
HAL Id: hal-00599342
https://hal.science/hal-00599342v5

Preprint submitted on 19 Mar 2012 (v5), last revised 5 Jul 2012 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ticket Entailment is decidable
Vincent Padovani

To cite this version:

Vincent Padovani. Ticket Entailment is decidable. 2010. �hal-00599342v5�

https://hal.science/hal-00599342v5
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

Ticket Entailment is decidable

V I N C E N T P A D O V A N I

Equipe Preuves, Programmes et Systèmes

Université Paris VII - Denis Diderot

Case 7014

75205 PARIS Cedex 13

padovani@pps.jussieu.fr

Received 19 June 2010; Revised 6 March 2012

We prove the decidability of the logic T→ of Ticket Entailment. Raised by Anderson and

Belnap within the framework of relevance logic, this question is equivalent to the

question of the decidability of type inhabitation in simply-typed combinatory logic with

the partial basis BB
′
IW. We solve the equivalent problem of type inhabitation for the

restriction of simply-typed lambda-calculus to hereditarily right-maximal terms.

The partial bases built upon the atomic combinators B, B′, C, I, K, W of combinatory logic

are well-known for being closely connected with propositional logic. The types of their

combinators form the axioms of implicational logic systems that have been studied for

well over 70 years (Trigg et al. 1994). The partial basis BB′IW corresponds, via the types

of its combinators, to the system T→ of Ticket Entailment introduced and motivated in

(Anderson and Belnap 1975; Anderson et al. 1990). The system T→ consists of modus

ponens and four axiom schemes that range over the following types for each atomic

combinator:

— B : (χ→ ψ)→ ((φ→ χ)→ (φ→ ψ))

— B′ : (φ→ χ)→ ((χ→ ψ)→ (φ→ ψ))

— I : φ→ φ

— W : (φ→ (φ→ χ))→ (φ→ χ)

The type inhabitation problem for BB
′
IW is the problem of deciding for a given type

whether there exists within this basis a combinator of this type. This problem is equiva-

lent to the problem of deciding whether a given formula can be derived in T→.

Surprisingly, the question of the decidability of T→ has remained unsolved since it

was raised in (Anderson and Belnap 1975), although the problem has been thoroughly

explored within the framework of relevance logic with proofs of decidability and undecid-

ability for several related systems. For instance the system R→ of Relevant Implication

(which corresponds to the basis BCIW) and the system E→ of Entailment (Anderson and

Belnap 1975) are both decidable (Kripke 1959) whereas the extensions R, E, T of R→,

E→, T→ to a larger set of connectives (→, ∧, ∨) are undecidable (Urquhart 1984).

V. Padovani 2

In 2004, a partial decidability result for the type inhabitation problem was proposed

in (Broda et al. 2004) for a restricted class of formulas – the class of 1-unary formulas in

which every maximal negative subformula is of arity at most 1. Broda, Dams, Finger and

Silva e Silva’s approach is based on a translation of the problem into a type inhabitation

problem for the hereditary right-maximal (HRM) terms of lambda calculus (Trigg et al.

1994; Bunder 1996; Broda et al. 2004). The closed HRM-terms form the closure under β-

reduction of all translations of BB′IW-terms, accordingly the type inhabitation problem

within the basis BB′IW is equivalent to the type inhabitation problem for HRM-terms.

We use in this paper the same approach as Broda, Dams, Finger and Silva e Silva’s.

We prove that the type inhabitation problem for HRM-terms is decidable, and conclude

that the logic T→ is decidable†.

Summary

In Section 1, we recall the definition of hereditarily right-maximal terms and the equiv-

alence between the decidability of type inhabitation for BB′IW and the decidability of

type inhabitation for HRM-terms. The principle of our proof is depicted on Figure 1.

In Sections 2 and 3 we provide for each formula φ a partial characterisation of the

inhabitants of φ in normal form and of minimal size. We show that all those inhabitants

belong to two larger sets of terms, the set of compact and locally compact inhabitants of φ.

In Section 4 we show how to associate, with each locally compact inhabitant M of a

formula φ, a labelled tree with the same tree structure as M . We call this tree the shadow

of M . We define for shadows the analogue of compactness for terms and prove that the

shadow of a compact term is itself compact.

Finally, in Section 5, we prove that for each formula φ the set of all compact shadows

of inhabitants of φ is a finite set (hence the set of compact inhabitants of φ is also a finite

set), and that this set is effectively computable from φ. The proof appeals to Higman

Theorem and Kruskal Theorem – more precisely, to Melliès’ Axiomatic Kruskal Theorem.

The decidability of the type inhabitation problem for HRM-terms and the decidability

of T→ follow from this last key result: given an arbitrary formula φ, this formula is

inhabited if and only if there exists a compact shadow with the same tree structure as

an inhabitant of φ, and our key lemma proves that the existence of such a shadow is

decidable.

Preliminaries

The first section of this paper assumes some familiarity with pure and simply-typed

lambda-calculus and with the usual notions of α-conversion, β-reduction and β-normal

form (Barendregt 1984; Krivine 1993). The last three notions are not essential to our

discussion, as we later focus exclusively on a particular set of simply-typed terms in

β-normal form. We shall briefly recall the definitions and results used in Section 1.

† In the course of the publication of this article, we heard of a work in progress by Katalin Bimbò and

Michael Dunn towards a solution that is seemingly based on a different approach.

Ticket Entailment is decidable 3

Fig. 1. Principle of the proof of decidability of type inhabitation for HRM-terms.

The set of terms of pure lambda-calculus (λ-terms) is inductively defined by:

— every variable x is a λ-term,

— if M is a λ-term and x is a variable, then (λxM) is a λ-term,

— if M,N are λ-terms, then (MN) is a λ-term.

Terms yielded by the second and third rules are called abstractions and applications re-

spectively. The parentheses surrounding applications and abstractions are often omitted if

unambiguous. We let λx1 . . . xn.MN1 . . .Np abbreviate (λx1(. . . (λxn(((MN1) . . .)Np)) . . .)).

For instance, λxy.x(xy)z stands for (λx(λy((x(xy))z))).

The bound variables of M are all x such that λx occurs in M . A variable x is free in

M if and only:

— M = x, or,

— M = λy.N , y 6= x and x is free in N , or,

— M = NP and x is free in N or free in P .

A closed term is a term with no free variables. The raw substitution of N for x in M ,

written M〈x← N〉, is the term obtained by substituting N for every free occurrence of x

in M (every occurrence of x that is not in the scope of a λx). We require this substitution

to avoid variable capture (for all y free in N , no free occurrence of x in M is in the scope

of a λy):

— if y = x, then y〈x← N〉 is equal to N , otherwise it is equal to y,

— (λx.M)〈x← N〉 = λx.M ,

— if y 6= x and y is free in N , then (λy.M)〈x← N〉 is undefined,

— if y 6= x, y is not free in N and M〈x← N〉 = M ′, then (λy.M)〈x← N〉 = λy.M ′,

— if M1〈x← N〉 = M ′
1 and M2〈x← N〉 = M ′

2, then (M1M2)〈x← N〉 = (M ′
1M

′
2).

The α-conversion is defined as the least binary relation ≡α such that:

— x ≡α x,

V. Padovani 4

— if M ≡α M ′, y is not free in M ′ and M ′〈x← y〉 = M ′′, then (λx.M) ≡α (λy.M ′′)

— if M1 ≡α M ′
1 and M2 ≡α M ′

2, then (M1M2) ≡α (M ′
1M

′
2).

For instance λx.y ≡α λz.y 6≡α λy.y. It is a common practice to consider λ-terms up to

α-conversion, however we will not follow this practice in our exposition.

The β-reduction is the least binary relation β satisfying:

— if M ≡α (λx.N)P and N〈x← P 〉 = N ′, then MβN ′.

— if MβM ′, then (λx.M)β(λx.M ′), (MN)β(M ′N) and (NM)β(NM ′).

In the first rule, x is not necessarily free in N , so we may have N = N ′ – in particular,

free variables may disappear in the process of reduction.

We write β∗ for the reflexive and transitive closure of β. A term M is in β-normal form

– or β-normal – if there is no M ′ such that MβM ′. A term M is normalising if there is

a normal N – called normal form of M – such that Mβ∗N . It is strongly normalising if

there is no infinite sequence M = M0βM1βM2 . . .

It is well-known that β-conversion enjoys the Church-Rosser property: if Mβ∗N and

Mβ∗N ′, then there exist two α-convertible P, P ′ such that Nβ∗P and N ′β∗P ′. As a

consequence, if a term is normalising then its normal form is unique up to α-conversion.

The judgment “assuming x1, . . . , xn are of types ψ1, . . . ψn, the term M is of type φ”,

written {x1 : ψ1, . . . , xn : ψn} ⊢M : φ, where ψ1, . . . , ψn, φ are formulas of propositional

calculus and x1, . . . , xn are distinct variables, is defined by:

— Γ ⊢ x : ψ for each x : ψ ∈ Γ,

— if Γ ∪ {x : φ} ⊢M : ψ, then Γ ⊢ λx.M : φ→ ψ.

— if Γ ⊢M : φ→ ψ and Γ ⊢ N : φ, then Γ ⊢ (MN) : ψ

The simply-typable terms are all M for which there exist Γ, φ such that Γ ⊢M : φ. Note

that Γ contains all variables free in M . The following properties are well-known:

1 (Strong normalisation) If Γ ⊢M : φ, then M is strongly normalising.

2 (Subject reduction) If Γ ⊢M : φ and MβN , then Γ ⊢ N : φ.

1. From BB′IW to simply-typed lambda-calculus

The aim of this first section is to provide a precise characterisation of simply-typable

terms that are typable with inhabited types in BB′IW, so as to transform the problem

of type inhabitation in BB′IW into a type inhabitation problem in lambda-calculus. The

types of atomic combinators in BB′IW are also types for their respective counterparts

λfgx.f(gx), λfgx.g(fx), λx.x, λhx.hxx in lambda-calculus, hence to each inhabited type

φ in BB′IW corresponds at least one closed λ-term of type φ. Moreover, subject reduction

and strong normalisation (see above) also ensure the existence of a closed normal λ-term

of type φ. What we lack is a criterion to distinguish amongst all typed normal forms the

ones that are reducts of translations of combinators within BB′IW.

The material and the results of this section are not new (Bunder 1996; Broda et al.

2004). The reader may as well skip the contents of Sections 1.3 and 1.4 entirely, accept

Lemma 1.10 then go on with the study of stable parts and blueprints in Section 2.

The definition of hereditarily right-maximal terms is an adaptation of the definition

given in (Bunder 1996). The proof of Lemma 1.6 (subject reduction for HRM-terms)

Ticket Entailment is decidable 5

is similar to the proof of Property 2.4, p.375 in (Broda et al. 2004). The right-to-left

implication of Lemma 1.10 can be deduced from Property 2.20, p.390 in (Broda et al.

2004), although our proof method seems to be simpler.

1.1. Lambda-calculus

Let X be a countably infinite set of variables x, y, z . . . together with a one-to-one func-

tion O from X to N . For all x, y in X , we write x < y when O(x) < O(y). Throughout

the sequel, by term we always mean a term of lambda-calculus built over those vari-

ables. For each term M , we write Free(M) for the strictly increasing sequence of all free

variables of M .

Terms are not identified modulo α-conversion - apart from Section 1, all considered

terms will be in normal form, and the Greek letters α, β will be even used with new

meaning at the beginning of Section 2. We adopt however the usual convention according

to which two distinct λ’s may not bound the same variable in a term, and no variable

can be simultaneously free and bound in the same term.

1.2. Hereditarily right-maximal terms

Definition 1.1. The set of hereditarily right-maximal (HRM) terms is inductively de-

fined as follows:

1 Each variable x is HRM.

2 If M is HRM and x is the greatest free variable of M then λx.M is HRM.

3 If M,N are HRM, and for each free variable x of M there exists a free variable y of

N such that x ≤ y, then (MN) is HRM.

The second rule ensures that all HRM-terms are λI -terms, that is, terms in which every

subterm λx.M is such that x is free in M . As a consequence the set of free variables of

an HRM-term is preserved under β-reduction. As we shall see below (Lemma 1.6), right-

maximality can also be preserved at the cost of appropriate bound variable renamings.

In the third rule, if N is closed then so is M . When M and N are non-closed terms,

the greatest free variable of M is less than or equal to the greatest free variable of N .

For instance, if f < g < x and h < x, then λfgx.f(gx), λfgx.g(fx), λx.x, λhx.hxx are

HRM, whereas λyz.zy is not, no matter if y < z or y > z.

Definition 1.2. Let Ω be a function mapping each variable to a formula, in such a way

that Ω−1(φ) is an infinite set for each φ. We extend this function to the set of all strictly

increasing finite sequences of variables, letting Ω(x1, . . . , xn) = (Ω(x1), . . . ,Ω(xn)).

Definition 1.3. The judgment M : φ, in words “M is of type φ w.r.t Ω”, is defined by:

— if Ω(x) = φ, then x : φ,

— if x : χ, M : ψ and λx.M is HRM, then λx.M : χ→ ψ,

— if M : χ→ ψ, N : χ and (MN) is HRM, then (MN) : ψ.

The function Ω will remain fixed throughout our exposition. Accordingly the type of a

V. Padovani 6

term M w.r.t Ω will be called the type of M , without any further reference to the choice

of Ω. Note that every typed term is HRM.

Definition 1.4. We write ΛNF for the set of all typed terms in β-normal form. We call

ΛNF-inhabitant of φ every closed term M ∈ ΛNF of type φ.

The next lemma is the well-known subformula property of simply-typed lambda-calculus:

Lemma 1.5. (Subformula Property) Let M be a ΛNF-inhabitant of φ. The types of the

subterms of M are subformulas of φ.

1.3. Subject reduction of hereditarily right-maximal terms

Lemma 1.6. Suppose there exists a closed M : φ. Then φ is ΛNF-inhabited.

Proof. (1) We leave to the reader the proof of the fact that for every variable y and

for every N : φ, there exists N ′ ≡α N such that N ′ : φ and every bound variable of N ′

is strictly greater than y.

(2) We prove the following proposition by induction on P . Let P,Q be typed HRM-

terms. Suppose:

— x and Q are of the same type,

— if Q is closed and x ∈ Free(P), then x = min(Free(P))

— if Q is not closed, then for all z ∈ Free(P):

if z < x then z ≤ max(Free(Q)),

if x < z then max(Free(Q)) < z.

— if Q is not closed, then max(Free(Q)) < z for all bound variables z of P .

Then R = P 〈x ← Q〉 is defined, HRM and of the same type as P . The proposition is

clear if P is a variable.

Suppose P = λz.P ′. Then Free(P ′) = Free(P) · (z). By induction hypothesis R′ =

P ′〈x ← Q〉 is defined, HRM and of the same type as P ′. The variable z is still the

greatest free variable of R′ and z is not free in Q, hence R = λz.R′.

Suppose P = (P1P2). By induction hypothesis Ri = Pi〈x ← Q〉 is defined, HRM and

of the same type as Pi for each i ∈ {1, 2}. It remains to check that R = (R1R2) is HRM.

Assume x is free in P and P1 is not closed.

Suppose max(Free(P1)) > x. Then max(Free(P1)) = max(Free(R1)) ≤ max(Free(P2)) =

max(Free(R2)).

Suppose max(Free(P1)) < x. The term Q cannot be closed, and max(Free(P1)) =

max(Free(R1)) ≤ max(Free(Q)). We have either max(Free(P2)) = x and max(Free(R2)) =

max(Free(Q)), or max(Free(P2)) > x and max(Free(P2)) = max(Free(R2)).

Otherwise max(Free(P1)) = x. Suppose max(Free(P2)) > x. Then max(Free(P2)) =

max(Free(R2)). If Q is closed, then Free(P1) = (x) and R1 is closed. Otherwise we have

max(Free(R1)) = max(Free(Q)) ≤ max(Free(P2)). The remaining case is max(Free(P2)) =

x. If Q is closed then Free(P1) = Free(P2) = (x) and R1, R2 are closed. Otherwise

max(Free(R1)) = max(Free(R2) = max(Free(Q)).

(3) Assume N : φ and N is not in normal form. We prove by induction on N the

Ticket Entailment is decidable 7

existence of N ′ : φ such that NβN ′. If N = λx.P , or if N = (N1N2) with N1 or N2

not in normal form, then the existence of N ′ follows from the induction hypothesis and

the fact that β-reduction preserves the set of free variables of an HRM-term. Otherwise

N = (λx.P)Q where for each free variable z of λx.P , we have z < x and there exists a

free variable y of Q such that z < y. By (1) there exists P ′ ≡α P such that P ′ : φ and no

bound variable of P ′ is less than or equal to a free variable of Q. The variable x is the

greatest free variable of P ′. By (2), the term N ′ = P ′〈x← Q〉 is well-defined, HRM and

of the type φ. Moreover NβN ′.

(4) We now prove the lemma. The term M is a simply-typable HRM-term. The strong

normalisation property implies the existence of a normal form N of M . The term N is still

a closed term. By (1), there exists N ′ ≡α N such that N ′ : φ, that is, φ is ΛNF-inhabited,

1.4. Equivalence between inhabitation in BB′IW and ΛNF-inhabitation

In the next three lemmas by φ1 . . . φn → ψ we mean the formula (φ1 → (. . . (φn → ψ) . . .))

if n > 0, and otherwise the formula ψ. We write ⊢BB’IW φ for the judgment “there exists

within the basis BB′IW a combinator of type φ”.

Lemma 1.7. If ⊢BB’IW φ, then φ is ΛNF-inhabited.

Proof. If f < g < x and h < x, then λx.x, λfgx.f(gx), λfgx.g(fx) and λhx.hxx are

HRM. For each type φ of an atomic combinator, the variables f, g, h, x can be chosen so

that one of those terms is of type φ. The set of all formulas φ for which there exists a

closed M of type φ is closed under modus ponens. By Lemma 1.6, every such formula is

ΛNF-inhabited.

Lemma 1.8. If ⊢BB’IW χ → ψ, then ⊢BB’IW (φ1 . . . φn → χ) → (φ1 . . . φn → ψ) for

all φ1, . . . , φn.

Proof. By induction on n, using left-applications of B.

Lemma 1.9. Suppose (i1, . . . , in), (j1, . . . , jm), (k1, . . . , kp) are strictly increasing se-

quences of integers, {k1, . . . , kp} = {i1, . . . , in, j1, . . . , jm}, n = 0 or (n > 0, m > 0,

in ≤ jm). If

1 ⊢BB’IW ωi1 . . . ωin → (χ→ ψ),

2 ⊢BB’IW ωj1 . . . ωjm → χ,

then ⊢BB’IW ωk1 . . . ωkp → ψ.

Proof. By induction on n+m. The proposition is true if n = m = 0. Assume n+m > 0.

Then m > 0.

Suppose n = 0. Then (ji, . . . , jm) = (k1, . . . , kp). We have:

(i) ⊢BB’IW (χ→ ψ)→ ((ωjm → χ)→ (ωjm → ψ))

(ii) ⊢BB’IW (ωjm → χ)→ (ωjm → ψ)
where: (i) is a type for B; (ii) follows from (i), (1) and modus ponens. If m = 1 then

V. Padovani 8

⊢BB’IW ωj1 → ψ follows from (ii), (2) and modus ponens. Otherwise ⊢BB’IW ωj1 . . . ωjm →

ψ follows from (ii), (2) and the induction hypothesis.

We now assume n > 0. Suppose m > 1 and in ≤ jm−1. Then
(iii) ⊢BB’IW (χ→ ψ)→ ((ωjm → χ)→ (ωjm → ψ))

(iv) ⊢BB’IW (ωi1 . . . ωin → (χ→ ψ))→ (ωi1 . . . ωin → ((ωjm → χ)→ (ωjm → ψ)))

(v) ⊢BB’IW ωi1 . . . ωin → ((ωjm → χ)→ (ωjm → ψ))
where: (iii) is a type for B; (iv) follows from (iii) and Lemma 1.8; (v) follows from (iv),

(1) and modus ponens. We have kp = jm and {k1, . . . , kp−1} = {i1, . . . , in, j1, . . . , jm−1}.

Since in ≤ jm−1, we have ⊢BB’IW ωk1 . . . ωkp−1
→ (ωjm → ψ) by (v), (2) and the induction

hypothesis.

Suppose m = 1 or (m > 1 and in > jm−1). Then

(vi) ⊢BB’IW (ωjm → χ)→ ((χ→ ψ)→ (ωjm → ψ))

(vii) ⊢BB’IW (ωj1 . . . ωjm → χ)→ (ωj1 . . . ωjm−1
→ ((χ→ ψ)→ (ωjm → ψ)))

(viii) ⊢BB’IW ωj1 . . . ωjm−1
→ ((χ→ ψ)→ (ωjm → ψ))

(ix) ⊢BB’IW ωn1
. . . ωnq

→ (ωjm → ψ)
where: (vi) is a type for B′; (vii) follows from (vi) and Lemma 1.8; (viii) follows from

(vii), (2) and modus ponens; {n1, . . . , nq} = {j1, . . . , jm−1, i1, . . . , in}; (ix) follows from

(viii), (1) and the induction hypothesis. If jm > in, then (n1, . . . , nq, jm) = (k1, . . . , kp).

Otherwise jm = in, nq = in, (n1, . . . nq) = (k1, . . . , kp) and

(x) ⊢BB’IW ωk1 . . . ωkp−1
→ (ωin → (ωin → ψ))

(xi) ⊢BB’IW (ωin → (ωin → ψ))→ (ωin → ψ)

(xii) ⊢BB’IW (ωk1 . . . ωkp−1
→ (ωin → (ωin → ψ)))→ (ωk1 . . . ωkp−1

→ (ωin → ψ))

(xiii) ⊢BB’IW ωk1 . . . ωkp−1
→ (ωin → ψ)

where: (x) is (ix); (xi) is a type for W; (xii) follows from (xi) and Lemma 1.8; (xiii) follows

from (x), (xii) and modus ponens; (xiii) is ⊢BB’IW ωk1 . . . ωkp → ψ.

Lemma 1.10. For every formula φ, we have ⊢BB’IW φ if and only if φ is ΛNF-inhabited.

Proof. The left to right implication is Lemma 1.7. Using Lemma 1.9 when M is an

application, an immediate induction on M shows that if M : ψ, Free(M) = (x1, . . . , xn)

and x1 : χ1, . . . , xn : χn, then ⊢BB’IW χ1 . . . χn → ψ

2. Stable parts and blueprints

The last lemma showed that the decidability of type inhabitation for BB′IW is equivalent

to the decidability of ΛNF-inhabitation. The sequel is devoted to the elaboration of a

decision algorithm for the latter problem.

The problem we shall examine throughout Sections 2 and 3 is the following: if an

inhabitant is not of minimal size, is there any way to transform it (with the help of grafts

and/or another compression of some sort) into a smaller inhabitant of the same type?

This question is not easy because we are dealing with a lambda-calculus restricted with

strong structural constraints (righ-maximality). There are however simple situations in

which an inhabitant is obviously not of minimal size.

Consider a ΛNF-inhabitant M and two subterms N,P of M such that P is a strict

subterm of N . Suppose:

Ticket Entailment is decidable 9

— N,P are applications of the same type or abstractions of the same type.

— Free(N) = X = (x1, . . . , xn),

— Free(P) = Y = (y10 , . . . , y
1
p1
, . . . , yn0 , . . . , y

n
pn

)

— Ω(X) = (χ1, . . . , χn),

— Ω(Y) = (χ1
0, . . . , χ

1
p1
, . . . , χn0 , . . . , χ

n
pn

),

— χij = χi for each i, j.

Then M is not of minimal size. Indeed we can rename the free variables of P (letting

ρ(yij) = xi) so as to obtain a term P ′ of the same size as P , of the same type and the same

free variables as N . The subterm N of M can be replaced with P ′ in M . The resulting

term is a ΛNF-inhabitant of the same type but of strictly smaller size.

This simple property is far from being enough to characterise the minimal inhabi-

tants of a formula: there are indeed formulas with inhabitants of abitrary size in which

this situation never occurs. What we need is a more flexible way to reduce the size of

non-minimal inhabitants. In particular, we need a better understanding of our available

freedom of action if we are to rename the free variables of a term – possibly occurrence

by occurrence – and if we want to ensure that right-maximality is preserved. This section

is devoted to the proof of two key lemmas that delimit this freedom.

— In Sections 2.1, 2.2 and 2.2 we show how to build from any term M ∈ ΛNF a par-

tial tree labelled with formulas. This partial tree is called the blueprint of M . This

blueprint can be seen as a synthesized version of M that contains all and only the

information required to determine whether a (non-uniform) renaming of the free vari-

ables of M will preserve hereditarily right-maximality.

— In Sections 2.4 and 2.5 we introduce a rewriting relation on blueprints that allows

one to “extract” sequences of formulas from a blueprint.

— In section 2.6 we prove our two key lemmas. Lemma 2.15 clarifies the link between the

blueprints of M and λx.M (provided both are in ΛNF). This lemma proves in particu-

lar that the sequence of the types of the free variables of M (that is, Ω(Free(M))) can

always be extracted from its blueprint. Lemma 2.16 shows that for every sequence

of formulas φ that can be extracted from the blueprint of M , there exists a (non-

uniform) renaming of the free variables of M that will produce a term N of the same

type and with the same blueprint as M , and such that Ω(Free(N)) = φ.

As a continuation of our first example, let us examine the consequences of this last result.

Consider again a ΛNF-inhabitant M and two subterms N,P of M such that P is a strict

subterm of N and N,P are applications of the same type or abstractions of the same

type. Suppose:

— the sequence Ω(Free(N)) can be extracted from the blueprint of P .

This situation is a generalization of the preceding one (in our first example Ω(X) could

also be extracted from the blueprint of P , see Definition 2.10). The term M is still not

of minimal size. Indeed, we may use the second key lemma to prove the existence of

(non-uniform) renaming of the free variables of P that will produce a term P ′ of the

same type as P such that Free(P ′) = Free(N). The term N can be replaced with P ′ in

M .

V. Padovani 10

2.1. Partial trees and trees

Definition 2.1. Let (A ,≤) be the set of all finite sequences over the set N+ of natural

numbers, ordered by prefix ordering. Elements of A are called addresses. We call partial

tree every function π whose domain is a set of addresses. For each partial tree π and for

each address a, we let π|a denote the partial tree c 7→ π(a·c) of domain {c | a·c ∈ dom(π)}.

Definition 2.2. For all partial trees π, π′ and for every address a, we let π[a ← π′]

denote the partial tree π′′ such that π′′
|a = π′ and π′′(b) = π(b) for all b ∈ dom(π) such

that a 6≤ b.

Definition 2.3. A tree domain is a set A ⊆ A such that for all a ∈ A: every prefix of a

is in A; for every integer i > 0, if a · (i) ∈ A, then a · (j) ∈ A for each j ∈ {1, . . . , i− 1}.

A tree domain A is finitely branching if and only if for each a ∈ A, there exists an i > 0

such that a · (i) is undefined. We call tree every function whose domain is a tree domain.

In the sequel terms will be freely identified with trees. We identify: x with the tree

mapping ε to x; λx.M with the tree τ mapping ε to λx and such that τ|(1) is the tree

of M ; (M1M2) with the tree τ mapping ε to @ and such that τ|(i) is the tree of Mi for

each i ∈ {1, 2}.

2.2. Blueprints

Definition 2.4. Let S be the signature consisting of all formulas and all symbols of the

form @φ where φ is a formula. Each formula is considered as a symbol of null arity. Each

@φ is of arity 2.

We call blueprint every finite partial tree α : A→ S satisfying the following condition:

for each a ∈ A, if α(a) = @φ, then α|a·(1) and α|a·(2) are of non-empty domains. A rooted

blueprint is a blueprint α such that ε ∈ dom(α).

For each S ⊆ S, we call S-blueprint every blueprint whose image is a subset of S. We

write B(S) for the set of all S-blueprints, and Bε(S) for the set of all rooted S-blueprints.

Definition 2.5. For every blueprint α and every address a, the relative depth of a in α

is the number of b ∈ dom(α) such that b < a. The relative depth of α is defined as 0 if α

is of empty domain, the maximal relative depth of an address in α otherwise.

In the sequel the following notations will be used to denote blueprints (see Figure 2):

— ∅B denotes the blueprint of empty domain.

— we abbreviate ε 7→ φ as φ.

— @φ(α1, α2) denotes the (rooted) blueprint α such that α(ε) = φ, α|(1) = α1, α|(2) = α1.

— for every sequence a = (a1, . . . , ak) of pairwise incomparable addresses, ∗a(α1, . . . , αk)

denotes the blueprint α of minimal domain such that α|ai = αi for each i ∈ [1, . . . , k].

— we let ∗(α1, . . . , αk) denote the blueprint ∗a(α1, . . . , αk) such that a = ((1), . . . , (k)).

For each blueprint α, the choice of a, α1, . . . , αk such that α = ∗a(α1, . . . , αk) is obvi-

ously not unique. The sequence (α1, . . . , αk) may contain an arbitrary number of empty

blueprints, hence the sequence a may be of arbitrary length. Also, α can be roooted (if

Ticket Entailment is decidable 11

Fig. 2. Construction of blueprints, with the notations of Section 2.2. In the upper

diagram, the blueprints α and β must be non-empty. Although α1, . . . , αk are displayed

from left to right, the sequence (a1, . . . , ak) needs not to be lexicographically ordered.

k = 1, a1 = ε and α1 is rooted) or empty (if k = 0 or α1 = . . . = αk = ∅B). Those

ambiguities will not be difficult to deal with, but they will require a few precautions in

our proofs and definitions by induction on blueprints.

2.3. Blueprint of a term

Definition 2.6. For all M ∈ ΛNF, the stable part of M is the set of all a ∈ dom(M)

such that Free(M|a) ⊆ Free(M) and M|a is a variable or an application.

It is easy to check that our conventions (no variable is simultaneously free and bound in

a term) ensure that the stable part of a term does not depend on the choice of variable

names. Since M is in normal form, M is of empty stable part if and only if it is closed.

Definition 2.7. For all M ∈ ΛNF, we call blueprint of M the function α mapping each

a in the stable part of M to:

— ψ if M|a is a variable of type ψ,

— @ψ if M|a is an application of type ψ.

We let M α denote the judgment “M is of blueprint α” (Figure 3).

If M = (M1M2) ∈ ΛNF, M : φ, M1 α1, M2 α2, then each αi is of non-empty

domain and (M1M2) @φ(α1, α2) – in other words the so-called blueprint of M is indeed

a blueprint, provided so are the blueprints of M1, M2. When M = λx.M1 the blueprint

of M is of the form ∗(α) – the relation between α and the blueprint of M1 in that case

will be clarified by Lemma 2.15.

Lemma 2.8. For all M ∈ ΛNF and forall a · b ∈ dom(M):

1 If Free(M|a·b) ⊆ Free(M) then Free(M|a·b) ⊆ Free(M|a).

2 If M|a α and M|a·b β, then α|b = β.

V. Padovani 12

Fig. 3. An element of ΛNF with its blueprint (x0 < x1 < y1, x2 < x3 < y0 < y2,

x1 < y0 < y2).

Fig. 4. Principle of blueprint reduction.

Proof. The first proposition is a consequence of our bound variable convention (see

Section 1.1): if Free(M) = X , Free(M|a) = X ′ ∪ Y where X ′ ⊆ X and X , Y are disjoint,

then every element of Free(M|a·b) in X is also an element of X ′. Thus if a · b is in the

stable part of M , then b is also in the stable part of M|a. The second proposition is

equivalent to the first.

2.4. Extraction of the formulas of a blueprint

Definition 2.9. The judgment “β is the blueprint obtained by extracting the formula

φ at the address a in the blueprint α”, written α⊲aφ β, is inductively defined by:

1 φ⊲εφ ∅B ,

2 if α⊲aφ β, then @ψ(γ, α)⊲
(2)·a
φ ∗(γ, β)

3 if α⊲aφ β, then ∗(b,c1,...,ck)(α, γ1, . . . , γk)⊲b·aφ ∗(b,c1,...,ck)(β, γ1, . . . , γn).

In (2) we assume of course that α and γ are non-empty. In (3) we assume b 6= ε in order

to avoid circularity.

Ticket Entailment is decidable 13

Fig. 5. Full reductions of @ψ(χ→ ψ,@χ(φ→ χ, φ)) to ∅ B .

For instance (Figure 5):

— @ψ(χ→ ψ,@χ(φ→ χ, φ)) ⊲
(2,2)
φ ∗(χ→ ψ, ∗(φ→ χ, ∅B))

⊲
(2,1)
φ→χ ∗(χ→ ψ, ∗(∅B , ∅B))

⊲
(1)
χ→ψ ∗(∅B , ∗(∅B , ∅B)) = ∅B

— @ψ(χ→ ψ,@χ(φ→ χ, φ)) ⊲
(2,2)
φ ∗(χ→ ψ, ∗(φ→ χ, ∅B))

⊲
(1)
χ→ψ ∗(∅B , ∗(φ→ χ, ∅B))

⊲
(2,1)
φ→χ ∗(∅B , ∗(∅B , ∅B)) = ∅B

When α ⊲aφ β, the blueprint β can be seen as α in which the formula φ at a is erased

together with all @’s in the path to a. At each @ this path must follow the right branch

of @. The constraints on the construction of blueprints imply the existence of at least

one such path in every non-empty blueprint, even if it is not the blueprint of a term.

2.5. Sets of extractible sequences

Definition 2.10. For each formula φ, let ⊲φ be the relation defined by: α ⊲φ β if and

only if there exists a such that α⊲aφ β. We write ⊲+
φ for the transitive closure of ⊲φ. For

each α, we write F (α) for the set of all sequences (φ1, . . . , φn) such that α⊲+
φn
. . .⊲+

φ1
∅B .

The set F (α) is what we called “set of extractible sequences of α” in the introduction

of Section 2. Note that F (∅B) = {ε}. If α 6= ∅B , then all elements of F (α) are non-

empty sequences. Note also that each ⊲-reduction strictly decreases the cardinality of

the domain of a blueprint, therefore F (α) is a finite set for all α. We now introduce the

notion of shuffle which will allow us to characterise F (α) depending on the structure of

α.

V. Padovani 14

Fig. 6. Shuffling of two sequences. The chunks of F and G need not to be of the same

size – some of them can be empty. Every contraction of the resulting sequence belongs to

⊛(F,G). Each contraction belongs also to ⊚(F,G) when F,G are non-empty and the last

chunk Gp of G is non-empty.

Definition 2.11. A contraction of a sequence F is either the sequence F or a sequence

G · (f) ·H where G · (f) · (f) ·H is a contraction of F .

Definition 2.12. For all finite sequences F1, . . . , Fn we call shuffle of (F1, . . . , Fn) every

sequence F 1
1 · . . . · F

1
n · . . . · F

p
1 · . . . · F

p
n such that F 1

i · . . . · F
p
i = Fi for each i. For each

tuple of sets of finite sequences (F1, . . . ,Fn) we write ⊛(F1, . . . ,Fn) for the closure under

contraction of the set of shuffles of elements of F1 × . . .×Fn.

Definition 2.13. Given two non-empty finite sequences F1, F2, we call right-shuffle of

(F1, F2) every sequence F 1
1 · F

1
2 · . . . · F

p
1 · F

p
2 such that F 1

i · . . . F
p
i = Fi for each i and

F p2 6= ε. For each pair of sets of non-empty finite sequences (F1,F2) we write ⊚(F1,F2)

for the closure under contraction of the set of right-shuffles of elements F1 ×F2.

The principle of (right-)shuffling is depicted on Figure 6. The following properties follow

from our definitions and will be used without reference:

1 If α = ∅B , then F (α) = {ε}.

2 If α = φ, then F (α) = {(φ)}.

3 If α = ∗a(α1, . . . , αk), then F (α) = ⊛(F (α1), . . . ,F (αk)).

4 If α = @φ(α1, α2), then F (α) = ⊚(F (α1),F (α2)).

2.6. Abstraction vs. extraction

Lemma 2.14. Suppose {a1, . . . , ap} = {b1, . . . , bp}, and:

— α⊲a1χ . . .⊲
ap
χ β,

— α⊲b1χ . . .⊲
bp
χ β′.

Then β = β′.

Proof. By an easy induction on α.

Recall that for every strictly increasing sequence of variables X = (x1, . . . , xn), we write

Ω(X) for the sequence of the types of x1, . . . , xn. We now clarify the link between the

blueprint α of a term M and the one of λx.M .

The next lemma shows in particular that if M,λx.M ∈ ΛNF, then M and λx.M

Ticket Entailment is decidable 15

Fig. 7. How the blueprint of M evolves into the blueprint of λx.M

are of blueprints α and β if and only if there exist a0, . . . , ap such that {a0, . . . , ap} =

{a |M|a = x}, α⊲a0χ . . .⊲
ap
χ α′ and β = ∗(α′) (Figure 7).

Lemma 2.15. Suppose M ∈ ΛNF is of blueprint α, with Free(M) = (x1, . . . , xn) and

Ω(x1, . . . , xn) = (χ1, . . . , χn). For each i ∈ [0, . . . , n]:

— let αi be the restriction of α to dom(α) ∩ {a |Free(M|a) ⊆ {x1, . . . , xi}}.

— let βi be the blueprint of λxi+1 . . . xn.M ,

Then:

1 For each i ∈ [0, . . . , n] we have dom(βi) = {1n−1 · a | a ∈ dom(αi)} and βi|1n−i = αi.

2 For each i ∈]0, . . . , n]:

(a) there exist ai0, . . . , a
i
pi

such that {ai0, . . . , a
i
pi
} = {a |M|a = xi}

and αi ⊲
ai0
χi . . .⊲

aipi
χi αi−1,

(b) if {b0, . . . , bpi} = {a |M|a = xi} and αi ⊲
b0
χi
. . .⊲

bpi
χi α

′ then α′ = αi−1.

3 We have (χ1, . . . , χn) ∈ F (α).

Proof. Property (1) follows immediately from the definition of a blueprint. Since

αn = α and α0 = ∅B , Property (3) follows from Property (2.a). Property (2.b) fol-

lows from Property (2.a) and Lemma 2.14. As to prove (2.a) we introduce the following

notations.

For each N ∈ ΛNF, we let ρN be the least partial function satisfying the following

conditions: for every blueprint γ, we have ρN (ε, γ) = γ; for every finite sequence of

V. Padovani 16

variables Y and for every blueprint γ, if ρN (Y, γ) = δ, {b |N|b = y} = {b0, . . . , bm} and

δ⊲b0χ . . .⊲
bm
χ δ′, then ρM ((y) ·Y, γ) = δ′. By Lemma 2.14, if {b |N|b = y} = {b0, . . . , bm} =

{c0, . . . , cm}, δ⊲
b0
χ . . .⊲

bm
χ δ′ and δ⊲c0χ . . .⊲

cm
χ δ′′, then δ′ = δ′′, thus ρN is indeed a function.

For each finite sequence of variables Y ′ and for each blueprint γ, we let µN (Y ′, γ) be the

restriction of γ to dom(γ) ∩ {b |Free(N|b) ⊆ Y
′}.

We shall prove by induction on M that for all pairs (X,X ′) such that Free(M) = X ·X ′,

we have µM (X,α) = ρN (X ′, α) – in particular for all i > 0 we have

αi−1 = µM ((x1, . . . , xi−1), α)

= ρM ((xi, . . . , xn), α)

= ρM ((xi), ρM ((xi+1 . . . , xn), α))

= ρM ((xi), µM ((x1 . . . , xi), α))

= ρM ((xi), αi)

thus (2.a) holds. The case X ′ = ε is immediate, hence we may as well assume that X ′

is a non-empty suffix of Free(M). The case of M equal to a variable follows immediately

from our definitions.

Suppose M = (M1M2), M1 γ1 and M2 γ2. There exist X1, X2, X
′
1, X

′
2 such that:

X1 ∪ X2 = X ; X ′
1 ∪ X

′
2 = X ′; Free(Mj) = Xj · X ′

j for each j ∈ {1, 2}. We have α =

@ψ(γ1, γ2) where ψ is the type of M , and µM (X,α) = ∗(µM1
(X1, γ1), µM2

(X2, γ2)). By

induction hypothesis µMi
(Xi, γi) = ρMi

(X ′
i, γi) for each i. The sequence X ′ is non-empty

hence the last elements of X ′, X ′
2 are equal. Assume X ′ = X ′′ · (x) and X ′

2 = X ′′
2 · (x).

If x is not the last element of X ′
1 then:

ρM (X ′, α) = ρM (X ′′ · (x),@ψ(γ1, γ2))

= ρM (X ′
1 ∪X

′′
2 , ∗(γ1, ρM2

((x), γ2)))

= ∗(ρM1
(X ′

1, γ1), ρM2
(X ′′

2 , ρM2
((x), γ2)))

= ∗(ρM1
(X ′

1, γ1), ρM2
(X ′′

2 · (x), γ2))

= ∗(ρM1
(X ′

1, γ1), ρM2
(X ′

2, γ2))

Otherwise, X ′
1 = X ′′

1 · (x) and we have:

ρM (X ′, α) = ρM (X ′,@ψ(γ1, γ2))

= ρM (X ′′
1 ∪X

′′
2 , ∗(ρM1

((x), γ1), ρM2
((x), γ2)))

= ∗(ρM1
(X ′′

1 , ρM1
((x), γ1)), ρM2

(X ′′
2 , ρM2

((x), γ2)))

= ∗(ρM1
(X ′′

1 · (x), γ1), ρM2
(X ′′

2 · (x), γ2))

= ∗(ρM1
(X ′

1, γ1), ρM2
(X ′

2, γ2))

In either case

ρM (X ′, α) = ∗(ρM1
(X ′

1, γ1), ρM2
(X ′

2, γ2))

= ∗(µM1
(X1, γ1), µM2

(X2, γ2))

= µM (X,α)

SupposeM = λx.M1, M1 γ1. By induction hypothesis µM1
(X, γ1) = ρM1

(X ′·(x), γ1) =

ρM1
(X ′, ρM1

((x), γ1)) = ρM1
(X ′, µ(X ·X ′, γ1)) = ρM1

(X ′, α|(1)). Moreover µM1
(X, γ1) =

µM1
(X,µM1

(X ·X ′, γ1)) = µM1
(X,α|(1)). Hence µM1

(X,α|(1)) = ρM1
(X ′, α|(1)), therefore

µM1
(X,α) = ρM1

(X ′, α).

Thus the full sequence of the types of the free variables of M can be extracted from

Ticket Entailment is decidable 17

Fig. 8. A non-uniform renaming of the variables of M , based on an alternate extraction

of the formulas of its blueprint.

its blueprint. The next lemma shows that conversely for each sequence χ in F (α), there

exists a term N with the same domain, blueprint and of the same type as M , and such

that the sequence of types of the free variables of N is equal to χ, see Figure 8.

Lemma 2.16. Let M ∈ ΛNF be a term of blueprint α. Suppose

α⊲
bm0
ωm . . .⊲

bmpm
ωm . . . ⊲

b10
ω1 . . .⊲

b1p1
ω1 ∅B

Then for every strictly increasing sequence of variables Y = (y1, . . . , ym) such that

Ω(Y) = (ω1, . . . , ωm), there exists N with the same domain, blueprint and of the same

type as M such that Free(N) = Y and {b |N|b = yi} = {bi1, . . . , b
i
pi
} for each i.

Proof. By induction on M . The proposition is clear if M is a variable. The case of

M = (M1M2) follows easily from the induction hypothesis. Suppose M = λx.M1 : φ→ ψ

with M1 γ. Let Y ′ = (y1, . . . , ym, x). By Lemma 2.15.(2.a) there exist a1, . . . , ap such

that {a1, . . . , ap} = {a |M|a = x} and γ ⊲a0φ . . .⊲
ap
φ γ′ = α|1. Now

α⊲
bm0
ωm . . .⊲

bmpm
ωm . . . ⊲

b10
ω1 . . .⊲

b1p1
ω1 ∅B

hence each bij is of the form (1) · cij . Furthermore

γ ⊲a0φ . . .⊲
ap
φ ⊲

cm0
ωm . . .⊲

cmpm
ωm . . . ⊲

c10
ω1 . . .⊲

c1p1
ω1 ∅B

By induction hypothesis there exists N1 with the same domain, blueprint and of the same

type as M1 such that Free(N1) = Y ′, {a |N1|a = x} = {a0, . . . , ap} and {c |N1|c = yi} =

{ci0, . . . , c
i
pi
} for each i. By Lemma 2.15.(2.b) we have λx.N1 α, hence we may take

N = λx.N1.

3. Vertical compressions and compact terms

The aim of this section is to provide a partial characterisation of minimal inhabitants.

Section 3.1 is just a simple remark on the relative depths of their blueprints, and an easy

V. Padovani 18

Fig. 9. How the compression of terms is able to follow the compression of blueprints.

consequence of the subformula property (Lemma 1.5): if M is a minimal ΛNF-inhabitant

of φ, then for all addresses a in M the blueprint of M|a is of relative depth at most k×p,

where:

— k is the number of λ in the path from the root to M to a,

— p is the number of subformulas of φ.

We call locally compact every ΛNF-inhabitant satisfying this condition. In Section 3.2 we

introduce the notion of vertical compression of a blueprint. A (strict) vertical compression

of β is obtained by taking any address b in β, then by grafting β|b at any address a < b such

that β(a) = β(b). The vertical compressions of β are all blueprints obtained by applying

this transformation to β zero of more times. The key property of those compressions is

the following (see Figure 9):

— If M is of blueprint β and α is a vertical compression of β, the compression of β into

α can be mimicked by a compression of M into an HRM-term, in the following sense.

Assuming α = β[a← β|b] (the base case), the term Q = M [a←M|b] is not in general

an HRM-term. However, there exists an HRM-term M ′ with the same domain as Q

and of the same type as M . Moreover M ′ and M are applications of the same type

or abstractions of the same type.

Let us again consider a ΛNF-inhabitant M and two addresses a, b such that a < b, M|a

and M|b are applications of the same type or abstractions of the same type. Suppose:

— there exists a vertical compression α′ of the blueprint of M|b such that the sequence

Ω(Free(M|a)) can be extracted from α′.

This situation is a generalisation of the last example in the introduction of Section 2

(in which α′ was equal to the blueprint of M|b, thereby a trivial compression of this

blueprint). The term M is not minimal. Indeed, the key property above implies the

existence of a term N of blueprint α′ whose size is not greater than the size of M|b, and

such that N,M|b,M|a are applications of the same type or abstractions of the same type.

By Lemma 2.16, there exists a term P of the same type and with the same domain as

N such that Free(P) = Free(M|a). The graft of P at a yields an inhabitant of strictly

smaller size.

Ticket Entailment is decidable 19

We will call compact all inhabitants in which the preceding situation does not occur.

All inhabitants of minimal size are of course compact. As we shall see in Section 5, we

will not need a sharper characterisation of minimal inhabitants. For every formula φ,

the set of compact inhabitants of φ is actually a finite set, and our decision method will

consist in the exhaustive computation of their domains.

3.1. Depths of the blueprints of minimal inhabitants

Definition 3.1. Two terms M,M ′ ∈ ΛNF are of the same kind if and only if they are

both variables, or both applications, or both abstractions, and if they are of the same

type.

Definition 3.2. For all formulas φ, we write Sub(φ) for the set of all subformulas of φ.

Definition 3.3. Let M ∈ ΛNF. Let a be any address in M . Let (a1, . . . , am) be the

strictly increasing sequence of all prefixes of a. Let (λx1, . . . , λxk) be the subsequence

of (M(a1), . . . ,M(am)) consisting of all labels of the form λx. We write Λ(M,a) for

(x1, . . . , xk).

Definition 3.4. Let M be a ΛNF-inhabitant of φ. We say that M is locally compact if for

all addresses a in M , the blueprint of M|a is of relative depth at most |Λ(M,a)|×|Sub(φ)|.

Lemma 3.5. Let M be a ΛNF-inhabitant of φ. If M is not locally compact, then there

exist two addresses b, b′ such that b < b′, M|b and M|b′ are of the same kind and

Free(M|b) = Free(M|b′). Moreover, M is not a ΛNF-inhabitant of φ of minimal size.

Proof. For each address a in dom(M), let αa be the blueprint of M|a and let Xa =

Free(M|a). Assume the existence of an αa of relative depth n > |Λ(M,a)| × |Sub(φ)|.

There exist b1, . . . , bn+1 ∈ dom(αa) such that b1 < . . . < bn < bn+1. By Lemma 2.8.(1)

we have Xa·bn ⊆ . . . ⊆ Xa·b1 ⊆ Λ(M,a). By Lemma 1.5, each φa·bi is a subformula of φ.

Hence there exist i, j such that i < j and (Xa·bi , φa·bi) = (Xa·bj , φa·bj), that is, M|a·bi

and M|a·bj are applications of the same type and with the same free variables (Figure

10). Now, let M ′ = M [a · bi ←M|a·bj]. The term M ′ is a ΛNF-inhabitant of φ of strictly

smaller size.

3.2. Vertical compression of a blueprint

Definition 3.6. We let ⇑ be the least reflexive and transitive binary relation on blueprints

satisfying the following: if a, b ∈ dom(β), a < b and β(a) = β(b), then β[a← β|b] ⇑ β.

Lemma 3.7. Suppose M ∈ ΛNF, M : φ, M β and α ⇑ β. There exists a term

M ′ ∈ ΛNF of the same kind as M , of blueprint α and such that |dom(M ′)| ≤ |dom(M)|.

Proof. It suffices to consider the case of α = β[a← β|b] with a, b ∈ dom(β), a < b and

β(a) = β(b). We prove the existence of M ′ by induction on the length of a. If a = ε then

M is necessarily an application and β(ε) = β(b) = @φ, hence M|b is an application of

type φ, and we can take M ′ = M|b. Assume a 6= ε.

V. Padovani 20

Fig. 10. Proof of Lemma 3.5.

(1) Suppose M = (M1M2), M1 β1, M2 β2, a = (i) ·ai and b = (i) ·bi. By induction

hypothesis there exists M ′
i of blueprint αi = βi[ai ← βi|bi] = βi[ai ← β|b], of the same

kind as Mi and such that dom(M ′
i) ≤ dom(Mi). Let j = 1 if i = 2, otherwise let j = 2.

Let (M ′
j , αj) = (Mj, βj). Let X = (x1, . . . , xn) be the strictly increasing sequence of all

variables free or bound in M ′
2. Let Y = (y1, . . . , yn) be a strictly increasing sequence of

variables such that Ω(X) = Ω(Y) and y1 is greater that or equal to the greatest variable

of M ′
1. Let M ′′

2 be the term obtained by replacing each xi by yi in M ′
2. We can take

M ′ = (M ′
1M

′′
2).

(2) Suppose M = λx.M1, M1 β1, x : χ, a = (1) ·a1 and b = (1) ·b1. As a, b ∈ dom(β),

we have also a1, b1 ∈ dom(β1). By induction hypothesis there exists M ′
1 of the same kind

as M1, of blueprint α1 = β1[a1 ← β1|b1] and such that dom(M ′
1) ≤ dom(M1). By Lemma

2.15.(2.a) there exist γ1, c0, . . . , cp such that {c0, . . . , cp} = {c |M|c = x}, β1⊲c0χ . . .⊲
cp
χ γ1

and β = ∗(γ1). Since a, b ∈ dom(α), a1 and ci are incomparable addresses for all i. Hence

α1 = β1[a1 ← β1|b1] ⊲c0χ . . . ⊲
cp
χ γ1[a1 ← β1|b1] = β[a← β|b]|(1) = α|1. By Lemma 2.16

there exists a term M ′′
1 of the same type and with the same domain as M ′

1 such that the

greatest variable y free in M ′′
1 is of type χ and {c |M ′′

1 |c = y} = {c0, . . . , cp}. By Lemma

2.15.(2.b) we have λy.M ′′
1 α, hence we may take M ′ = λy.M ′′

1 .

Definition 3.8. A term M ∈ ΛNF is compact when there are no a, b, α′ such that a < b,

M|a and M|b are of the same kind, M|b αb, α
′ ⇑ αb and Ω(Free(M|a)) ∈ F (α′).

Lemma 3.9. Every ΛNF-inhabitant of minimal size is compact. Every compact ΛNF-

inhabitant of φ is locally compact.

Proof. Let M by an arbitrary ΛNF-inhabitant of φ.

Ticket Entailment is decidable 21

Fig. 11. Proof of Lemma 3.9, part (1).

(1) Assume M is not compact. Let a, b be such that a < b, M|a and M|b are of the

same kind, M|b αb, α
′ ⇑ αb, Free(M|a) = Xa and Ω(Xa) ∈ F (α′) (see Figure 11). By

Lemma 3.7 there exists a term N ∈ ΛNF of blueprint α′, of the same kind as M|b and

such that |dom(N)| ≤ |dom(M|b)|. By Lemma 2.16 there exists P ∈ ΛNF of blueprint

α′, of the same kind as N , such that dom(P) = dom(N) and Free(P) = Xa. The term

M [a← P] is then a ΛNF-inhabitant of φ of smaller size.

(2) Suppose M meets the conditions of Lemma 3.5. Let αb′ be the blueprint of M|b′ .

By Lemma 2.15.(3) we have Ω(Free(M|b)) = Ω(Free(M|b′) ∈ F (αb′). Since the relation ⇑

is reflexive, M is not compact.

4. Shadows

So far we have isolated two properties shared by all minimal inhabitants (Lemma 3.9). We

shall now exploit these properties so as to design a decision method for the inhabitation

problem.

In Section 4.1 and 4.2 we show how to associate, with each locally compact inhabitant

M of a formula φ, a tree with the same domain as M which we call the shadow of M .

At each address a this tree is labelled with a triple of the form (χa, γa, φa) where φa is

the type of M|a, the sequence χa is Ω(Free(M|a)), and γa is a “transversal compression”

of the blueprint αa of M|a (Definitions 4.1 and 4.2). Recall that χa ∈ F (αa) (by Lemma

2.15.(3)). The blueprint γa can be seen as a synthesized version of αa of the same relative

depth but of smaller “width”, and such that χa ∈ F (γa) ⊆ F (αa).

Each tree prefix of the shadow of M belongs to a finite set effectively computable from

φ and the domain of this prefix. In particular, one can compute all possible values for

V. Padovani 22

its labels, regardless of the full knowledge of M – or even without the knowledge of the

existence of M . The key property satisfied by this shadow at every address a is:

— for each γ′ ⇑ γa, there exists α′ ⇑ αa such that F (γ′) ⊆ F (α′).

This property is sufficient to detect the non-compactness of M for a pair of addresses

(a, b) only from the knowledge of χa, φa, γb, φb and the arity of the nodes at a and b.

Indeed, suppose a < b, φa = φb and the nodes at a, b are of the same arity (1, or 2).

Now, assume:

— there exists γ′ ⇑ γb such that χa ∈ F (γ′).

Then M|a and M|b are of the same kind and there exists α′ ⇑ αb such that χa =

Ω(Free(M|a)) ∈ F (γ′) ⊆ F (α′), therefore M is not compact.

In Section 4.2, what we call a shadow is merely a tree a 7→ (χa, γa, φa) of a certain

shape, no matter if this tree is the shadow of a term or not. This shadow is compact

if there is no pair (a, b) as above. Of course, the shadow of a compact term is always

compact in this sense.

In Section 5 we will prove that for every formula φ, the set of shadows of compact

inhabitants of φ is a finite set effectively computable from φ (hence the same property

holds for the set of compact inhabitants of φ), and we will deduce from this key property

the decidability of type inhabitation for HRM-terms.

4.1. Blueprint equivalence and transversal compression

Definition 4.1. We let ≡ be the least binary relation on blueprints such that:

1 ∅B ≡ ∅B ,

2 φ ≡ φ,

3 if α1 ≡ β1, α2 ≡ β2, then @φ(α1, α1) ≡ @φ(β1, β2),

4 if |a| = |b| = n and αi ≡ βi for each i ∈ [1, . . . , n], then ∗a(α1, . . . , αn) ≡ ∗b(β1, . . . , βn).

In (3), we assume α1, α2, β1, β2 non-empty. In (4), we assume that the elements of each

sequence a, b are pairwise incomparable addresses. As to avoid circularity we assume also

a 6= ε or b 6= ε, and αi, βi 6= ∅B for at least one i.

To some extent this equivalence allows us to consider blueprints regardless of the

exact values of addresses. For instance ∗a(α1, . . . , αn) ≡ ∗(α1, . . . , αn) ≡ ∗(αn, . . . , α1),

also ∗(∗(α, β), γ) ≡ ∗(α, β, γ) ≡ ∗(α, ∗(β, γ)), etc. It is easy to check that α ≡ β implies

F (α) = F (β) – this property will be used without reference.

Definition 4.2. For each m ∈ N , we let xm be the least binary relation such that:

1 if γ1 ≡ . . . ≡ γm ≡ γm+1 6≡ ∅B , then ∗a(γ1, . . . , γm) xm ∗a·(b)(γ1, . . . , γm, γm+1),

2 if α = ∗a(α1, . . . , αn), β = ∗b(β1, . . . , βp) and αxm β, then:

(a) @φ(α, γ) xm @φ(β, γ),

(b) @φ(γ, α) xm @φ(γ, β),

(c) ∗a·(c)(α1, . . . , αn, γ) xm ∗b·(c)(β1, . . . , βp, γ).

We call m-compression of β every α such that αxm β. The width of β is defined as the

least m ∈ N for which there is no α such that α xm β.

Ticket Entailment is decidable 23

Again the elements of a · (b), a · (c) and b · (c) must be pairwise incomparable addresses,

and α, β, γ must be non-empty. Note that for all non-empty β, we have ∅B x0 β, hence

the empty blueprint is the only blueprint of null width. If β is of width m > 0, then for

all addresses a, for β|a = ∗a(γ1, . . . , γk) and for each γi 6= ∅B , the sequence (γ1, . . . , γk)

contains no more than m blueprints ≡-equivalent to γi. For instance, if φ, ψ, χ are distinct

formulas, ∗(φ, φ, φ, ψ, ψ, χ) is of width 3, ∗(ω,@ω(∗(φ, ψ), φ),@ω(∗(ψ, φ), φ)) is of width

2, etc.

Definition 4.3. For each m ∈ N , we write ⊑m for the reflexive and transitive closure

of the union of ≡ and xm. We let ⊑max
m denote the subset of the relation ⊑m of all pairs

with a left-hand-side of width at most m.

For instance, if φ, ψ, χ are distinct formulas:

∅B ⊑
max
0 ∗(ψ, χ, φ) ⊑max

1 ∗(χ, φ, φ, ψ, ψ) ⊑max
2 ∗(φ, φ, φ, ψ, ψ, χ)

Of course α ⊑m β implies α ⊑j β for all j ∈ [1, . . . ,m] and clearly, α xm β implies

|dom(α)| < |dom(β)|, therefore xm is well-founded.

Definition 4.4. For all S ⊆ S, for all d ∈ N and for all m ∈ N :

— we let B(S, d,∞) be the set of S-blueprints of relative depth at most d,

— we let B(S, d,m) be the set of all blueprints in B(S, d,∞) of width at most m.

Lemma 4.5. For all finite S ⊆ S, for all d ∈ N and for all m ∈ N :

1 The set B(S, d,m)/≡ is a finite set.

2 A selector R (S, d,m) for B(S, d,m)/≡ is effectively computable from (S, d,m).

Proof. (1) Let Bε(S, d,m) be the set of all rooted blueprints in B(S, d,m). Assuming

Bε(S, d,m)/≡ is a finite set and a selector R ε(S, d,m) for Bε(S, d,m)/≡ is effectively

computable from (S, d,m), we prove that B(S, d,m)/≡ and Bε(S, d+ 1,m)/≡ are finite

sets and show how to compute a selector for each set.

Let (α1, . . . , αk) be an enumeration of R ε(S, d,m). Let Σd be the set of all func-

tions from {1, . . . , k} to {0, . . . ,m}. For each β ∈ B(S, d,m) there exist β1, . . . , βn ∈

Bε(S, d,m) and b such that β = ∗b(β1, . . . , βn). We let σβ be the function mapping each

i ∈ {1, . . . , k} to the number of occurrences of an element ≡-equivalent to αi in the

sequence (β1, . . . , βn). Clearly σβ ∈ Σd and furthermore for all β′ ∈ B(S, d,m) we have

β ≡ β′ if and only if σβ = σβ′ , hence B(S, d,m) is a finite set.

For each τ ∈ Σd, let ρτ = ∗(α1
1, . . . , α

τ(1)
1 , . . . , α1

k, . . . , α
τ(k)
k) where each αji is equal

to αi. We have ρτ ∈ B(S, d,m) and σ(ρτ) = τ , that is, if τ, τ ′ ∈ Σd and τ 6= τ ′, then

ρτ 6≡ ρτ ′ . Hence we may define R (S, d,m) as {ρτ | τ ∈ Σd}.

The finiteness of Bε(S, d+1,m)/≡ follows immediately from the finiteness of B(S, d,m)

and the fact that if β = @φ(β1, β2) and β′ = @ψ(β′
1, β

′
2) are elements of Bε(S, d+ 1,m),

then β1, β2, β
′
1, β

′
2 are non-empty elements of B(S, d,m) and furthermore β ≡ β′ if and

only if β1 ≡ β′
1 and β2 ≡ β′

2. The same property allows us to define R ε(S, d + 1,m) as

the set of all blueprints of the form @φ(γ1, γ2) where @φ ∈ S and each γi is a non-empty

element of R (S, d,m).

(2) The lemma follows by induction on d, using (1) and the facts that: Bε(S, 0, 0) is

V. Padovani 24

empty (hence B(S, d, 0) = {∅B } for all d); if m ∈ N+, then Bε(S, 0,m) is the finite set

of all formulas of S.

4.2. Shadow of a term

Definition 4.6. Let φ be a formula. Let Sφ be the union of Sub(φ) (Definition 3.2) and

the set of all @ψ such that ψ ∈ Sub(φ). For each integer k, for each formula φ, we let

R(φ, k) = R (Sφ, k × |Sub(φ)|, k), where R is the function introduced in Lemma 4.5.(2).

Definition 4.7. A shadow is a finite tree in which each node is of arity at most 2 and

is labelled with a triple of the form (χ, γ, ψ), where χ is a sequence of formulas, γ is a

blueprint and ψ is a formula.

We call φ-shadow every shadow Ξ satisfying the following conditions. We have Ξ(ε) =

(ε, ∅B , φ). For each a ∈ dom(Ξ), let ka be the number of b < a such that the node of Ξ

at b is unary, and let (χa, γa, ψa) = Ξ(a). Then:

— χa is a sequence of subformulas of φ of length at most ka,

— γa ∈ R(φ, ka),

— χa ∈ F (γa)

— ψa is a subformula of φ.

Definition 4.8. Let M be a locally compact ΛNF-inhabitant of φ. For each a ∈ dom(M):

— let χa = Ω(Free(M|a)),

— let αa be the blueprint of M|a,

— let γa ∈ R(φ, |Λ(M,a)|) be such that γa ⊑max
|Λ(M,a)| αa,

— let φa be the type of M|a.

The tree Ξ mapping each a ∈ dom(M) to (χa.γa, φa) will be called the shadow of M .

Recall that if M is a locally compact ΛNF-inhabitant of φ, then for each address a in M ,

the blueprint αa of M|a is of relative depth at most |Λ(M,a)| × |Sub(φ)|. Every maximal

|Λ(M,a)|-compression of αa produces a shadow α′
a with the same relative depth and of

width at most |Λ(M,a)|, to which some element of R(φ, |Λ(M,a)|) is equivalent, thus the

shadow of M is well-defined. Note that the choice of γa is possibly not unique (although

it is, since R is a selector and one can actually prove that γ ⊑max
m α and γ′ ⊑max

m α

implies γ ≡ γ′, but this property is irrelevant to our discussion). We assume that some

γa is chosen for each address a in M .

Obviously the shadow of M satisfies the first, second and fourth conditions in the

definition of φ-shadows given above – in the next section, we prove that it satisfies also

the third.

4.3. Compact shadows and compact inhabitants

Definition 4.9. A shadow Ξ is compact if and only if there are no a, b such that: a < b,

the nodes of Ξ at a, b are of the same arity, Ξ(a) = (χa, γa, ψ), Ξ(b) = (χb, γb, ψ) and

there exists γ′ ⇑ γb such that χa ∈ F (γ′).

Ticket Entailment is decidable 25

Fig. 12. A compact inhabitant and its shadow.

Compare this definition with the definition of compactness for term (Definition 3.8).

With the help of three auxiliary lemmas, we now prove the key lemma of Section 4: if M

is a compact inhabitant – a fortiori locally compact by Lemma 3.9 – then the shadow of

M is a compact φ-shadow.

Lemma 4.10. If α ⇑ β ⊑1 β
′, then there exists α′ such that α ⊑1 α

′ ⇑ β′.

Proof. (1) An immediate induction on |dom(β′)| shows that if α = β[a ← β|b] and

β ≡ β′, then there exist a′, b′ such that a′ < b′ and α ≡ α′ = β′[a′ ← β′
|b′]. As a

consequence, an immediate induction on the length of the derivation of α ⇑ β shows that

the lemma holds if β ≡ β′.

(2) Another induction on |dom(β′)| shows that if α ⇑ β x1 β
′, then there exists α′

such that α x1 α
′ ⇑ β′. The only non trivial case is α = ∗(a1)(α1), β = ∗(a1)(β1) with

α1 ⇑ β1 and β′ = ∗(a1,a2)(β1, β2) with β1 ≡ β2. Since α1 ⇑ β1 ≡ β2, by (1) there exists α2

such that α1 ≡ α2 ⇑ β2. Hence α = ∗(a1)(α1) x1 ∗(a1,a2)(α1, α2) ⇑ ∗(a1,a2)(β1, β2) = β′.

(3) Using (1) and (2), the lemma follows by induction on the length of an arbitrary

sequence (β0, . . . , βn) such that β0 = β, βn = β′ and βi−1 ≡ βi or βi−1 x1 βi for each

i ∈ [1, . . . , n].

Lemma 4.11. If α ⊑1 β, then F (α) ⊆ F (β).

Proof. By induction on |dom(β)|. Since γ ≡ γ′ implies F (γ) = F (γ′) and |dom(γ)| =

|dom(γ′)|, it suffices to consider the case where α is a 1-compression of β. The case

α = ∗(a1)(α1) and β = ∗(a1,a2)(α1, α2) is clear. The remaining cases follow easily from

the induction hypothesis.

Lemma 4.12. If α ⊑m β, then the set of all elements of F (β) of length at most m is a

subset of F (α).

Proof. By induction on |dom(β)|. Again, we examine only the case α xm β. The

V. Padovani 26

proposition is trivially true if m = 0. Suppose m > 0. The only non-trivial case is

α ≡ ∗a(γ1, . . . , γm) and β ≡ ∗a(γ1, . . . , γm, γm+1) with γi ≡ γ for all i. Let Φ = F (γ).

For each integer k, let Φ(k) = ⊛(Φ1, . . . ,Φk) where Φi = F (γ) for each i. Let φ =

(φ1, . . . , φp) ∈ F (β) be such that p ≤ m. We have to prove that φ ∈ F (α). For each J ⊆

{1, . . . , p}, let (j1, . . . , jq) be the strictly increasing enumeration of all elements of J and

let f(J) = (φj1 , . . . , φjq). We have φ ∈ F (β) = Φ(m+1), hence there exist J1, . . . , Jm+1

such that J1 ∪ . . . ∪ Jm+1 = {1, . . . , p}, and f(Ji) ∈ F (γ) for each i ∈ {1, . . . ,m + 1}.

For each j ∈ {1, . . . , p}, let kj be any element of {1, . . . ,m+ 1} such that j ∈ Jkj . Then

Jk1 ∪ . . . ∪ Jkp = {1, . . . , p}, so φ ∈ ⊛({f(Jk1)}, . . . , {f(Jkp)}) ⊆ Φ(p) ⊆ Φ(m) = F (α).

Lemma 4.13. Let M be a locally compact ΛNF-inhabitant of φ. The shadow of M is a

φ-shadow. If M is compact, then this shadow is also compact.

Proof. For each address a in M , the sequence χa = Ω(Free(M|a)) is a subsequence

of Ω(Λ(M,a)), hence the first proposition follows from the definition of the shadow of

M , Lemma 1.5, Lemma 2.15.(3) and Lemma 4.12. Let Ξ be shadow of M . Assume Ξ

is not compact. There exist a, b ∈ dom(Ξ) = dom(M) such that Ξ(a) = (χa, γa, ψ),

Ξ(b) = (χb, γb, ψ), the nodes at a,b in Ξ are of the same arity, and there exists γ′ ⇑ γb
such that χa ∈ F (γ′). We have M|a, M|b of the same kind. Let αa, αb be the blueprints

of M|a, M|b. Since γb ⊑max
|Λ(M,a·b)| αb, we have γ′ ⇑ γb ⊑1 αb. By Lemma 4.10 there exists

α′ such that γ′ ⊑1 α
′ ⇑ αb. By Lemma 4.11, we have χa ∈ F (γ′) ⊆ F (α′), hence M is

not compact.

5. Finiteness of the set of compact φ-shadows

Our last aim will be to prove that for each formula φ, the set of all compact φ-shadows

is a finite set effectively computable from φ.

In definition 5.1, we introduce a last binary relation ⋐ on blueprints. The key lemma

of this section (Lemma 5.14) shows that whenever S ⊂ S is a finite set (in particular

when S is the set of all subformulas of φ and all @’s tagged with a subformula of φ), the

relation ⋐ is an almost full relation (Bezem, Klop and de Vrijer 2003) on the set of all

S-blueprints: for every infinite sequence γ1, γ2, . . . over B(S), there exists i, j such that

i < j and γi ⋐ γj . This result will be proven with the help of Melliès’ Axiomatic Kruskal

Theorem (Melliès 1998). The finiteness of the set of compact φ-shadows follows from this

key lemma with the help of König’s Lemma (Lemma 5.15). The ability to compute these

shadows follows directly from their definition.

By Lemma 4.13, a consequence of this result is also the finiteness for each φ of the

set of all compact ΛNF-inhabitants of φ, although our decision method is based on the

computation of shadows of compact terms rather than a direct computation of those

terms. It is worth mentioning that the proof of Theorem 5.13 is non-constructive and

that it gives no information about the complexity of our proof-search method – this

question might be itself another open problem.

Ticket Entailment is decidable 27

5.1. Almost full relations and Higman Theorem

Definition 5.1. We let ⋐ be the relation on blueprints defined by α ⋐ β if and only if

for all χ ∈ F (α), there exists γ ⇑ β such that χ ∈ F (γ).

Definition 5.2. Let U be an arbitrary set. An almost full relation (AFR) on U is a

binary relation ≪ such that for every infinite sequence (ui)i∈N over U , there exist i, j

such that i < j and ui ≪ uj .

The main aim of Section 5 will be to prove the last key lemma from which we will easily

infer the decidability of ΛNF-inhabitation: for each finite S ⊆ S, the relation ⋐ is an

AFR on B(S).

Proposition 5.3.

1 If ≪ and ≪′ are AFRs on U , then ≪ ∩≪′ is an AFR on U .

2 Suppose ≪U is an AFR on U and ≪V is an AFR on V . Let ≪U×V be the relation

defined by (U, V)≪U×V (U ′, V ′) if and only if U ≪U U
′ and V ≪V V

′. Then ≪U×V

is an AFR on U × V .

Proof. See (Melliès 1998). Both results appear in the proof of Theorem 1, Step 4

(p.523) as a corollary of Lemma 4 (p.520)

Definition 5.4. Let U be a set, let ≪ be a binary relation. We let S(U) denote the

set of all finite sequences over U . The relation ≪S induced by ≪ on S(U) is defined by

(U1, . . . , Un) ≪S (V1, . . . , Vm) if and only if there exists a strictly monotone function

η : {1, . . . , n} → {1, . . . ,m} such that Ui ≪ Vη(i) for each i ∈ {1, . . . , n}.

Theorem 5.5. (Higman) If ≪ is an AFR on U , then ≪S is an AFR on S(U).

Proof. See (Higman 1952; Kruskal 1972; Melliès 1998).

5.2. From rooted to unrooted blueprints

Melliès’ Axiomatic Kruskal Theorem allows one to conclude that a relation is an AFR

(a “well binary relation” in (Melliès 1998)) as long as it satisfies a set of five properties

or “axioms” (six in the original version of the theorem – see the remarks of Melliès at

the end of its proof explaining why five axioms suffice). The details of those axioms will

be given in Section 5.3.

Four of those five axioms are relatively easy to check. The remaining axiom is more

problematical. This rather technical section is entirely devoted to the proof of Lemma

5.11, which will ensure that this last axiom is satisfied. We want to prove the following

proposition:

Let S be a finite subset of S. Let Bε be a subset of Bε(S).

Let B = {∗a(β1, . . . , βn)| ∀i ∈ [1, . . . , n], βi ∈ Bε}.

If ⋐ is an AFR on Bε, then ⋐ is an AFR on B.

Recall that Bε(S) stands for the set of all rooted S-blueprints. We want to be able to

V. Padovani 28

extend the property that ⋐ is an AFR on a given set of rooted blueprints to the set all

blueprints that have those rooted blueprints at their minimal addresses.

Higman Theorem suffices to show that ⋐S (Definition 5.4) is an AFR on the set of

finite sequences over Bε. However, if one considers an infinite sequence (βi)i∈N over B and

transforms each βi = ∗ai(β
i
1, . . . , β

i
ni

) where βi1, . . . , β
i
ni
∈ Bε into σ(βi) = (βi1, . . . , β

i
ni

),

the theorem will only provide two integers i, j and strictly monotone function η such

that i < j and βik ⋐ βj
η(k) for each k ∈ {1, . . . , ni}. This is sufficient to ensure that

βi = ∗ai(β
i
1, . . . , β

i
ni

) ⋐ ∗b(β
j

η(1), . . . , β
j

η(ni)
), but not in general βi ⋐ βj .

To bypass this difficulty we show how for each blueprint β ∈ B(S), one can extract

from the set of all vertical compressions of β a complete set of “followers” of β of minimal

size (Lemma 5.7). This set {α1, . . . , αp} has the property that for each φ ∈ F (β), there

exists at least one αi such that F (αi) contains a subsequence of φ – but not necessarily

φ itself. The relative depth of each αi does not depend on the relative depth on β, but

only on S: it is at most Σ
1+|S@|
i=1 i, where S@ is the set of all binary symbols in S. The

lemma in proven in four steps.

First, observe that the set of all α ⇑ β of relative depth at most Σ
1+|S@|
i=1 i is a complete

set of followers. If we consider the set of all γ such that γ ⊑max
1 α for at least one such

α, we obtain a (possibly infinite) set closed under ≡ and finite up to ≡. We call it the

set of S-residuals of β.

Second, we prove that the set of S-residuals of β is a complete set of followers of β in

the same sense, that is, for each φ ∈ F (β) there exists an S-residual γ of β such that

F (γ) contains a subsequence of φ (Lemma 5.9).

Third, we prove that if β = ∗a(β1, . . . , βn), β′ = ∗b(β
′
1, . . . , β

′
n, β

′
n+1, . . . , β

′
n+k) are

such that βi ⋐ β′
i for each i ∈ [1, . . . , n], and if furthermore β, β′ have the same set of

S-residuals, then β ⋐ β′ (Lemma 5.10).

The last step is the proof of the lemma itself. The set of S-residuals is finite up to ≡

(Lemma 4.5), so there are only a finite number of possible values for the set of residuals

of each S-blueprint. As a consequence, it is always possible to extract from an infinite

sequence over B an infinite sequence of blueprints with the same set of residuals. The

conclusion follows from the third step and Higman Theorem.

Definition 5.6. For every S ⊆ S, we let S@ denote the set of all binary symbols in S.

Lemma 5.7. Let S be a finite subset of S. For all β ∈ B(S), for all ψ ∈ F (β), there

exists α of relative depth at most Σ
1+|S@|
i=1 i such that α ⇑ β and such that F (α) contains

a subsequence of ψ.

Proof. Call S-linearisation every pair (γ, χ) such that γ ∈ B(S) and χ ∈ F (γ). Call

starting address for (γ, χ) every address b for which there exist φ, γ′ such that γ ⊲bφ γ
′

and χ ∈ ⊚(F (γ′), (φ)). Call path to b in γ the maximal sequence (b1, . . . , bn, bn+1) over

dom(γ) such that b1 < . . . < bn < bn+1 = b.

Given an arbitrary S-linearisation (β, ψ), we prove simultaneously by induction on

|dom(β)| the following properties:

1 There exists an S-linearisation (γ, χ) such that:

Ticket Entailment is decidable 29

(a) γ ⇑ β and χ is a subsequence of ψ,

(b) γ is of relative depth at most 1 + Σ
|S@|
i=1 i.

2 There exists an S-linearisation (α, φ) such that:

(a) α ⇑ β, φ is a subsequence of ψ,

and if ψ 6= ε, then the last elements of φ, ψ are equal,

(b) for each starting address b for (α, φ) and for (b1, . . . , bn, bn+1) equal to the path

to b in α, the values α(b1), . . . , α(bn) are pairwise distinct,

(c) for all c incomparable with each starting address for (α, φ),

(α|c) is of relative depth at most 1 + Σ
|S@|
i=1 i.

Note that the conjunction of (2.b) and (2.c) implies that every address d in α is of relative

depth at most |S@|+1+Σ
|S@|
i=1 i = Σ

1+|S@|
i=1 i. Indeed, suppose d is of maximal relative depth

and not a starting address for (α, φ). Then d must be incomparable with each starting

address for (α, φ). Let e be the shortest prefix of d in dom(α) that is incomparable with

each starting address for (α, φ). The address e is of relative depth at most |S@| in α –

otherwise there would exist in dom(α) an address f < e of relative depth |S@| and a

starting adress for (α, φ) of the form f · f ′, of relative depth strictly greater than |Sα|, a

contradiction. Moreover the relative depth of d is the sum of the relative depth of e in α

and the relative depth of α|e.

The cases β = ∅B is immediate. If β = ∗a(β1, . . . , βn), i 6= j and βi, βj 6= ∅B , then the

conclusion follows easily from the induction hypothesis. Suppose β = @ψ(β1, β2).

(1) Let d be an address of maximal length in β−1(@ψ). Let δ = @ψ(δ1, δ2) = β|d. By

assumption ε is the only element of δ−1(@ψ). As ψ ∈ F (β), there exist ψ0 ∈ F (δ), ψ1 ∈

F (δ1), ψ2 ∈ F (δ2) such that ψ0 is a subsequence ψ and ψ0 ∈ ⊚({ψ1}, {ψ2}). By induction

hypothesis there exists an (S − {@ψ})-linearisation (γ1, χ1) satisfying conditions (1.a),

(1.b) w.r.t (δ1, ψ1), and an (S − {@ψ})-linearisation (γ2, χ2) satisfying conditions (2.a),

(2.b), (2.c) w.r.t (δ2, ψ2). Let γ = @ψ(γ1, γ2). We have γ ⇑ δ and β(ε) = δ(ε) = γ(ε),

hence γ ⇑ β. The blueprint γ1 is of relative depth at most 1 + Σ
|S@|−1
i=1 i ≤ Σ

|S@|
i=1 i. The

blueprint γ2 is of relative depth at most |S@|+Σ
|S@|−1
i=1 = Σ

|S@|
i=1 i. Therefore γ is of relative

depth at most 1 + Σ
|S@|
i=1 i. Now χ2 is a subsequence of ψ2 with the same last element,

so there exists in ⊚({χ1}, {χ2}) ⊆ F (@ψ(γ1, γ2)) a subsequence χ of ψ0. Thus (γ, χ)

satisfies (1.a) and (1.b) w.r.t (β, ψ).

(2) As ψ ∈ F (β), there exist ψ1 ∈ F (β1), ψ2 ∈ F (β2) such that ψ ∈ ⊚({ψ1}, {ψ2}). By

induction hypothesis there exists an S-linearisation (α1, φ1) satisfying conditions (1.a),

(1.b) w.r.t (β1, ψ1), and an S-linearisation (α2, φ2) satisfying conditions (2.a), (2.b), (2.c)

w.r.t (β2, ψ2).

Let α0 = @ψ(α1, α2). We have α0 ⇑ β. The last elements of φ2, ψ2 are equal and

⊚({φ1}, {φ2}) ⊆ F (α0). Hence there exists in F (α0) a subsequence φ0 of ψ with the

same last element as ψ. Thus (α0, φ0) satisfies (2.a).

For all c incomparable with each starting address for (α0, φ0), either c = (1) · c′ and

c′ ∈ dom(α1), or c = (2)·c′′ and c′′ ∈ dom(α2) is incomparable with each starting address

in α2. As a consequence, the choice of α1, α2 ensures that (α0, φ0) satisfies (2.c).

If (α0, φ0) satisfies (2.b), then we may take (α, φ) = (α0, φ0). Otherwise some starting

V. Padovani 30

address b for (α0, φ0) does not satisfy condition (2.b). Let (b1, . . . , bn, bn+1) be the path

to b in α. We have b1 = ε, and for each i > 0, there exists di such that bi = (2) · di. The

sequence (d2, . . . , dn+1) is then a path to d = dn+1 in α2, and d is a starting address for

(α2, φ2). The values α2(d2), . . . , α2(dn) are pairwise distinct, so there must exist i > 1

such that α(bi) = @ψ. Since bi is in the path to b, there exists in F (α2|di) a subsequence

φ
′

0 of φ0 with the same last element as φ0. For α′
0 = α0[ε ← α2|di], we have α′

0 ⇑ β,

φ
′

0 ∈ F (α′
0) and the last elements of φ

′

0, φ0, ψ are equal. By induction hypothesis there

exists an S-linearisation (α, φ) satisfying (2.a), (2.b), (2.c) w.r.t (α′
0, φ

′

0). The pair (α, φ)

satisfies also those conditions w.r.t (β, ψ).

Definition 5.8. Let S be a finite subset of S. For all β ∈ B(S), for all α ⇑ β of relative

depth at most Σ
1+|S@|
i=1 i, we call S-residual of β every α0 such that α0 ⊑max

1 α.

Note that the set of S-residuals of β is {∅B } if β = ∅B . Otherwise, it is an infinite set:

even if β = φ, the set of residuals of β is the ≡-equivalence class of β and contains all

blueprints of the form ∗a(φ) (recall that ≡ is a subset of ⊑1, see Definition 4.3).

Lemma 5.9. Let S be a finite subset of S. For all β ∈ B(S) and for all ψ ∈ F (β), there

exists an S-residual α0 of β such that F (α0) contains a subsequence of ψ.

Proof. (1) Let γ, δ be arbitrary blueprints. Suppose γ x1 δ. We prove by induction on

δ that for all φ ∈ F (δ), there exists in F (γ) a subsequence of φ. In order to deal with the

case δ = @φ(δ1, δ2), we need to prove a slightly more precise property: for all φ ∈ F (δ),

there exists in F (γ) a subsequence ψ of φ such that the last elements of φ, ψ are equal.

The base case is δ = ∗(a1,a2)(γ1, γ2), γ1 ≡ γ2 and γ = ∗a1(γ1), and this case is clear.

Other cases follow easily from the induction hypothesis.

(2) We prove the lemma. By Lemma 5.7 and by definition of an S-residual, there exist

α0, α such that α0 ⊑1 α ⇑ β, F (α) contains a subsequence of ψ and α0 is an S-residual.

It follows from (1) that F (α0) contains a subsequence of ψ.

Lemma 5.10. Let S be a finite subset of S. Suppose:

— β = ∗a(β1, . . . , βn) ∈ B(S),

— β′ = ∗b(β
′
1, . . . , β

′
n, β

′
n+1, . . . , β

′
n+k) ∈ B(S),

— βi ⋐ β
′
i for each i ∈ {1, . . . , n},

— the sets of S-residuals of β and β′ are equal.

Then β ⋐ β′.

Proof. Let ψ ∈ F (β). There exists for each i ∈ [1, . . . , n] a sequence ψi ∈ F (βi) such

that ψ ∈ ⊛({ψ1}, . . . , {ψn}). By assumption there exists for each i ∈ [1, . . . , n] an αi ⇑ β′
i

such that ψi ∈ F (αi). As a consequence ψ ∈ F (∗(α1, . . . , αn)).

By Lemma 5.9 there exists an S-residual α0 of β such that F (α0) contains a subse-

quence φ of ψ. By assumption α0 is also an S-residual of β′, hence there exist α′
1, . . . , α

′
n+k,

b such that α0 ⊑1 ∗b(α
′
1, . . . , α

′
n+k) ⇑ β′. By Lemma 4.11, we have φ ∈ F (∗b(α

′
1, . . . , α

′
n+k)).

Hence for each i ∈ [1, . . . , n + k], there exists in F (α′
i) a subsequence of φ, which is

also a subsequence of ψ. Now, let α = ∗b(α1, . . . , αn, α
′
n+1, . . . , α

′
n+k). Then α ⇑ β′,

Ticket Entailment is decidable 31

ψ ∈ F (∗(α1, . . . αn)), and for each j ∈ [1, . . . , k] there exists in F (α′
n+j) a subsequence

of ψ. As a consequence ψ ∈ F (α).

Lemma 5.11. Let S be a finite subset of S. Let Bε be a subset of Bε(S). Let B =

{∗a(β1, . . . , βn)| ∀i ∈ [1, . . . , n], βi ∈ Bε}. If ⋐ is an AFR on Bε, then ⋐ is an AFR on B.

Proof. Let R = B(S,Σ
1+|S@|
i=1 i, 1) (see Definition 4.4). For each β ∈ B, let ρ(β) be the

set of S-residuals of β. We have ρ(β) ⊆ R. Moreover ρ(β) is closed under ≡ (as ≡ is a

subset of ⊑1, see Definition 4.3), that is, ρ(β) is a union of the elements of a subset of

R/≡. By Lemma 4.5.(1) the latter is a finite set, therefore {ρ(β) |β ∈ B} is a finite set.

For each β = ∗a(β1, . . . , βn) ∈ B where a is increasing w.r.t the lexicographic ordering

of addresses and β1, . . . , βn ∈ Bε, let σ(β) = (β1, . . . , βn) – recall that we can take a = ε,

n = 0 if β = ∅B , and a = (ε), n = 1 if β is a rooted blueprint. Since {ρ(β) |β ∈ B} is

a finite set, every infinite sequence over B contains an infinite subsequence of blueprints

with the same set of S-residuals. By assumption ⋐ is an AFR on Bε. By Theorem 5.5,

⋐S is an AFR on {σ(β) |β ∈ B}.

Thus for every infinite sequence (βi)i∈N over B there exist i, j such that i < j,

σ(βi) ⋐S σ(βj) and βi, βj have the same set of residuals. For σ(βi) = (βi1, . . . , β
i
n)

and σ(βj) = (βj1 , . . . , β
j
n+k), there exists a subsequence (βil1 , . . . , β

i
ln

) of σ(βj) such that

βi1 ⋐ βil1 , . . . , β
i
n ⋐ βiln . There exist also ln+1, . . . , ln+k and two sequences a and b such

that βi = ∗a(βi1, . . . , β
i
n) and βj = ∗b(β

j
l1
, . . . , βjln , β

j
ln+1

, . . . , βjln+k
). By Lemma 5.10 we

have βi ⋐ βj .

5.3. Axiomatic Kruskal Theorem and main key lemma

The following definition is borrowed from (Melliès 1998):

Definition 5.12. An abstract decomposition system is an 8-tuple

(T ,L,V ,�T ,�L,�V ,
·
−→,⊢)

where:

— T is a set of terms noted t, u, . . . equipped with a binary relation �T ,

— L is a set of labels noted f, g, . . . equipped with a binary relation �L,

— V is a set of vectors noted T, U, . . . equipped with a binary relation �V ,

—
·
−→ is a relation on T × L× V , e.g. t

f
−→ T

— ⊢ is a relation on V × T , e.g. T ⊢ t.

For each such system, we let ⊲T be the binary relation on T defined by

t⊲T u⇐⇒ ∃(f, T) ∈ L × V , t
f
−→ T ⊢ u

An elementary term t is a term minimal w.r.t ⊲T , that is, a term for which there exists

no u such that t⊲T u.

Theorem 5.13. (Melliès) Suppose (T ,L,V ,�T ,�L,�V ,
·
−→,⊢) satisfies the following

properties:

— (Axiom I) There is no infinite chain t1 ⊲T t2 ⊲T . . .

V. Padovani 32

— (Axiom II) The relation �T is an AFR on the set of elementary terms.

— (Axiom III) For all t, u, u′,

if t �T u′ and u⊲T u′, then t �T u.

— (Axiom IV-bis) For all t, u, f, g, T, U ,

if t
f
−→ T and u

g
−→ U and f �L g and T �V U , then t �T u.

— (Axiom V) For all W ⊆ V , for W⊢ = {t ∈ T | ∃T ∈ W , T ⊢ t},

if �T is an AFR on W⊢, then �V is an AFR on W .

If furthermore �L is an AFR on L, then �T is an AFR on T .

Proof. See (Melliès 1998). Mellies’ result is actually established for an alternate list of

axioms (numbered from I to VI). The possibility to drop Axiom VI and to replace Axiom

IV with Axiom IV-bis is a remark that follows the proof of the main theorem.

Lemma 5.14. For each finite S ⊆ S, the relation ⋐ is an AFR on B(S).

Proof. According to Lemma 5.11 it is sufficient to prove that⋐ is an AFR on Bε(S). Let

(T ,L,V ,�T ,�L,�V ,
·
−→,⊢) be the abstract decomposition system defined as follows.

— The set T is Bε(S); we let α �T β if and only if there exists an address c such that

α ⋐ (β|c) and α(ε) = (β|c)(ε).

— The set L is the set of all @’s in S, the relation �L is the identity relation on this set.

— The set V is B(S) × B(S).

The relation �V is defined by (α1, α2) �V (β1, β2) if and only if α1 ⋐ β1 and α2 ⋐ β2.

— The relation
·
−→ is defined by α

@φ

−→ (β1, β2) if and only if α = @φ(β1, β2).

— The relation ⊢ is the least relation satisfying the following condition. If V = (α1, α2),

i ∈ {1, 2}, β1, . . . , βn ∈ Bε(S) and αi = ∗a(β1, . . . , βn), then V ⊢ βj for each j ∈

[1, . . . , n].

Note that the elements of V are pairs of blueprints that may be rootless. However if

V ⊢ β, then the blueprint β is always a rooted blueprint, thus the relation ⊢ is indeed a

subset of V × T .

(A) For all T ′ ⊆ T , the relation ⋐ is an AFR on T ′ if and only if �T is an AFR

on T ′. Indeed, consider an arbitrary infinite sequence α over T ′. This sequence contains

an infinite subsequence (α)i∈N such that all αi(ε) are equal. Clearly αi ⋐ αj implies

αi �T αj . Conversely, if αi �T αj , then there exists c such that αi ⋐ αj |c and αi(ε) =

αj(ε) = αj(c). So αi ⋐ αj |c ⇑ αj , hence αi ⋐ αj .

(B) We now check that all axioms of Theorem 5.13 are satisfied. Axiom I is clear. The

set of elementary terms is the set of all blueprints consisting of single formulas of S.

The relation �T is of course an AFR on the set of elementary terms, that is, axiom II

is satisfied. Axiom III is immediate. If (α1, α2) �V (β1, β2) then α1 ⋐ β1 and α2 ⋐ β2,

hence @ψ(α1, α2) ⋐ @ψ(β1, β2), a fortiori @ψ(α1, α2) �T @ψ(β1, β2), hence Axiom IV-

bis is satisfied. It remains to prove that Axiom V is satisfied. Let W ⊆ V . By definition

W⊢ = {β ∈ T | ∃(α1, α2) ∈ W , (α1, α2) ⊢ β}. Assuming �T is an AFR on W⊢, we

prove that �V is an AFR on W . By (A) the relation ⋐ is an AFR on W⊢ ⊆ Bε(S). Let

B = {∗a(β1, . . . , βn)| ∀i ∈ [1, . . . , n], βi ∈ W⊢}. By Lemma 5.11 the relation ⋐ is an AFR

Ticket Entailment is decidable 33

on B. MoreoverW ⊆ B×B. By Proposition 5.3.(2) the relation �V is an AFR on B×B,

therefore an AFR on W .

Lemma 5.15. For each formula φ, the set of all compact φ-shadows is a finite set

effectively computable from φ.

Proof. For each compact φ-shadow Ξ and for each address a such that a is a leaf

in Ξ, call step-continuation at a of Ξ every compact φ-shadow Ξ′ such that dom(Ξ′) (

dom(Ξ)∪{a ·(1), a ·(2)} and Ξ,Ξ′ take the same values on dom(Ξ). Let be the relation

defined by Ξ Ξ′ if and only if Ξ′ is a step continuation of Ξ. By Lemma 4.5 and the

fact that the set of subformulas of φ is a finite set, for all Ξ, the set of all Ξ′ such that

Ξ Ξ′, is a finite set effectively computable from Ξ. Let C be the closure under of

{(ε 7→ (ε, ∅B , φ))} The set of all compact φ-shadows is clearly equal to this set, hence it

suffices to prove that C is a finite set. Assume by way of contradiction that C is infinite.

By König’s Lemma there exists an infinite sequence Ξ0 Ξ1 . . . over C. The union

Ξ∞ = ∪i≥0 Ξi is a tree of infinite domain. By König’s Lemma again, there exists an

infinite chain of addresses a1 < a2 < . . . such that all ai are nodes of Ξ∞ with the same

arity and labelled with the same subformula of φ. If i < j and ai, aj are labelled with

(χi, γi, ψ), (χi, γj , ψ), then we cannot have γi ⋐ γj , otherwise there would exist a k such

that Ξk is not compact. A contradiction follows from Lemma 5.14.

6. From the shadows to the light

Theorem 6.1. Ticket Entailment is decidable.

Proof. The following propositions are equivalent:

— the formula φ is provable in the logic T→,

— the formula φ is inhabited by a combinator within the basis BB′IW,

— the formula φ is ΛNF-inhabited (Lemma 1.10),

— there exists a compact ΛNF-inhabitant of φ (Lemma 3.9)

— there exists a compact φ-shadow with the same tree domain as a ΛNF-inhabitant of

φ (Lemmas 3.9 and 4.13).

By Lemma 5.15, the set of compact φ-shadows is effectively computable from φ. By the

subformula property (Lemma 1.5), for each shadow Ξ in this set, up to the choice of

bound variables, there are only a finite number of ΛNF-inhabitant of φ with the same

domain as Ξ. Moreover this set of inhabitants is clearly computable from Ξ and φ. Hence

the existence of a ΛNF-inhabitant of φ is decidable.

Acknowledgments

This work could not have been achieved without countless helpful comments and invalu-

able support from Pawe l Urzyczyn, Paul-André Melliès and Pierre-Louis Curien. I am

also deeply indebted to the anonymous referees for their remarkably careful reading.

V. Padovani 34

References

Anderson, A. R., and Belnap Jr, N. D. (1975) Entailment: The Logic of Relevance and Necessity,

Vol. 1. Princeton University Press.

Anderson, A. R. (1960) Entailment shorn of modality. J. Symb. Log. 25 (4), 388.

Anderson, A. R., Belnap Jr, N. D., and Dunn, J. M. (1990) Entailment: The Logic of Relevance

and Necessity, Vol. 2. Princeton University Press.

Barendregt, H., The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and the

Foundations of Mathematics, 103 (Revised ed.), North Holland.

Handbook of Mathematical Logic (1977). Edited by Barwise, J., Studies in Logic and Foundations

of Mathematics, North-Holland.

Bezem, M., Klop, J.,W., de Vrijer, R., (“Terese”) (2003) Term Rewriting Systems. Cambridge

Tracts in Theoretical Computer Science 55, Cambridge University Press.

Bimbó, K. (2005) Types of I-free hereditary right maximal terms. Journal of Philosophical Logic

34 (5–6), 607–620.

Broda, S., Damas, L., Finger, M., and Silva e Silva, P. S. (2004) The decidability of a fragment

of BB′IW -logic. Theor. Comput. Sci. 318 (3), 373–408.

Bunder, M.,W., (1996) Lambda Terms Definable as Combinators. Theor. Comput. Sci. 169 (1),

3–21.

Higman, G. (1952) Ordering by divisibility in abstract algebra. Proc. London Math. Soc. 3 (2),

326–336.

Kripke, S (1959) The problem of entailment. J. Symb. Log. 24 (4), 324.

Krivine, J.-L. (1993) Lambda-calculus, types and models. Masson.

Kruskal, J. B. (1972) The theory of well-quasi-ordering: A frequently discovered concept. J.

Comb. Theory, Ser. A 13 (3), 297–305.

Melliès, P.-A. (1998) On a duality between Kruskal and Dershowitz theorems. In: Larsen, K. G,

Skyum, S., Winskel, G. (Eds.), ICALP, Lecture Notes in Computer Science 1443, 518–529,

Springer-Verlag.

Trigg, P., Hindley, J. R., and Bunder, M. W. (1994) Combinatory abstraction using B, B′ and

friends. Theor. Comput. Sci. 135 (2), 405–422.

Urquhart, A (1984) The undecidability of entailment and relevant implication. J. Symb. Log.

49 (4), 1059–1073.

