU of the derivatives.

If A is a finite subset of R, one denotes (A) the smallest ideal containing A w.r.

t. the inclusion relation and [A] the smallest differential ideal containing A.

Let A be an ideal and S = {s 1 , . . . , s t } be a finite subset of R, not containing zero. Then 

A : S ∞ = {p ∈ R | ∃ a 1 , . . . , a t ∈ N, s a1 1 • • • s at t p ∈ A}
H C = I C ∪ S C .
A differential polynomial q is said to be partially reduced w.r.t. p if it does not depend on any proper derivative of the leading derivative v of p. It is said to be reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q, v) < deg(p, v). A set of differential polynomials of R \ K is said to be autoreduced if its elements are pairwise reduced. Autoreduced sets are necessarily finite [13, 

≤ k ≤ n, the initial i k of c k is regular in K[N ∪ L]/(c 1 , . . . , c k-1 ) : (i 1 • • • i k-1 ) ∞ ; c for each 1 ≤ k ≤ n, the separant s k of c k is regular in K[N ∪ L]/(c 1 , . . . , c k ) : (i 1 • • • i k ) ∞ ; d for any pair {c k , c ℓ } of elements of C, whose leading derivatives θ k u and θ ℓ u
are derivatives of some same differential indeterminate u, the ∆-polynomial

∆(c k , c ℓ ) = s ℓ θ kℓ θ k c k -s k θ kℓ θ ℓ c ℓ ,
where θ kℓ denotes the least common multiple of θ k and θ ℓ , is reduced to zero by C, using Ritt's reduction algorithm [13, chapter I, section 9].

Triangularity plus condition b is the regular chain condition of [START_REF] Aubry | On the Theories of Triangular Sets[END_REF]. Autoreduced regular differential chains are the same objects as Ritt characteristic sets. Recall that the normal form algorithm relies on the computation of inverses of differential polynomials, defined below. Definition 3. Let f be a nonzero differential polynomial of R. An inverse of f is any fraction p/q of nonzero differential polynomials such that p ∈ K[N ∪ L] and q ∈ K[N ] and f p ≡ q mod A.

On the Regularity Property of Polynomials

Though this section only addresses algebraic (i.e. nondifferential) questions, we state it with the terminology of the differential algebra. Consider a triangular set C in the polynomial ring See [START_REF] Busé | Explicit factors of some iterated resultants and discriminants[END_REF] for a definition in a more general setting.

S = K[N ∪ L]. The ideal defined by C, in S, is B = (C):I ∞ C . Assume that C = {c 1 , . . . , c n }, that the leading derivative (leading variable) of c k is x k and that x 1 < • • • < x n . It
res(f, C) = res(• • • res(f, c n , x n ), . . . , c 1 , x 1 ) (1) 
where res(f, c k , x k ) denotes the usual resultant of f and c k w.r.t. x k . The next lemma is borrowed from [START_REF] Wang | Computing Triangular Systems and Regular Systems[END_REF]Lemma 5.2]. Together with the two following ones, it prepares the proof of Theorem 1.

Lemma 1. Let f be any polynomial. There exist polynomials p, q 1 , . . . , q n such that

p f = q 1 c 1 + q 2 c 2 + • • • + q n c n + res(f, C) . (2) 
Proof. By [17, section 5.8, identity (5.21)], there exist two polynomials p n and g n such that

p n f = g n c n + res(f, c n , x n ) . (3) 
There exist two polynomials p n-1 and g n-1 such that

p n-1 res(f, c n , x n ) = g n-1 c n-1 + res(res(f, c n , x n ), c n-1 , x n-1 ) (4) 
hence such that

p n-1 p n f = p n-1 g n c n + g n-1 c n-1 + res(res(f, c n , x n ), c n-1 , x n-1 ) . (5) 
Continuing, we obtain (2).

The two following lemmas are easy. Proof. It is an easy consequence of Lemma 2 and of the fact that, if deg(f, x) = 0 and deg(g, x) > 0 then res(f, g, x) = f deg(g, x) .

In the sequel, a polynomial f ∈ S is said to be regular modulo B (recall Theorem 1. Assume C is a regular chain. A polynomial f is regular modulo B if, and only if, res(f, C) = 0. Together with the iterated resultant q = res(f, C), one can compute a polynomial p such that p f = q mod B If f is a zerodivisor modulo B then q = 0, else p/q is an inverse of f modulo B.

B = (C) : I ∞ C ) if it
Proof. The triangularity of C ensures that res(f, C) ∈ K[N ]. Thus, if the first part of the Theorem is proved, the second one follows immediately by Lemma 1.

In order to prove the first part of the Theorem, we first show that we can reduce our problem to the zerodimensional case Assume C is a regular chain in S. Then it is a zerodimensional regular chain in S 0 . By [START_REF] Chen | Comprehensive Triangular Decompositions[END_REF]Lemma 4], an element f /1 is regular modulo B 0 in S 0 if, and only if, res(f, C) = 0. Therefore, a polynomial f is regular modulo B if, and only if, res(f, C) = 0.

The next three lemmas prepare Theorem 2, which gives a necessary and sufficient condition that a triangular set C needs to satisfy in order to be a regular chain. Thus, recall that C is only supposed to be a triangular set. 

Definition 1 .

 1 chapter I, section 9]. To each autoreduced set C, one may associate the set L = ld C of the leading derivatives of C and the set N = ΘU \ ΘL of the derivatives which are not derivatives of any element of L (the derivatives "under the stairs" defined by C). The following definition is borrowed from [2, Definition 3.1]. The set C = {c 1 , . . . , c n } is a regular differential chain if it satisfies the following conditions: a the elements of C are pairwise partially reduced and have distinct leading derivatives ; b for each 2

See [ 2 ,Definition 2 .

 22 Proposition 3.2].All the results of this section are borrowed from[START_REF] Boulier | A Normal Form Algorithm for Regular Differential Chains[END_REF]. Let C be a regular differential chain of R, defining a differential idealA = [C] : H ∞ C . Let L =ld C and N = ΘU \ ΘL. The normal form of a rational differential fraction is introduced in [2, Definition 5.1 and Proposition 5.2], recalled below. Let a/b be a rational differential fraction, with b regular modulo A. A normal form of a/b modulo C is any rational differential fraction f /g such that 1 f is reduced with respect to C ; 2 g belongs to K[N ] (and is thus regular modulo A), 3 a/b and f /g are equivalent modulo A (in the sense that a g -b f ∈ A). Proposition 1. Let a/b be a rational differential fraction, with b regular modulo A. The normal form f /g of a/b exists and is unique. In particular, 4 a belongs to A if and only if its normal form is zero ; 5 f /g is a canonical representative of the residue class of a/b in the total fraction ring of R/A. Moreover, 6 each irreducible factor of g divides the denominator of an inverse of b, or of some initial or separant of C .

  is possible to define the iterated resultant of any polynomial f w.r.t. C as follows. See [18, Definition 5.2] or [19, Definition 1.2]. See [8, Definition 4] or [15, Definition 1] for a close definition.

Lemma 2 .Lemma 3 .

 23 Let f, g be two polynomials. Then res(f g, C) = res(f, C) res(g, C).Proof. By induction on the number n of elements of C. If n = 1 then the lemma is the well-known multiplicativity property of resultants. See [9, section 3.1, exercises 3, 8 and 10] or[7, page 349]. If n > 1, assume inductively that the lemma holds for C n-1 = {c 1 , . . . , c n-1 }. Then res(f g, C) = res(res(f g, c n , x n ), C n-1 ). Then, by the induction hypothesis and the multiplicativity property of resultants, res(f g, C) is equal to res(res(f, c n , x n ), C n-1 ) res(res(g, c n , x n ), C n-1 ), which, in turn, is equal to res(f, C) res(g, C). Let 2 ≤ k < n be an index and f be any polynomial such that deg(f, x ℓ ) = 0, for k < ℓ ≤ n. There exists a positive integer m such that res(f, C) = res(f, C k ) m .

  is a regular element of the ring S/B. Regular elements and zerodivisors of a ring are defined as in [21, chapter I, § 5].

2 .

 2 Denote S 0 = K(N )[L], and B 0 = (C) : I ∞ C in the ring S 0 . By [5, Theorem 1.6], the multiplicative family of the nonzero elements of K[N ], is regular modulo B. Thus the ring S 0 /B 0 is a subring of the total ring of fractions of S/B [21, chapter IV, § 9]. Thus, f is regular modulo B in S if, and only if, f /1 is regular modulo B 0 in S 0 [21, chapter I, § 19, Corollary 1].

Lemma 4 .Lemma 6 .

 46 Assume B is proper. Let f be any polynomial. If res(f, C) = 0 then f is regular modulo B. Proof. Let p be any associated prime ideal of B (such a p exists for B is proper). Take Formula (2) modulo p. The triangularity of C implies that res(f, C) ∈ K[N ]. By [5, Theorem 1.6] and the hypothesis, res(f, C) = 0 mod p. Since the elements of C are zero modulo p, the polynomial f is nonzero modulo p, i.e. is regular modulo B by [21, chapter IV, § 6, Corollary 3].The following lemma is new. Lemma 5. Assume B is proper. Assume that, for any polynomial f which is regular modulo B, we have res(f, C) = 0. Then C is a regular chain.Proof. The initials of the elements of C = {c 1 , . . . , c n } are regular modulo B by [21, chapter IV, § 6, Corollary 3, and § 10, Theorem 17] and the fact that B is proper. Thus, by assumption, for each 1 ≤ k ≤ n, we have res(i k , C) = 0, where i k denotes the initial of c k . Thus, by Lemma 3 and the fact that deg(i k , x ℓ ) = 0 for k ≤ ℓ ≤ n, we have res(i k , C k-1 ) = 0, where C k-1 = {c 1 , . . . , c k-1 }. Then, by Lemma 4, the initial i k is regular modulo (C k-1 ) : I ∞ C k-1 . Thus C is a regular chain.The following lemma is part of[START_REF] Chen | Comprehensive Triangular Decompositions[END_REF] Theorem 1]. Let h denote the product of the initials of the elements c 2 , . . . , c n of C. If res(h, C) = 0 then C is a regular chain.

  is called the saturation of A by the multiplicative family generated by S. The saturation of a (differential) ideal is a (differential) ideal[13, chapter I, Corollary to Lemma 1]. Fix a ranking, i.e. a total ordering over ΘU satisfying some properties [13, chapter I, section 8]. Consider some differential polynomial p / ∈ K. The highest derivative v w.r.t. the ranking such that deg(p, v) > 0 is called the leading derivative of p. It is denoted ld p. The leading coefficient of p w.r.t. v is called the initial of p. The differential polynomial ∂p/∂v is called the separant of p. If C is a finite subset of R \ K then I C denotes its set of initials, S C denotes its set of separants and

Observe that, in principle, each required inverse could be easily obtained by using Rabinowitsch's trick and by running the Buchberger algorithm. However, Gröbner bases are not regular chains related methods. Moreover, the method could be costly.

We are actually proving a very close variant of [5, Theorem 1.1].

⋆ This work has benefited from the support of the French ANR (decision number ANR-2010-BLAN-0109-03).

Proof. Denote C k = {c 1 , . . . , c k }, for 1 ≤ k ≤ n. By Lemma 2, Lemma 3 and the hypothesis, res(i k , C k-1 ) = 0, for all 2 ≤ k ≤ n. The ideal (C 1 ) : I ∞ C1 is proper. By Lemma 4, and the fact that res(i 2 , C 1 ) = 0, the initial i 2 is regular modulo (C 1 ) : I ∞ C1 . The set C 2 is thus a regular chain and (C 2 ) : I ∞ C2 is proper. By Lemma 4, and the fact that res(i 3 , C 2 ) = 0, the initial i 3 is regular modulo (C 2 ) : I ∞ C2 . Continuing, one concludes that C is a regular chain.

In the following theorem, the implication 2 ⇒ 1 is new. The equivalence between the other points is a consequence of [8, Theorem 1] and [START_REF] Lemaire | When does (T) equal sat(T) ?[END_REF]Theorem 2.4].

Theorem 2. Let C be a triangular set. The three following properties are equivalent.

1. C is a regular chain ; 2. a polynomial f is regular modulo B if, and only if, res(f, C) = 0 ; 3. res(h, C) = 0, where h denotes the product of the initials of the elements c 2 , . . . , c n of C.

Proof. The implication 1 ⇒ 2 is a corollary to Theorem [START_REF] Yang | An Efficient Decomposition Algorithm for Geometry Theorem Proving Without Factorization[END_REF], i.e. that res(i k , C) = 0 for 2 ≤ k ≤ n, where i k denotes the initial of c k . Therefore, normal ascending chains and regular chains are exactly the same objects. An algorithm for computing the inverse of a polynomial modulo a regular chain can be found in [START_REF] Li | An Algorithm for Transforming Regular Chain into Normal Chain[END_REF]Algorithm 3]. This algorithm relies on the hypothesis that the polynomial to be inverted is regular modulo the ideal defined by the chain. It relies on a different method (linear system solving) and is not proved.

Another algorithm for computing the inverse of a polynomial modulo a regular chain can be found in [START_REF] Bouziane | Unmixed-Dimensional Decomposition of a Finitely Generated Perfect Differential Ideal[END_REF]Algorithm Invert]. It is based on a Gröbner basis computation. It is based on Kalkbrener's definition of regular chains [START_REF] Kalkbrener | A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties[END_REF] and thus computes an inverse of a polynomial modulo the intersection of all the prime ideals which contain the ideal defined by the chain, which have dimension |N | and do not meet the multiplicative family M generated by the nonzero elements of K[N ], i.e. modulo the radical of the ideal defined by the regular chain. However, [START_REF] Bouziane | Unmixed-Dimensional Decomposition of a Finitely Generated Perfect Differential Ideal[END_REF] misses [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF]Theorem 1.6] which implies that B has the same set of associated prime ideals as its radical, hence that the computed inverse also is an inverse modulo B.

Theorem 1 enhances [8, Lemma 4] which is stated in the zerodimensional case only, and does not provide the inverse computation.

Theorem 1 enhances also [START_REF] Wang | Computing Triangular Systems and Regular Systems[END_REF]Proposition 5.3]. Indeed, this Proposition states that res(f, C) = 0 if, and only if, the polynomial f does not annihilate on any "regular zero" of C, where "regular zeros" are defined as generic zeros of the associated prime ideals of B which have dimension |N | and do not meet the multiplicative family M generated by the nonzero elements of K[N ] (see [START_REF] Wang | Computing Triangular Systems and Regular Systems[END_REF]Definition 5.1]). However, [START_REF] Wang | Computing Triangular Systems and Regular Systems[END_REF] misses [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF]Theorem 1.6] which states that this property is held by all the associated prime ideals of B. See the comments on [START_REF] Bouziane | Unmixed-Dimensional Decomposition of a Finitely Generated Perfect Differential Ideal[END_REF]Algorithm Invert].

The fact that a polynomial f is regular modulo B if, and only if, res(f, C) = 0 is already stated in [START_REF] Lemaire | When does (T) equal sat(T) ?[END_REF]Theorem 2.4]. However, the proof of that Theorem just refers to [START_REF] Chen | Comprehensive Triangular Decompositions[END_REF] and [START_REF] Wang | Computing Triangular Systems and Regular Systems[END_REF] and thus misses the use of [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF]Theorem 1.6].

Relationship between Theorem 1 and [5, Theorem 1.6]. Theorem 1 implies "easily" [5, Theorem 1.6] in the particular case of regular chains, i.e. that the associated prime ideals of B have dimension |N | and do not meet the multiplicative family M generated by the nonzero elements of K[N ]. This remark is interesting for [5, Theorem 1.6] is one of the most difficult results of the regular chains theory. See [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF]. It stresses, moreover, the strong relationship between the two theorems.

Proof. The regular chain C is a triangular set. Thus, for any nonzero Observe that Theorem 1 does not hold for general triangular sets, while [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF]Theorem 1.6] does. This claim is easily proved by an example. Take f = x -1 and C = {x 2 -1, (x -1) y 2 -2} with x < y. The set C is triangular but is not a regular chain, for the initial x -1 of the second element of C is not regular modulo the ideal defined by the first element. The ideal B is generated by {x + 1, y 2 + 1}. It is prime, hence equal to its unique associated prime, if we assume K = Q. The polynomial f is regular modulo B. However, res(f, C) = 0.

Computational comment. For computational purposes, it is desirable to avoid computing the resultant with respect to x k of polynomials which do not both depend on x k , as in [8, Definition 4] and [15, Definition 1]. The iterated resultant is then defined as follows:

where res(f, c k , x k ) is equal to res(f, c k , x k ) if deg(f, x k ) > 0 else is equal to f . Lemma 1 still holds with this definition of iterated resultants. By Lemma 2 and Lemma 3, the vanishing conditions of the iterated resultant res(f, C) are the same with Formula (1) as with Formula (6). Therefore, Theorems 1 and 2 also hold with Formula (6).

Computation of algebraic inverses and normal forms. Consider the triangular set C = {(x -1) (x -2), y 2 -1} for the ordering y > x. Since the initials are equal to 1, it is a regular chain. Consider the polynomial f = (x -1) y + (x -2).

We have p f = -1 = res(f, C), where p = (-y x + y + x -2) (2 x -3). Thus f is regular modulo the ideal B = (C) :

Observe that the function [START_REF] Boulier | A Normal Form Algorithm for Regular Differential Chains[END_REF]Inverse] would have failed to compute the inverse of f , since it would have tried to invert the initial x -1 of f modulo B, which is a zerodivisor modulo B, before computing the remainder of y 2 -1 by f in the algorithm provided in [2, Figure 5]. Therefore, NF(1/f, C) succeeds with the new algorithm, given in Figure 1, while it fails with the old one, because of the inverse computation of f , w.r.t. C.

On the Regularity Property of Differential Polynomials

In this section, C denotes a regular differential chain of the differential polynomial ring R, defining a differential ideal

The following Theorem provides an algorithm for deciding if a differential polynomial is regular modulo a differential ideal defined by a regular differential chain, and, if it is, for computing an inverse of it. Theorem 3. Let f be any differential polynomial, r be its partial remainder w.r.t. C and h a product of initials and separants of C such that h f = r mod A. Together with the iterated resultant q = res(r, C), it is possible to compute a polynomial p such that p r = q mod (C) : I ∞ C If f is a zerodivisor modulo A then q = 0, else h p/q is an inverse of f modulo A.

Proof. The key arguments are the following: on the one hand, by [4, Corollary 4 to Theorem 3], a differential polynomial is regular modulo A if, and only if, its partial remainder with respect to C is regular modulo B = (C) : H ∞ C ; on the other hand, B = (C) : I ∞ C by [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF]Lemma 6.1]. If f is a zerodivisor modulo A, then r is a zerodivisor modulo B and q = 0 by Theorem 1. Assume f is regular modulo A. Then r is regular modulo B and q is a nonzero element of K[N ] by Theorem 1. Since B ⊂ A, we have h p f = q mod A. Thus h p/q is an inverse of f modulo A.

A complete algorithm for computing the normal form of a rational differential fraction is presented in Figure 1. This algorithm is obtained from [2, The NF function, Figure 2] by udpating the method applied for computing inverses. Proof. The Theorem is simply a restatement of [2, Proposition 5.3], taking into account the fact that inverses are computed using a method (Theorem 3) which succeeds if, and only if, the polynomial to be inverted is invertible.

Comment. The algorithm presented in Figure 1 has a drawback with respect to [2, The NF function, Figure 2]: if the denominator of the rational fraction is a zerodivisor, the algorithm does not exhibit a factorization of some element of C. This drawback may be easily overcome if one computes resultants by means of pseudoremainder sequences. Apply Theorem 1 over i ℓ and denote p ℓ /q ℓ an inverse of i ℓ modulo A f ℓ := p d ℓ ℓ r ℓ g ℓ := q d ℓ ℓ g ℓ+1 end do return f1/g1 the rational fraction may be reduced by means of a gcd computation of multivariate polynomials over the field K end