
HAL Id: hal-00599395
https://hal.science/hal-00599395v1

Submitted on 9 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization and adaptive texture synthesis-based
compression scheme

Fabien Racapé, Simon Lefort, Dominique Thoreau, Marie Babel, Olivier
Déforges

To cite this version:
Fabien Racapé, Simon Lefort, Dominique Thoreau, Marie Babel, Olivier Déforges. Characterization
and adaptive texture synthesis-based compression scheme. European Signal Processing Conference,
EUSIPCO, Aug 2011, Spain. pp.1-5. �hal-00599395�

https://hal.science/hal-00599395v1
https://hal.archives-ouvertes.fr

CHARACTERIZATION AND ADAPTIVE TEXTURE SYNTHESIS-BASED
COMPRESSION SCHEME

Fabien Racape1, Simon Lefort1, Dominique Thoreau1, Marie Babel2 and Olivier Deforges2

1. Video Processing & Perception
Technicolor Research and Innovation

Cesson-Sevigne, France
fabien.racape@technicolor.com

2. INSA, IETR, UMR 6164
Universite Europeenne de Bretagne

Rennes, France

ABSTRACT
This paper presents an adaptive texture synthesis-based com-
pression scheme, where textured regions are detected and re-
moved at encoder side, allowing the decoder to use texture
synthesis to fill them. The detection relies on locally adaptive
resolution segmentation. According to results shown by syn-
thesis algorithms, they need to be parameterized according
to the patterns to be synthesized. In this framework, the syn-
thesizer gets its parameters from DCT feature-based texture
descriptors. An adaptive pixel-based algorithm is used, rely-
ing on the comparison between current pixel neighborhood
and those in an atypically shaped sample. Different neigh-
borhood sizes are considered to better catch texture patterns.
The framework has been validated within an H.264/AVC
video codec. Experimental results show significant bit-rate
saving at similar visual quality.

1. INTRODUCTION

In state-of-the-art compression schemes, pixel-wise redun-
dancy is reduced by using predictions and transformed do-
main operations. However, classical spatio-temporal ap-
proaches, exploiting redundancy based on the mean squared
error (MSE) criterion, are not able to take visual redundancy
into account. Detailed textures may seem nearly stationary
for the Human Visual System, but totally irregular according
to MSE criterion. At the same time, texture synthesis algo-
rithms [1, 2, 3, 4] have shown promising results. The purpose
of new coding schemes is to detect regions where exact po-
sitions of texture patterns are irrelevant for the human eye.
The whole regions are not encoded since a few patterns are
sufficient enough to synthesize satisfactory regions.

This paper presents a framework that can be integrated
in standard coding schemes. One the main novelties of this
scheme comes from the fact that texture algorithms have to
be parameterized in order to give their best results. Thus,
the scheme includes a texture characterization step based on
DCT-domain descriptors that outputs the feature size of tex-
ture patterns to be synthesized. The remainder of the paper
is organized as follows. In section 2 existing such schemes
are presented. In section 3 is introduced the proposed frame-
work. In sections 4 and 5 are described encoder and decoder
designs in detail. Section 6 finally presents some experimen-
tal results.

2. RELATED WORK

One of the first synthesis-based compression scheme was
presented in [5]. This approach includes an analysis in order
to detect replaceable textures which are finally synthesized

Input

Texture
Analyzer

Encoder Decoder

Texture
Synthesizer

Encoder side Decoder side

Side
informa-

tion

Bit-
stream

Output

Texture
map

Decoded
parts

Figure 1: Framework overview.

by a dedicated texture synthesis algorithm at decoder side.
An interesting framework has been designed in [6] where
some 8x8 blocks are removed at the encoder side and synthe-
sized by the decoder. The segmentation first classifies blocks
into structures, corresponding to boundaries of objects, and
textures. The first category is classically encoded and the
latter is removed and synthesized at decoder. The segmenta-
tion is based on simple edge detector thresholding. To avoid
temporal inconsistencies, motion estimation is considered in
selecting patches which will be used for texture synthesis.
The latter is performed using the algorithm presented in [3],
which appeared hard to exploit in our tests, since 8x8 blocks
offer poor overlap for the Graphcut technique. The work pre-
sented in [7] proposes a closed-loop analysis-synthesis ap-
proach. As in [6], groups of pictures (GOP) are considered
for a spatio-temporal scheme. Each potential region from a
GOP is both analyzed and synthesized, using side informa-
tion from texture analyzer. A first synthesizer is designed for
Rigid textures with global motion, which has a great simi-
larity to global motion compensation (GMC). Another syn-
thesizer, inspired by the patch-based approach developed in
[3], processes Non-rigid textures with local and global defor-
mations. The scheme has recently been upgraded [8] with
photometric corrections, using Poisson editing and covariant
cloning. Another framework for image compression is pro-
posed in [9] where both textural and structural blocks can
be removed at encoder side. The textures are synthesized at
decoder using [3], while a binary edge information helps an
inpainting method to retrieve structural ones. To keep color
coherency, a draught board of blocks is preserved, limiting
the bit-rate saving. The problem of these gradated regions is
tackled in [10] with parameter assistant inpainting.

However, several pixel-based synthesis algorithms from
the literature [1, 2, 4] also provide promising visual perfor-
mance for a large range of textures, until they get the right

parameters depending on the patterns to synthesize. Thus
this work proposes to explore their efficiency in the com-
pression context, by adding a coherent segmentation and a
preprocessing step for texture synthesis that provides such
parameters.

3. FRAMEWORK OVERVIEW

The proposed framework is depicted in figure 1. First, input
images are analyzed to detect textured regions that can be
synthesized by the algorithm used at decoder side. Thus this
part of the framework is divided into two main steps: a seg-
mentation step and a characterization step. A resulting tex-
ture map is sent to the encoder and side information, describ-
ing texture patterns, can potentially been sent. Then, pointed
out regions are partially removed, whereas structural regions
are classically encoded. Removed regions are synthesized
from neighboring small surfaces of texture, also classically
encoded. In the following, the patches denote these samples
of texture which serve as inputs for synthesis. At the decoder
side, the bit-stream and potential side information to locate
encoded regions are both used to build and locate structural
parts, whereas the labeled removed regions are synthesized
using a new adaptive pixel-based algorithm. Like encoder
side analysis, the synthesis contains a characterization step,
which outputs required parameters for texture algorithm.

The next section describes more precisely the analysis
done at the encoder side.

4. TEXTURE ANALYSIS

The goal is here to provide a complete and coherent texture
analysis process, containing an adapted block-based segmen-
tation and texture characterization.

4.1 LAR segmentation

Since the proposed framework requires a robust segmenta-
tion process that can be adapted to our context, the content-
based codec LAR (Locally Adaptive Resolution) presented
in [11] has been chosen for its region handling function-
ality. A spatial coder partitions images into variable-size
blocks, relying on a homogeneity criterion based on a gra-
dient thresholding. A quadtree topology is adopted in order
to get a non-overlapping distribution of blocks. Then, a seg-
mentation step merges adjacent blocks. This step uses a hier-
archical approach and non-symmetrical distances taking into
account the surface areas. The distance between two adjacent
regions is the average between:

• Mean weighted distance, which is computed from mean
Y values,

• Gradient distance, which corresponds to the local gradi-
ents along shared borders.

Two parameters steer the segmentation. First, the described
distance is hierarchically thresholded. Then, a chromatic
control involving the mean distance of chroma components
between adjacent regions supervises the merge operation.
Figure 2 gives, on the left side, an example on the Wool frame
where regions are represented with their mean value. The
following describes the adaptation of the LAR-region output
map to the framework constraints.

LAR Regions Removed texture regions

Figure 2: Adapted regions, black regions are removed to be
synthesized at decoder side.

4.2 Adapting labels to texture synthesis compliant maps
In order to be compliant with block-based standard compres-
sion schemes, segmented regions are aligned on a block-
based grid, i.e. 8x8 or 16x16 blocks. Each block contain-
ing several regions is considered as structure like in [6]. The
others are considered as texture and will be removed by the
encoder. Since the grid follows 16x16 macroblocks (MB), no
additional information is required when using h.264 encoder.
Binary side information may be sent in other configurations
to locate structure blocks. Figure 2 shows such regions in
the Wool frame with a 16x16 grid. Large textured regions
require anchor preserved blocks in order to prevent artefacts.
After experiments, it has been decided to encode some an-
chor macroblocks at strategic locations depicted in figure 2
since the region size exceeds a fix number of MBs in width
or height. Coupled with a confidence-based synthesis order
described in next section 5.2, they prevent visible seams at
synthesis junctions. These segmented textures are then char-
acterized to get input information about texture patterns for
synthesis.

4.3 Texture characterization
This part of the scheme is used at both encoder and decoder
sides. It outputs the parameters required by the texture syn-
thesizer in order to give its best results. Thus, using charac-
terization enables the encoder to decide whether the texture
can be synthesized or not. Indeed, if the characterized texture
requires impossible parameters, for example too large pat-
terns, it is finally classically encoded. The main parameter
for our pixel based algorithm corresponds to a size of neigh-
borhood window. Thus the characterization step computes
descriptors from different sizes. The descriptors are derived
from those described in [12] which are computed from the
Fourier transform. Since the characterization requires little
sizes of blocks, i.e. inferior to 32 pixels wide, descriptors
from DCT domain have been chosen. Indeed, the Fourier
transform outputs descriptors with a lower resolution in fre-
quency, which is a problem to describe a signal from a small
window. Like in [12], descriptors are computed from con-
centric circles represented in figure 3, following:

DDCT (λ) =
∫

π/2

θ=0
|C (λ ,θ))|2 (1)

where C(λ ,θ) corresponds to the DCT coefficient at the lo-
cation (λcosθ ,λ sinθ), except they are integrated on a quar-
ter of circle. The DC coefficient is not taken into account in

DC

λ=1

λ=2

λ=3

Figure 3: Descriptor computed on a 4x4 DCT block.

θ

b

a

R L

g

h

Figure 4: Descriptor Integral on a discrete array.

order to be invariant to changes of average luminance, so the
descriptors vector has size of block minus one coefficient.
A large set of blocks inside the texture region are randomly
chosen to compute descriptors at different sizes centered at
the same position.

Since the scheme uses discrete transform, figure 4 de-
picts the integral computation on a particular coefficient at
position (i, j). The DCT value is weighted with the length
L of the arc of a circle, crossing position (i, j) from a to b,
given by L = R∗θ where

θ = arcsin

(√
1− b2

R2

)
−arcsin

(a
R

)
. (2)

The average descriptors are then computed for each size
and analyzed. According to [1] and our experiments, the size
of the compared neighborhood has to be greater than the el-
ementary pattern of the texture, to produce a visually good
result. The first coefficient of each block corresponds to a
single variation of luminance over the block used for DCT
computation. Experiments on a large set of texture patches
show that if the first coefficient is greater than any others in
the descriptors vector, the block size is smaller than an ele-
mentary pattern. Indeed, the first coefficient of each block
corresponds to a single variation of luminance over the block
used for DCT computation. The output size parameter corre-
sponds to the minimum size NxN of DCT block that provides
a non-monotone decreasing vector, which is given by

Nout = min
N

{
BN×N

DCT |D(1) 6= max
λ=[2;N−1]

{D(λ)}
}

(3)

where B is the DCT block of size N. Thus, computing
descriptors at random locations will serve to approximate the
feature size of texture patterns. Typically, descriptors of sizes
from 4x4 up to 16x16 pixels are computed for each location.

The next section describes the synthesis of the segmented
regions, using parameters from texture characterization.

5. TEXTURE SYNTHESIS

The proposed synthesizer is based on the work presented in
[1]. This algorithm is pixel-based since the output surface

 Ω={(3,5);(4,7);(5,9)}

Candidate 4 from short list

D (p ,c)

D (p ,c)

min(D (p,c))

p

p p

p

c

Patch

m,nΩ,i

i

4,7

5,9

3,5

D (p ,c)
4

4

4

1

1

2

4

Figure 5: Finding best matching neighborhood.

is processed one pixel at a time. It relies on the match-
ing between current pixel neighborhood and those in a tex-
ture patch. The criterion used for matching is the Sum of
Square Error (SSE). Although this algorithm provides pleas-
ing visual results for texture synthesis only, it has to be well-
adapted to compression. First, it has been designed to rely
on a given texture patch only, whereas our synthesis aims
at exploiting all the available data (decoded blocks). Then,
algorithm parameters such as synthesis order and neighbor-
hood size and shape have to be reconsidered.

5.1 Adaptive neighborhood size using texture character-
ization
Texture characterization enables the synthesizer to get an ap-
proximate neighborhood. In order to refine the neighborhood
sizes for matching, a set of neighborhood sizes are tested, for
example 7x7 and 9x9 if the best descriptor is 8x8 large. The
chosen distance minimizes the norm distance

Dm,n(p,c) =
∑

Nm,n
k=0 (pk− ck)

2

Nm,n
(4)

where Nm,n is the number of pixels contained in the neighbor-
hood of current pixel, m and n respectively representing its
height and width, ck and pk denote the kth pixel’s luminance
in the current neighborhood and the considered one in the
patch respectively. Considering various neighborhood sizes
enables to better catch texture patterns size and shape. This
process is illustrated in figure 5 where three neighborhood
sizes {(3;5)(4;7)(5;9)} are competing.

Experiments show that a synthesis with a lot of changes
in neighborhood sizes does not give visually good results.
In order to avoid this kind of issue, we propose to favor the
neighborhood sizes that have been chosen by a majority of
previously synthesized pixels, by mean of a global weight.

5.2 Synthesis scan order
The goal is here to exploit available data which are, at this
point, the only confident data. The latter corresponds to sur-
rounding pixels, which are whether previously decoded or
synthesized. Thus, raster scan order is clearly not adapted.
As in [9], a scan order depending on a synthesis-coherent
confidence map is adopted. The map building law is depicted
in figure 6, where initial computing from previously decoded
pixels is represented on the left side and the map update dur-
ing synthesis on the right side. First, previously decoded pix-
els are initialized with a unique confidence value. In order to
be coherent with the synthesis, the neighborhood size used
for texture synthesis serves for computing the confidence of
available pixels. Thus, this confidence value ω is computed

1 1 1 1 1
1 1 1 1 1
1 1
1 1
1 1

000
000

00

1 1 1 1 1
1 1 1 1 1

000
000

0000
00
00

1 1 1 1 1
1 1 1 1 1
1
1
1

000
000

00

wa
1

a) initialization b) update

00 0

wc
1

wa
1 wb

2

1 1 1 1 1
1 1 1 1 1

000
000

0000
00
00

0

wc
2wb

1≠ = wc
1

0
0

Figure 6: Confidence map order.

Figure 7: Pixel-based synthesis order.

as follows:

ω(i, j) =
N/2

∑
k=−N/2

N/2

∑
l=−N/2

ω(i+ k, j+ l). (5)

After having synthesized the most confident pixel, the
map is updated by assigning the previously computed ω(i, j),
which is shown in figure 6 b).

5.3 Texture patch design
Texture synthesizers from the literature process with a rect-
angular patch. Its relevance is essential to ensure an efficient
synthesis in our context. In the literature, patch choices are
usually either not described or correspond to cropped prox-
imate blocks [6]. However, when removing large regions,
one can note that cropping a patch closed to the texture re-
gion to be synthesized can lead to inconsistencies between
candidate pixels and previously reconstructed borders. For
instance, figure 8 a) shows a selected region in which there is
a variation of luminance, leading to a failed synthesis. That
is, the patch contains the texture around the region to be syn-
thesized, which is depicted in figure 8 b). The patch has to
be large enough, according to the size of neighborhood. A
compromise is done at encoder side, if texture region are too
small and patterns too large, then the region is not classified
as texture. Reversely, large texture regions require anchors
in order to prevent pixel-based synthesis to fail, so we de-
cide to keep some MBs since the size exceeds a fix width or
height. Figure 7 depicts the use of such anchors, following
the confidence-based scan order.

5.4 Neighborhood optimization
In order to improve the research process, we propose to use
the exact neighborhood matching described in [13]. A short-
list of candidate neighborhoods in the patch is first computed
for the current location. It corresponds to the set of neigh-
borhoods in the patch containing at least one direct neigh-
bor which exactly matches respective current pixel neighbor.
Then the SSE distance is computed for the all neighborhoods
in the shortlist and the best candidate is chosen like in [1].
The only change lies in the scan order which defines the
causal direct neighbors. This technique enables a great adap-

a) square patch b) chosen patch

Figure 8: Texture patch design.

LAR Segmentation Removed Regions

Decoded I frame with QP=20 Final result

Figure 9: Visual Results on the Coastguard CIF sequence.

tation to our context in which high frequency discontinuities
must be avoided.

Some results are provided in the next section, in partic-
ular visual comparisons between the persented pixel-based
synthesis and a patch-based method.

6. EXPERIMENTAL RESULTS

The framework has been implemented within the JM joint
model [14]. Presented results are given for intra frames se-
quences Wool, Container, Coastguard and Soccer. A set of
four Quantization Parameters (QP){15,20,25,30} is consid-
ered. The segmentation is aligned on a 16x16 grid. The re-
tained patch has been set to 16 pixels of width and three sizes
of neighborhoods {(4,7);(5,9);(6,11)} are competing. Table
1 shows the bit-rate saving at similar visual quality for the
different sequences and QP. One can see the promising per-
formance, i.e. the scheme achieves up to 20% bit-rate sav-
ing on Soccer and 14% on Container. One notes the other
good results on Coastguard containing a large part of wa-
ter texture. Figure 9 shows the visual results for the Coast-
guard sequences encoded with QP = 20, where 22.2% of the
frame has been removed and synthesized. Figure 10 aims
at comparing this pixel-based scheme and the patch-based
from [3] on the coastguard and Morocco Trial sequences.

Morocco Trial frame Coastguard frame

removed textures

Pixel-based scheme

Patch-based scheme

Figure 10: Comparison between pixel-based and patch-based
synthesis.

One can note comparable results for most of textures, for ex-
ample with the trodden earth in the Morocco Trial sequence.
However, results on water in the Coastguard sequence points
out that the pixel-based technique avoids edge artefacts for
smooth textures.

7. CONCLUSION AND FUTURE WORK

A framework based on a new adaptive texture synthesis has
been presented. The synthesis is pixel-based since it relies
on the comparison between current pixel neighborhoods and
those in an atypically shaped patch. In order to better catch
texture patterns, a texture characterization is carried out to
parameterize the synthesizer, in order to choose the best can-
didate among different neighborhood sizes and shapes. The
framework has been validated within an H.264/AVC video
codec. Experimental results show significant bit-rate saving
compared to H.264/AVC. Ongoing researches focus on the
characterization of detected textures to improve synthesizer
adaptation as well as combining patch-based and pixel-based
approaches.

QP 15 20 25 30
Sequences Bit-rate saving (%)
Wool SD 11.3 9.6 7.9 6.2

Container CIF 14.7 11.7 8.4 3.4
Coastguard CIF 35.1 33.3 31.1 27.0

Soccer 4CIF 20.8 20.9 20.8 20.6

Table 1: Resulting bit-rate saving.

REFERENCES

[1] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-
structured vector quantization,” in Proceedings of ACM SIG-
GRAPH, New York, USA, 2000, pp. 479–488.

[2] M. Ashikhmin, “Synthesizing natural textures,” in Proceed-
ings of ACM Symposium on Interactive 3D Graphics, 2001,
pp. 217–226.

[3] V. Kwatra et al., “Graphcut textures: image and video tex-
ture synthesis using graph cuts,” in Proceedings of ACM SIG-
GRAPH, 2003, pp. 277–286.

[4] V. Kwatra, I. Essa Aaron, and B. N. Kwatra, “Texture Op-
timization for Example-based Synthesis,” in Proceedings of
ACM SIGGRAPH, 2005, pp. 795 – 802.

[5] A. Dumitras, BG Haskell, A.C. Inc, and CA Cupertino, “A
texture replacement method at the encoder for bit-rate reduc-
tion of compressed video,” IEEE TCSVT, vol. 13, no. 2, pp.
163–175, 2003.

[6] C. Zhu et al., “Video coding with spatio-temporal texture syn-
thesis,” in IEEE ICME, 2007, pp. 112–115.

[7] P. Ndjiki-Nya, T. Hinz, and T. Wiegand, “Generic and robust
video coding with texture analysis and synthesis,” in 2007
IEEE ICME, 2007, pp. 1447–1450.

[8] P. Ndjiki-Nya, D. Doshkov, and M. Koppel, “Optimization of
video synthesis by means of cost-guided multimodal photo-
metric correction,” 2009.

[9] Dong Liu, Xiaoyan Sun, Feng Wu, Shipeng Li, and Ya-Qin
Zhang, “Image compression with edge-based inpainting,” Cir-
cuits and Systems for Video Technology, IEEE Transactions
on, vol. 17, no. 10, pp. 1273 –1287, 2007.

[10] Zhiwei Xiong, Xiaoyan Sun, and Feng Wu, “Block-based im-
age compression with parameter-assistant inpainting,” Image
Processing, IEEE Transactions on, vol. 19, no. 6, pp. 1651
–1657, 2010.

[11] O. Deforges, M. Babel, L. Bedat, and J. Ronsin, “Color LAR
codec: a color image representation and compression scheme
based in local resolution adjustment and self-extracting region
representation,” IEEE TCSVT, vol. 17, no. 8, pp. 974–987,
2007.

[12] F. Smach, C. Lemaı̂tre, J.P. Gauthier, J. Miteran, and M. Atri,
“Generalized Fourier descriptors with applications to objects
recognition in SVM context,” Journal of Mathematical Imag-
ing and Vision, vol. 30, no. 1, pp. 43–71, 2008.

[13] M. Sabha, P. Peers, and P. Dutre, “Texture synthesis using
exact neighborhood matching,” Computer Graphics Forum,
vol. 26, no. 2, pp. 131–142, 2007.

[14] “JM reference software version 14.0,”
http://iphome.hhi.de/suehring/tml/download/.

