
HAL Id: hal-00599342
https://hal.science/hal-00599342v3

Preprint submitted on 11 Jul 2011 (v3), last revised 5 Jul 2012 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ticket Entailment is decidable
Vincent Padovani

To cite this version:

Vincent Padovani. Ticket Entailment is decidable. 2010. �hal-00599342v3�

https://hal.science/hal-00599342v3
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

Ticket Entailment is decidable

V I N C E N T P A D O V A N I

Equipe Preuves, Programmes et Systèmes

Université Paris VII - Denis Diderot

Case 7014

75205 PARIS Cedex 13

padovani@pps.jussieu.fr

Received 19 June 2010 - Last update 12 July 2011

We answer positively a question raised by Anderson and Belnap, by proving that the

logic T→ of Ticket entailment is decidable.

The pure calculus of entailment was introduced by Anderson and Belnap (Anderson and

Belnap 1975) as part of a formal analysis of the notion of logical implication. The system

T→ of Ticket entailment is the implicational fragment of entailment based on modus

ponens and the four following axiom schemes:

— I : φ→ φ

— B : (χ→ ψ)→ ((φ→ χ)→ (φ→ ψ))

— B′ : (φ→ χ)→ ((χ→ ψ)→ (φ→ ψ))

— W : (φ→ (φ→ χ))→ (φ→ χ)

The four axioms already appear as early as 1956 in Ackermann’s theory of “strenge Im-

plikation” (Ackermann 1956; Anderson 1960) which according to Anderson and Belnap,

provided the impetus for their study of the notions of relevance and necessity in logic

(Anderson and Belnap 1975; Anderson et al. 1990).

The question of the decidability of T→ (the problem of deciding whether a given formula

is derivable from the axioms of T→ and modus ponens) has remained unsolved since it

was raised in the first volume of Anderson and Belnap’s book, although proofs of the

decidability and undecidability were given for several related systems (Anderson et al.

1990; Urquhart 1984). In 2004, a decidability result for a restricted class of formulas (the

class of 1-unary formulas in which every maximal negative subformula is of arity at most

1) was proposed by Broda, Damas, Finger and Silva e Silva (Broda et al. 2004). The

problem was also significantly investigated by Bimbó (Bimbó 2005).

V. Padovani 2

Fig. 1. Principle of the proof of decidability of type inhabitation for well-labelled terms.

We prove in this paper that T→ is decidable. The proof appeals to a translation of

the problem into a type inhabitation problem for well-labelled terms, a restricted class of

terms of lambda-calculus (similar to the HMR-terms introduced in (Trigg et al. 1994)).

In Section 1, the problem of determining whether a formula φ is provable is shown to

be equivalent to the question of determining the existence of an inhabitant of φ, that is,

a simply-typed well-labelled term (in normal form) of type φ – this approach is not new

(Bunder 1996; Broda et al. 2004).

The principle of the remainder of the proof is depicted on Figure 1. In Sections 2 and 3

we provide for each formula φ a partial characterisation of the inhabitants of φ in normal

form and of minimal size. We show that all those terms belong to two larger sets of terms,

the set of compact and locally compact inhabitants of φ.

In Section 4 we show how to associate, with each locally compact inhabitant M of

a formula φ, a labelled tree called the shadow of M . This labelled tree is of same tree

structure as M , allowing one to reconstruct M from its shadow only. We define for

shadows the analogous of compactness for terms and show that the shadow of a compact

term is itself compact.

Finally, in Section 5, we prove that for each formula φ the (empty, if φ is not provable)

set of all compact shadows of inhabitants of φ is a finite set (hence the set of compact

inhabitants of φ is also a finite set), effectively computable from φ. The proof appeals to

Higman’s Theorem and Kruskal Theorem – more precisely, to Melliès’ Axiomatic Kruskal

Theorem. The decidability of T→ follows from this last key-result.

Preliminaries

The first section of this paper assumes a certain familiarity with pure and simply-typed

lambda-calculus, and with the usual notions of α-conversion, β-reduction and β-normal

Ticket Entailment is decidable 3

form (Barendregt 1984; Krivine 1993). The last three notions are not essential to our

discussion, as we later focus exclusively on a particular set of simply-typed terms in

β-normal form. Let us briefly recall the definitions and results used in Section 1.

The set of terms of pure lambda-calculus (λ-terms) is inductively defined by:

— every variable x is a λ-term,

— if M is a λ-term and x is a variable, then λxM is a λ-term,

— if M,N are λ-terms, then (M N) is a λ-term.

The second and third forms are called abstractions and applications respectively. We

let λx1 . . . xn.M abbreviate λx1 . . . λxnM . The parenthesis surrounding applications are

often omitted when unambiguous. For instance, λxy.x(x y) stands for λxλy(x(x y)).

The bound variables of a term M are all x such that λx occurs M . A variable x is free

in a term M if and only:

— M = x,

— or M = λy N , y 6= x and x is free in N ,

— or M = (N P) and x is free in N or free in P .

A closed term is a term with no free variables. The raw subtitution of N for x in M ,

written M〈x← N〉, is the term obtained by substituting N for every free occurrence of

x in M (every occurrence of x that is not in the scope of a λx). We require that this

substitution avoids variable capture (if a variable y is free in N , no free occurrence of x

in M is allowed to be in the scope of a λy):

— x〈y ← N〉 is equal to N if y = x, otherwise it is equal to x,

— λxM 〈x← N〉 = λxM ,

— if y 6= x and y is free in N , then λyM 〈y ← N〉 is undefined,

— if y 6= x, y is not free in N and M 〈y ← N〉 = M ′, then λyM 〈y ← N〉 = λyM ′,

— if M1 〈y ← N〉 = M ′
1 and M2 〈y ← N〉 = M ′

2, then (M1M2)〈y ← N〉 = (M ′
1M

′
2).

The α-conversion is the process of renaming bound variables in a term – again, avoiding

variable capture. It is defined as the least binary relation ≡α such that:

— x ≡α x,

— if M ≡α M ′ and M ′〈x← y〉 = M ′′, then λxM ≡α λyM ′′

— if M1 ≡α M ′
1 and M2 ≡α M ′

2, then (M1M2) ≡α (M ′
1M

′
2).

For instance λx.y ≡α λz.y 6≡α λy.y. A common pratice (which we will not follow in our

exposition) is to consider λ-terms up to α-conversion. The β-reduction is the least binary

relation β satisfying:

— if M ≡α (λxN P) and N〈x← P 〉 = N ′, then M βN ′.

— if M βM ′, then λxM β λxM ′, (M N)β (M ′N) and (N M)β (N M ′).

In the first rule, x is not necessarily free in N , so we may have N = N ′ – in particular,

free variables may disappear in the process of reduction.

We write β∗ for the reflexive and transitive closure of β. A term M is in β-normal form

– or β-normal – if there is no M ′ such that M βM ′. A term M is normalising if there is

a normal N – called normal form of M – such that M β∗N . It is strongly normalising if

there is no infinite sequence M = M0 βM1 βM2 . . .

It is well-known that β-conversion enjoys the Church-Rosser property, that is, if Mβ∗N

V. Padovani 4

and Mβ∗N ′, then there exists two α-convertible P, P ′ such that Nβ∗P and N ′β∗P ′. In

consequence, if a term is normalising, then its normal form is unique up to α-conversion.

The judgment “assuming x1, . . . , xn are of types ψ1, . . . ψn, the term M is of type φ”,

written {x1 : ψ1, . . . , xn : ψn} ⊢M : φ, where ψ1, . . . , ψn, φ are formulas of propositional

calculus and x1, . . . , xn are distinct variables, is defined by:

— Γ ⊢ x : ψ for each x : ψ ∈ Γ,
— if Γ ∪ {x : φ} ⊢M : ψ, then Γ ⊢ λxM : φ→ ψ.
— if Γ ⊢M : φ→ ψ and Γ ⊢ N : φ, then Γ ⊢ (M N) : ψ

The simply-typable terms are all M for which there exist Γ, φ such that Γ ⊢M : φ. Note

that Γ must contain all variables free in M , and may contain only those variables. The

following properties are well-known:

1 (Strong normalisation) If Γ ⊢M : φ, then M is strongly normalising.
2 (Subject reduction) If Γ ⊢M : φ and M βN , then Γ ⊢ N : φ.

1. From Ticket entailment to simply-typed lambda-calculus

The axioms of T→ are natural types for λfgx.f(g x), λfgx.g(f x), λx.x, λhx.(hxx) (or for

their respective counterparts in combinatory logic). To each theorem φ of T→ corresponds

a closed term M of type φ – an inhabitant of φ – built with applicative combinations of

terms of those four forms. Subject reduction ensures that all reducts of M are also of

type φ, and the strong normalisation property also ensure the existence of a normal form

of M . The aim of this first section is to provide a full characterisation of simply-typable

normal terms that are typable with theorems of Ticket entailment, so as to transform

the question of the provability of a formula φ in T→ into a type inhabitation problem.

1.1. Lambda-calculus

Let x0, x1, . . . be different variables. We write xi < xj when i < j. Throughout the paper,

by term we always mean a term of lambda-calculus built over those variables. For each

term M , we write Free(M) for the strictly increasing sequence of all variables free in M .

Terms are not identified modulo α-conversion - apart from Section 1, all terms will

be in normal form. The greek letters α, β will be even recycled at the beginning of

Section 2. We adopt however the usual convention according to which two distinct λ’s

may not bound the same variable in a term, and no variable can be simultaneously free

and bound in the same term.

1.2. Well-labelled terms and simply-typed terms

Definition 1.1. The set of well-labelled terms is inductively defined by:

1 Each xi is a well-labelled term,

2 If M is well-labelled and x is the greatest free variable of M , then λx.M is well-

labelled.

3 If M,N are well-labelled, and for every free variables in M , there exists a free variable

y in N such that x ≤ y, then (M N) is well-labelled.

Ticket Entailment is decidable 5

Well-labelled terms are similar to the HRM-terms introduced in (Trigg et al. 1994) with

the aim of characterizing the translations in λ-calculus of terms of combinatory logic

built over various partial bases of atomic combinators.

The second rule ensures that all well-labelled terms are λI -terms, that is, terms in

which every subterm λx.M is such that x is free in M . The set of free variables of a well-

labelled term is thus preserved under β-reduction. As we shall see in the proof of Lemma

1.5, the preservation of well-labelledness is also allowed, at the cost of appropriate bound

variable renamings.

In the third rule, if N is closed then so is M . When M and N are open, the greatest

free variable of M is less than or equal to the greatest free variable of N . For instance, if

f < g < x and h < x, then λfgx.f(g x), λfgx.g(f x), λx.x, λhx.(hxx) are well-labelled.

Definition 1.2. Let (xi)i∈N be the strictly increasing sequence of all variables. Let

(ωi)i∈N be a sequence of formulas in which every formula occurs an infinite number of

times. For each strictly increasing X = (xi1 , . . . , xin) we let Ω(X) = (ωi1 , . . . , ωin).

Definition 1.3. The judgment M : φ (in words, M is of type φ w.r.t Ω) is defined by:

— if Ω(x) = φ, then x : φ,

— if M : χ, x : φ and λx.M is well-labelled, then λx.M : φ→ χ,

— if M : φ→ χ, N : φ and (M N) is well-labelled, then (M N) : χ.

The function Ω will remain fixed throughout the paper: to each variable x corresponds

a unique type. In consequence each typed term M has a unique type, which we call the

type of M without any further reference to the choice of Ω. Note that every typed term

is also well-labelled.

Definition 1.4. We write NF for the set of all typed terms in β-normal form. We call

NF-inhabitant of φ every closed term M ∈ NF of type φ.

1.3. Preservation of well-labelledness under reduction and subformula property

Lemma 1.5. Suppose M is closed and M : φ. Then φ is NF-inhabited.

Proof. (1) We leave to the reader the proof of this simple fact: for every variable y,

and for every N : φ, there exists N ′ ≡α N such that N ′ : φ and every variable bound in

N ′ in strictly greater than y.

(2) Assume N : φ and N is not in normal form. We prove by induction on N the

existence of N ′ : φ such that N βN ′. If N = λx.P , or if N = (N1N2) with N1 or N2 not

in normal form, then the existence of N ′ follows from the induction hypothesis and the

fact that β-reduction preserves the set of free variables of a well-labelled term.

Otherwise N = ((λx.P) Q) where x is the greatest free variable of P . By (1) there

exists P ′ ≡α P such that P ′ : φ and no bound variable of P ′ is less than or equal to a

free variable of Q. The variable x is still the greatest free variable of P ′.

We prove by induction on P ′ the following properties: N ′ = P ′〈x ← Q〉 is defined,

well-labelled and of the same type as P ′; if N ′ is not closed, then the greatest free variable

of N ′ is the greatest free variable of Q. This is clear if P ′ = x. If P ′ = λz.R, then z is

V. Padovani 6

not free in Q, so N ′ = P ′〈x ← Q〉 = λz.R′ where R′ = R〈x ← Q〉), and the conclusion

follows from the induction hypothesis.

Suppose P ′ = (P1 P2). Then x must be free in P2. By induction hypothesis: N ′
2 =

P ′
2〈x ← Q〉 is defined, well-labelled and of the same type as P ′

2; if N ′
2 is not closed,

then the greatest free variable of N ′
2 is the greatest free variable of Q. If x is not free

in P1 and P1 is not closed, then the greatest free variable of P1 is not greater than x,

and not greater than the greatest free variable of Q (otherwise N would not be well-

labelled), hence N ′ = (P1N
′
2) : φ. Otherwise x is free in P1 and by induction hypothesis:

N ′
1 = P ′

1〈x ← Q〉 is defined, well-labelled and of the same type as P ′
1; if N ′

1 is not

closed, that the greatest free variable of N ′
1 is the greatest free variable of Q. Hence

N ′ = (N ′
1N

′
2) : φ.

(3) We prove the lemma. The term M is a simply-typable well-labelled term. The

strong normalisation property implies the existence of a normal form N of M . The term

N is still a closed term. By (1), there exists N ′ ≡α N such that N ′ : φ, that is, φ is

NF-inhabited,

Lemma 1.6. Let M be an NF-inhabitant of φ. The types of the subterms of M are

subformulas of φ.

Proof. This lemma is the well-known subformula property of simply-typed lambda-

calculus. An immediate induction on N shows that for every normal N : φ (not neces-

sarily closed), the type of each subterm of N (including free and bound variables) is a

subformula of φ or a subformula of a free variable of N .

1.4. Equivalence between provability in T→ and NF-inhabitation

In the next lemmas by φ1 . . . φn → ψ we mean the formula (φ1 → (. . . (φn → ψ) . . .)) if

n > 0, the formula ψ if n = 0. We write ⊢T φ for the judgment “φ is provable in T→”.

Lemma 1.7. If ⊢T φ, then φ is NF-inhabited.

Proof. If f < g < x and h < x, then λx.x, λfgx.f(g x), λfgx.g(f x) and λhx.(hxx)

are well-labelled terms. For each axiom φ of Ticket entailment the variables f, g, h, x can

be chosen so that one of those terms is of type φ. The set of all formulas φ for which

there exists a closed M of type φ is clearly closed under modus ponens. By Lemma 1.5,

this set is the set of NF-inhabited formulas.

Lemma 1.8. If ⊢T χ→ ψ, then ⊢T (φ1 . . . φn → χ)→ (φ1 . . . φn → ψ) for all φ1, . . . , φn.

Proof. By induction on n, using B-axioms.

Lemma 1.9. Suppose (i1, . . . , in), (j1, . . . , jm), (k1, . . . , kp) are strictly increasing se-

quences of integers, {k1, . . . , kp} = {i1, . . . , in, j1, . . . , jm}, n = 0 or (n > 0, m > 0,

in ≤ jm). If

1 ⊢T ωi1 . . . ωin → (χ→ ψ),

2 ⊢T ωj1 . . . ωjm → χ,

then ⊢T ωk1 . . . ωkp → ψ.

Ticket Entailment is decidable 7

Proof. By induction on n + m. The proposition is true when n = m = 0. Assume

n+m > 0. Then m > 0.

Suppose n = 0. Then (ji, . . . , jm) = (k1, . . . , kp). We have:

(i) ⊢T (χ→ ψ)→ ((ωjm → χ)→ (ωjm → ψ))

(ii) ⊢T (ωjm → χ)→ (ωjm → ψ)
where: (i) is a B-axiom; (ii) follows from (i), (1) and modus ponens. If m = 1 then

⊢T ωj1 → ψ follows from (ii), (2) and modus ponens. Otherwise ⊢T ωj1 . . . ωjm → ψ

follows from (ii), (2) and the induction hypothesis.

We now assume n > 0. Suppose m > 1 and in ≤ jm−1. Then
(iii) ⊢T (χ→ ψ)→ ((ωjm → χ)→ (ωjm → ψ))

(iv) ⊢T (ωi1 . . . ωin → (χ→ ψ))→ (ωi1 . . . ωin → ((ωjm → χ)→ (ωjm → ψ)))

(v) ⊢T ωi1 . . . ωin → ((ωjm → χ)→ (ωjm → ψ))
where: (iii) is a B-axiom; (iv) follows from (iii) and Lemma 1.8; (v) follows from (iv),

(1) and modus ponens. We have kp = jm and {k1, . . . , kp−1} = {i1, . . . , in, j1, . . . , jm−1}.

Since in ≤ jm−1, we have ⊢T ωk1 . . . ωkp−1
→ (ωjm → ψ) by (v), (2) and the induction

hypothesis.

Suppose m = 1 or (m > 1 and in > jm−1). Then

(vi) ⊢T (ωjm → χ)→ ((χ→ ψ)→ (ωjm → ψ))

(vii) ⊢T (ωj1 . . . ωjm → χ)→ (ωj1 . . . ωjm−1
→ ((χ→ ψ)→ (ωjm → ψ)))

(viii) ⊢T ωj1 . . . ωjm−1
→ ((χ→ ψ)→ (ωjm → ψ))

(ix) ⊢T ωn1
. . . ωnq

→ (ωjm → ψ)
where: (vi) is a B′-axiom; (vii) follows from (vi) and Lemma 1.8; (viii) follows from

(vii), (2) and modus ponens; {n1, . . . , nq} = {j1, . . . , jm−1, i1, . . . , in}; (ix) follows from

(viii), (1) and the induction hypothesis. If jm > in, then (n1, . . . , nq, jm) = (k1, . . . , kp).

Otherwise jm = in, nq = in, (n1, . . . nq) = (k1, . . . , kp) and

(x) ⊢T ωk1 . . . ωkp−1
→ (ωin → (ωin → ψ))

(xi) ⊢T (ωin → (ωin → ψ))→ (ωin → ψ)

(xii) ⊢T (ωk1 . . . ωkp−1
→ (ωin → (ωin → ψ)))→ (ωk1 . . . ωkp−1

→ (ωin → ψ))

(xiii) ⊢T ωk1 . . . ωkp−1
→ (ωin → ψ)

where: (x) is (vii); (xi) is a W -axiom; (xii) follows from (xi) and Lemma 1.8; (xiii) follows

from (vii), (xii) and modus ponens; (xiii) is ⊢T ωk1 . . . ωkp → ψ.

Lemma 1.10. ⊢T φ if and only if φ is NF-inhabited.

Proof. The left to right implication is Lemma 1.7. An immediate induction on M shows

that M : ψ, Free(M) = (x1, . . . , xn) and x1 : χ1, . . . , xn : χn implies ⊢T χ1 . . . χn → ψ,

using Lemma 1.9 when M is an application.

2. Stable parts and blueprints

The last lemma showed that the decidability of Ticket entailment is equivalent to the

decidability of NF-inhabitation. The remainder of the paper is devoted to the elaboration

of a decision algorithm for this latter problem.

The question we shall examine throughout Sections 2 and 3 is the following: if an

inhabitant is not of minimal size, is there any way to transform it (with the help of grafts

V. Padovani 8

and/or another compression of some sort) into a smaller inhabitant of same type? This

question is difficult, because we are dealing with a lambda-calculus restricted with strong

structural constraints (well-labelledness). There are however simple situations in which

an inhabitant is obivously not minimal.

Consider an NF-inhabitant M and a pair of addresses (a, b) such that a < b, M|a and

M|b are applications of the same type or abstractions of the same type. Suppose:

— Free(M|a) = Xa = (x1, . . . , xn),

— Free(M|b) = Xb = (y10 , . . . , y
1
p1
, . . . , yn0 , . . . , y

n
pn

)

— Ω(Xa) = (χ1, . . . , χn),

— Ω(Xb) = (χ1
0, . . . , χ

1
p1
, . . . , χn0 , . . . , χ

n
pn

),

— χij = χi for each i, j,

Then M is not an inhabitant of minimal size. Indeed, we may rename the free variables

of M|b (letting ρ(yij) = xi) as to obtain a term M ′ of same size as M|b, of the same type

and same free variables as M|a. If we graft M ′ at a in M , the resulting term is a strictly

smaller inhabitant.

This simple property is far from being enough to characterise the minimal inhabitants

of a formula: there are indeed formulas with inhabitants of abitrary size in which this

situation never occurs. We obviously need a more flexible way to reduce the size of

non-minimal inhabitants. In particular, we need a better understanding of our available

freedom of action if we are to rename the free variables of a term – possibly occurrence

by occurrence – and if we want to ensure that well-labelledness is preserved. This section

is devoted to the proof of two key-lemmas that delimit this freedom.

— In Sections 2.1, 2.2 and 2.2 we show how to extract from any term M ∈ NF a partial

tree labelled with formulas. This partial tree is called the blueprint of M . It can

be seen as a synthesized version of M that contains all and only the information

required to determine whether a (non-uniform) renaming of the free variables of M

will preserve well-labelledness.

— In Sections 2.4 and 2.5 we introduce a rewriting relation on blueprints that allows

one to extract all formulas of a blueprint. The order in which the formulas may be

extracted is not unique, but it is constrained by the structure of the blueprint.

— In section 2.6 we prove our two key-lemmas. Lemma 2.14 clarifies the link between

the blueprints of M and λx.M (provided both are in NF). It implies that the sequence

of the types of the free variables of M (that is, Ω(Free(M))) can always be extracted

from its blueprint. Lemma 2.15 shows that if we choose to extract from this blueprint

another sequence of formulas, say φ, then there exists a (non-uniform) renaming of

the free variables of M that will produce a term N of the same type and with the

same blueprint as M , and such that Ω(Free(N)) = φ

As a continuation of our first example, let us examine the consequences of this last result.

Consider again M,a, b as above, and suppose:

— the sequence Ω(Free(M|a)) can be extracted from the blueprint of M|b.

This situation is a generalization of the preceding one (in our first example Ω(Xa) could

also be extracted from the blueprint of M|b, see Definition 2.9). The term M is still not

of minimal size. Indeed, we may use the second key-lemma to prove the existence of

Ticket Entailment is decidable 9

(non-uniform) renaming of the free variables of M|b that will produce a term N of same

type as M|b such that Free(N) = Free(M|a). The term N can be grafted at a in M .

2.1. Partial trees and trees

Definition 2.1. Let (A ,≤) be the set of all finite sequences over the set N
∗ of non-null

integers, ordered by prefix ordering. Elements of A are called addresses. We call partial

tree every function π whose domain is a set of addresses. For each partial tree π and for

each address a, we let π|a denote the partial tree c 7→ π(a·c) of domain {c | a·c ∈ dom(π)}.

Definition 2.2. For all partial trees π, π′ and for every address a, we let π[a ← π′]

denote the partial tree π′′ such that π′′
|a = π′ and π′′(b) = π(b) for all b ∈ dom(π) such

that a 6≤ b.

Definition 2.3. A tree domain is a set A ⊆ A such that for all a ∈ A and for every

integer i > 0, if a · (i) ∈ A, then a · (j) ∈ A for each j ∈ {1, . . . , i− 1}. A tree domain A

is finitely branching if and only if for each a ∈ A, there exists an i > 0 such that a · (i) is

undefined. We call tree every function whose domain is a tree domain.

In the remainder terms will be freely identified with trees. We identify: x with the tree

mapping ε to x; λx.M with the tree τ mapping ε to λx and such that τ|(1) is the tree

of M ; (M1M2) with the tree τ mapping ε to @ and such that τ|(i) is the tree of Mi for

each i ∈ {1, 2}.

2.2. Blueprints

Definition 2.4. Let S be the signature consisting of all formulas and all symbols of the

form @φ where φ is a formula. Each formula is considered as a symbol of null arity. Each

@φ is of arity 2.

We call blueprint every finite partial tree α : A→ S satisfying the following condition:

for each a ∈ A, if α(a) = @φ, then α|a·(1) and α|a·(2) are of non-empty domains. A

blueprint α is rooted if ε ∈ dom(α).

For each S ⊆ S, we call S-blueprint every blueprint whose image is a subset of S. We

write B(S) for the set of all S-blueprints, Bε(S) for the set of all rooted S-blueprints.

Definition 2.5. For every blueprint α and every address a, the relative depth of a in α

is the number of b ∈ dom(π) such that b < a. The relative depth of α is defined as 0 if α

is of empty domain, the maximal relative depth of an address in α otherwise.

In the remainder the following notations will be used to denote blueprints (see Figure 2):

— ∅B denotes the blueprint of empty domain.

— we abbreviate ε 7→ φ as φ.

— @φ(β1, β2) denotes the (rooted) blueprint α such that α(ε) = φ, α|(1) = α1, α|(2) = α1.

— for every sequence a = (a1, . . . , ak) of pairwise incomparable addresses, ∗a(β1, . . . , βk)

denotes the blueprint α such that α|ai = βi for each i ∈ [1, . . . , k].

— we let ∗(π1, . . . , πk) denote the tree ∗b(π1, . . . , πk) such that b = ((1), . . . , (k)).

V. Padovani 10

Fig. 2. Construction of blueprints, with the notations of Section 2.2. In the upper

diagram, the blueprints α and β must be non-empty.

For each blueprint α, the choice of a, β1, . . . , βk such that α = ∗a(β1, . . . , βk) is obviously

not unique. Moreover the sequence of βi may contain an arbitrary number of empty

blueprints, hence the sequence a may be of arbitrary length. Also, α can be roooted (if

k = 1, a1 = ε and β1 is rooted) or empty (if k = 0 or β1 = . . . = βk = ∅B). This

ambiguity is not difficult to deal with, but will require a few precautions in our proofs

by induction on blueprints.

2.3. Blueprint of a term

Definition 2.6. For all M ∈ NF, the stable part of M is the set of all a ∈ dom(M) such

that Free(M|a) ⊆ Free(M) and M|a is a variable or an application.

It is easy to check that our conventions (no variable is simultaneously free and bound in

a term) ensure that the stable part of a term does not depend on the choice of variable

names. Since M is assumed to in normal form, M is of empty stable part if and only if

it is closed. If Free(M|a·b) ⊆ Free(M) then Free(M|a·b) ⊆ Free(M|a). Consequently if a · b

is in the stable part of M , then b is in the stable part of M|a.

Definition 2.7. For all M ∈ NF, we call blueprint of M the function α mapping each a

in the stable part of M to:

— ψ if M|a is a variable x of type ψ,

— @ψ if M|a is an application of type ψ.

We let M
 α denote the judgment “M is of blueprint α”.

(See Figure 3) If M = (M1M2) ∈ NF, M : φ, M1
 α1, M2
 α2, then each αi is of

non-empty domain and (M1M2)
 @φ(α1, α2) – in other words the so-called blueprint

of M is indeed a blueprint. If M|b
 β and M|b·c
 γ, then β|c = γ. When M = λx.M1

the blueprint of M is of the form ∗(α) – the relation between α and the blueprint of M1

in that case will be clarified by Lemma 2.14.

Ticket Entailment is decidable 11

Fig. 3. An element of NF with its blueprint (x0 < x1 < y1, x2 < x3 < y2, x1 < y0 < y2).

Fig. 4. Principle of blueprint reduction.

2.4. Extraction of the formulas of a blueprint

Definition 2.8. The judgment “α′ is the blueprint obtained by extracting the formula

φ at the address a in the blueprint α”, written α⊲aφ α
′, is inductively defined by:

1 φ⊲εφ ∅B ,

2 if α2 ⊲
a
φ α

′
2, then @ψ(α1, α2)⊲

(2)·a
φ ∗(α1, α

′
2)

3 if α⊲aφ α
′, then ∗(b,c1,...,cn)(α, β1, . . . , βn)⊲b·aφ ∗(b,c1,...,cn)(α

′, β1, . . . , βn).

In (2), we assume of course that β1 and β2 are non-empty. In (3), in order to avoid

circularity, we have to assume b 6= ε or the existence of an i such that γi 6= ∅B .

For instance (Figure 5):

— @ψ(χ→ ψ,@χ(φ→ χ, φ)) ⊲
(2,2)
φ ∗(χ→ ψ, ∗(φ→ χ, ∅B))

⊲
(2,1)
φ→χ ∗(χ→ ψ, ∗(∅B , ∅B))

⊲
(1)
χ→ψ ∗(∅B , ∗(∅B , ∅B)) = ∅B

V. Padovani 12

Fig. 5. Full reductions of @ψ(χ→ ψ,@χ(φ→ χ, φ)) to ∅ B .

— @ψ(χ→ ψ,@χ(φ→ χ, φ)) ⊲
(2,2)
φ ∗(χ→ ψ, ∗(φ→ χ, ∅B))

⊲
(1)
χ→ψ ∗(∅B , ∗(φ→ χ, ∅B))

⊲
(2,1)
φ→χ ∗(∅B , ∗(∅B , ∅B)) = ∅B

When α ⊲aφ α
′, the blueprint α′ can be seen as α in which the formula φ at a is erased

together with all @’s in the path to a. At each @ this path must follow the right branch

of @. The constraints on the construction of blueprints imply the existence of at least

one such path in every non-empty blueprint, even if it is not the blueprint of a term.

2.5. Sets of extractible sequences

Definition 2.9. For each formula φ, let ⊲φ be the relation defined by: α ⊲φ α
′ if and

only if there exists a such that α⊲aφ α
′. Let ⊲+

φ be the transitive closure of ⊲φ. For each

α, we write F (α) for the set of all sequences (φ1, . . . , φn) such that α⊲+
φn
. . .⊲+

φ1
∅.

The set F (α) is what we called “set of extractible sequences of α” in the introduction of

Section 2. Note that F (∅B) = {ε}. If α 6= ∅B , then all elements of F (α) are non-empty

sequences. We now introduce the notion of shuffle, we will allow us to characterise F (α)

in function of the structure of α.

Definition 2.10. A contraction of a sequence F is either the sequence F or a sequence

G · (f) ·H where G · (f) · (f) ·H is a contraction of F .

Definition 2.11. Given finite sequences F1, . . . , Fn we call shuffle of (F1, . . . , Fn) every

sequence F 1
1 · . . . · F

1
n · . . . · F

p
1 · . . . · F

p
n such that F 1

i · . . . · F
p
i = Fi for each i. For each

tuple of sets of finite sequences (F1, . . . ,Fn) we write ⊛(F1, . . . ,Fn) for the closure under

contraction of the set of shuffles of elements of F1 × . . .×Fn.

Definition 2.12. Given two non-empty finite sequences F1, F2 we call right-shuffle of

Ticket Entailment is decidable 13

Fig. 6. A Shuffling of two sequences. The chunks of F and G need not to be of the same

size – some of them can even be empty. All contractions of the resulting sequence belong

⊛(F,G). They also belong to ⊚(F,G) if F,G are non-empty and the last chunk of G is

non empty.

(F1, F2) every sequence F 1
1 ·F

1
2 · . . . ·F

p
1 ·F

p
2 where F 1

i · . . . F
p
i = Fi for each i and F p2 6= ε.

For each pair of sets of non-empty finite sequences (F1,F2) we write ⊚(F1,F2) for the

closure under contraction of the set of right-shuffles of elements F1 ×F2.

The principle of (right-)shuffling is depicted on figure 6. The following properties follow

from our definitions and will be used without reference:

1 If α = ∅B , then F (α) = {ε}.

2 If α = φ, then F (α) = {(φ)}.

3 If α = ∗a(β1, . . . , βk), then F (α) = ⊛(F (β1), . . . ,F (βk)).

4 If α = @φ(α1, α2), then F (α) = ⊚(F (α1),F (α2)).

2.6. Abstraction vs. extraction

Recall that for every strictly increasing sequence of variables X = (xi1 , . . . , xin), we write

Ω(X) for the sequence of the types of xi1 , . . . , xin . We now clarify the link between the

blueprint α of a term M and the one of λx.M (see Figure 7).

Lemma 2.13. Suppose {a1, . . . , an} = {b1, . . . , bn}, and:

— α⊲a1χ . . .⊲anχ β,

— α⊲b1χ . . .⊲bnχ β′.

Then β = β′.

Proof. By an easy induction on α.

Lemma 2.14. For all M ∈ NF of type φ, of blueprint α, the following conditions are

equivalent:

1 λx.M : χ→ φ and λx.M
 β.

2 x is the greatest free variable of M and there exist α′, a1, . . . , an such that:

— M−1(x) = {a1, . . . , an},

— α⊲a1χ . . .⊲anχ α′,

— β = ∗(α′).

V. Padovani 14

Fig. 7. How the blueprint of M evolves into the blueprint of λx.M

Proof. Let ρM be the least partial function such that: ρM (ε, γ) = γ for all blueprint γ;

if ρM (X, γ) = δ, M−1(x) = {a0, . . . , an} and δ⊲a0χ . . .⊲anχ δ′, then ρM ((x) ·X, γ) = δ′. By

Lemma 2.13, if M−1(x) = {a0, . . . , an} = {b0, . . . , bn}, δ⊲a0χ . . .⊲anχ δ′ and δ⊲b0χ . . .⊲
bn
χ δ′′,

then δ′ = δ′′, consequently ρM is indeed a function. For each finite sequence of variables

X , let µM (X,α) be the restriction of α to dom(α) ∩ {a |Free(M|a) ⊆ X}.

(A) We shall prove by induction on M that for all pairs (X,X ′) such that Free(M) =

X · X ′, we have µM (X,α) = ρM (X ′, α). The case X ′ = ε is immediate so we may as well

assume that X ′ is a non-empty suffix of Free(M). The case M = x follows immediately

from our definitions.

Suppose M = (M1M2), M1 : φ1 M1
 α1, φ1 = φ2 → φ, M2 : φ2, M2
 α2. There

exist X1, X2, X
′
1, X

′
2 such that: X1∪X2 = X ; X ′

1∪X
′
2 = X ′; Free(Mi) = Xi ·X ′

i for each

i ∈ {1, 2}. We have α = @φ(α1, α2) and µM (X,α) = ∗(µM1
(X1, α1), µM2

(X2, α2)). By

induction hypothesis µMi
(Xi, αi) = ρMi

(X ′
i, αi) for each i. The sequence X ′ is non-empty

hence the last elements of X ′, X ′
2 are equal. Assume X ′ = Y ′ · (x) and X ′

2 = Y ′
2 · (x). If

x is not the last element of X ′
1 then:

ρM (X ′, α) = ρM (X ′,@φ(α1, α2))

= ρM (X ′
1 ∪ Y

′
2 , ∗(α1, ρM2

((x), α2)))

= ∗(ρM1
(X ′

1, α1), ρM2
(Y ′

2 , µM2
((x), α2)))

= ∗(ρM1
(X ′

1, α1), ρM2
(Y ′

2 · (x), α2))

= ∗(ρM1
(X ′

1, α1), ρM2
(X ′

2, α2))

Ticket Entailment is decidable 15

Fig. 8. A non-uniform renaming of the variables of M , based on an alternate extraction

of the formulas of its blueprint.

Otherwise, X ′
1 = Y ′

1 · (x) and we have:

ρM (X ′, α) = ρM (X ′,@φ(α1, α2))

= ρM (Y ′
1 ∪ Y

′
2 , ∗(ρM1

((x), α1), ρM2
((x), α2)))

= ∗(ρM1
(Y ′

1 , ρM1
((x), α1)), ρM2

(Y ′
2 , µM2

((x), α2)))

= ∗(ρM1
(Y ′

1 · (x), α1), ρM2
(Y ′

2 · (x), α2))

= ∗(ρM1
(X ′

1, α1), ρM2
(X ′

2, α2))

In either case ρM (X ′, α) = ∗(ρM1
(X ′

1, α1), ρM2
(X ′

2, α2)) = µM (X,α).

Suppose M = λx.M1 : χ → ψ1, M1
 α1. By induction hypothesis µM1
(X,α1) =

ρM1
(X ′ · (x), α1) = ρM1

(X ′, ρM1
(x, α1)) = ρM1

(X ′, µ(X · X ′, α1)) = ρM1
(X ′, α|(1)).

Also µM1
(X,α1) = µM1

(X,µ1(X · X ′, α1)) = µM1
(X,α|(1)). Hence µM1

(X,α|(1)) =

ρM1
(X ′, α|(1)), therefore µM1

(X,α) = ρM1
(X ′, α).

(B) We now prove the lemma. If (1) or (2), then x is the greatest variable of M , that

is, Free(M) is of the form X · (x). The blueprint of λx.M is by definition ∗(µM (X,α)).

By (A), ρM ((x), α) is defined and equal to µM (X,α). Hence there exist c1, . . . , cn such

that M−1(x) = {c1, . . . , cn}, α ⊲
c1
χ . . . ⊲cnχ ρM ((x), α) = µM (X,α). If (1) then β =

∗(µM (X,α)) = ∗(ρM ((x), α)), and we can take (a1, . . . , an) = (c1, . . . , cn), α′ = ρM ((x), α).

If (2) then by Lemma 2.13, α′ = ρM ((x), α) = µM (X,α), hence ∗(α′) is indeed the

blueprint of λx.M .

As an immediate consequence of Lemma 2.14, if M
 α, then Ω(Free(M)) ∈ F (α). In

other words the full sequence of the types of the free variables of M can be extracted

from its blueprint.

The next lemma shows that we can do the opposite (Figure 8): for each sequence χ in

F (α), there exists a term N with the same type, same tree structure and same blueprint

as M , and such that the sequence of types of the free variables of N is equal to χ.

V. Padovani 16

Lemma 2.15. Let M ∈ NF be a term of blueprint α. Suppose

α⊲
am
0

χm . . .⊲
amnm
χm . . . ⊲

a1
0

χ1
. . .⊲

a1n1

χ1
∅B

Then for all strictly increasing sequence of variables Y = (y1, . . . , yn) such that Ω(Y) =

(χ1, . . . , χn), there exists N of same domain, of same blueprint and of same type as M

such that Free(N) = Y and N−1(yi) = {ai1, . . . , a
i
ni
} for each i.

Proof. By induction on M . The proposition is clear if M is a variable. The case of

M = (M1M2) follows easily from the induction hypothesis.

Suppose M = λx.M1 : φ→ ψ with M1
 γ. Let Y ′ = (y1, . . . , yn, yn+1) where yn+1 =

x, let. By Lemma 2.14.(1 ⇒ 2) there exists b1, . . . , bp such that {b1, . . . , bp} = M−1
1 (x)

and γ ⊲b0φ . . .⊲
bp
φ γ′ = α|1. Now,

α⊲
am
0

χm . . .⊲
amnm
χm . . . ⊲

a1
0

χ1
. . .⊲

a1n1

χ1
∅B

implies that each aij is of the form (1) · cij . Furthermore

γ ⊲b0φ . . .⊲
bp
φ ⊲

cm
0

χm . . .⊲
cmnm
χm . . . ⊲

c1
0

χ1
. . .⊲

c1n1

χ1
∅B

By induction hypothesis there exists N1 of same domain, of same blueprint and of same

type as M1 such that Free(N1) = Y ′ and N−1
1 (yi) = {ai1, . . . , a

i
ni
} for each i. By Lemma

2.14.(2 ⇒ 1), λx.N1
 α. Hence we may take N = λx.N1.

3. Compact terms

We go on with our study of the properties of minimal inhabitants. Section 3.1 is just a

simple remark on the relative depths of their blueprints, and an easy consequence of the

subformula property (Lemma 1.6): if M is a minimal NF-inhabitant of φ, then for all

address a in M the blueprint of M|a is of relative depth at most k × p, where:

— k is the number of λ in the path from the root to M to a,

— p is the number of subformulas of φ.

We call locally compact every NF-inhabitant satisfying this condition. In Section 3.2 we

introduce the notion of vertical compression of a blueprint. A (strict) vertical compression

of β is obtained by taking any address b in β, then by grafting β|b at any address a < b

such that β(a) = β(b). The vertical compressions of β are β and all compressions of its

compressions. The key-properties of those compressions is the following (see Figure 9):

— If M is of blueprint β and α is a vertical compression of β, the compression of β into

α can be mimed by a compression of M into a well-labelled term, in the following

sense. Assuming α = β[a ← β|b] (the base case), the term Q = M [a ← M|b] is not

in general well-labelled. However, there exists a term M ′ with the same domain as Q

and of same type as M . Moreover (because β(a) = β(b)) M ′ is an application if M is

an application, an abstraction if M is an abstraction (because a < b and β(a) = β(b),

it cannot be a variable)

Let us again consider a NF-inhabitant M and two addresses a, b such that a < b, M|a

and M|b are applications of the same type or abstractions of the same type. Suppose:

Ticket Entailment is decidable 17

Fig. 9. How the compression of terms is able to follow the compression of blueprints.

— there exists a vertical compression α′ of the blueprint of M|b such that the sequence

Ω(Free(M|a)) can be extracted from α′.

This situation is a generalisation of the last example in the introduction of Section 2

(in which α′ was equal to the blueprint of M|b, thereby a trivial compression of this

blueprint). The term M is not minimal. Indeed, the key-property above implies the

existence of a term N of blueprint α′ whose size is not greater than the size of M|b, and

such that N,M|b,M|a are applications of the same type or abstractions of the same type.

By Lemma 2.15, there exists a term P of same type and of same domain as N such that

Free(P) = Free(M|a). The graft of P at a yields then an inhabitant of strictly smaller

size.

We will call compact all inhabitants in which the preceding situation does not occur.

All inhabitants of minimal size are of course compact. As we shall see in Section 5, we

will not need a sharper characterisation of minimal inhabitants. For every formula φ,

the set of compact inhabitants of φ is actually a finite set, and our decision method will

merely consist in the exhaustive computation of their domains.

3.1. Depths of the blueprints of minimal inhabitants

Definition 3.1. Two terms M,M ′ ∈ NF are of same kind if and only if they are both

variables, or both applications, or both abstractions, and if they are of same type.

Definition 3.2. For all formula φ, we write Sub(φ) the set of all subformulas of φ.

Definition 3.3. Let M ∈ NF. Let a be any address in M . Let (a1, . . . , ak) be the

strictly increasing sequence of all prefixes of a. Let (λx1, . . . , λxk) be the subsequence

(M(a1), . . . ,M(ak)) of all labels of the form λx. We write Λ(M,a) for (x1, . . . , xk).

When M is an NF-inhabitant of φ, we say that M is locally compact if for all address

a in M , the blueprint of M|a of relative depth at most than |Λ(M,a)| × |Sub(φ)|.

Lemma 3.4. Let M be any NF-inhabitant of φ. If M is not locally compact, then there

exists two addresses b, b′ such that M|b, M|b′ are of same kind and Free(M|b) = Free(M|b′).

Proof. For each address a in dom(M), let αa be the blueprint of M|a and let Xa =

V. Padovani 18

Fig. 10. Proof of Lemma 3.4.

Free(M|a). Assume an αa is of relative depth n > |Λ(M,a)| × |Sub(φ)|. There exists

b1, . . . , bn+1 ∈ dom(αa) such that b1 < . . . < bn < bn+1. We have Xa·bn ⊆ . . . Xa·b1 ⊆

Λ(M,a). By Lemma 1.6, each φa·bi is a subformula of φ. Hence there exist i, j such that

i < j and (Xa·bi , φa·bi) = (Xa·bj , φa·bj), that is, M|a·bi and M|a·bj are applications of the

same type and with the same free variables (Figure 10).

As an immediate corollary of this result, every NF-inhabitant of minimal size is also

locally compact.

3.2. Vertical compression of a blueprint

Definition 3.5. Let ⇑ be least reflexive and transitive binary relation on blueprints

satisfying the following: if a, b ∈ dom(β), a < b and β(a) = β(b), then β[a← β|b] ⇑ β.

Lemma 3.6. Suppose M ∈ NF, M : φ, M
 β and α ⇑ β. There exists a term M ′ ∈ NF

of same kind as M , of blueprint α and such that |dom(M ′)| ≤ |dom(M)|.

Proof. It suffices to consider the case of α = β[a ← β|b] with a, b ∈ dom(β), a < b

and β(a) = β(b). Recall that for all c, c′, if b = c · c′ and M|c
 γ, then γ|c′ = β|b. We

prove the existence of M ′ by induction on the length of a. The case a = ε is immediate.

Assume a 6= ε.

(1) Suppose M = (M1M2), M1
 β1, M2
 β2, a = (i) · ai and b = (i) · bi. By

induction hypothesis there exists Ni of blueprint γi = βi[ai ← βi|bi] = βi[ai ← β|b], of

same kind as Mi and such that dom(Ni) ≤ dom(Mi). Let j = 1 if i = 2, otherwise let

j = 2. Let (Nj , γj) = (Mj , βj). Let X = (x1, . . . , xn) be the strictly increasing sequence

Ticket Entailment is decidable 19

of all variables that are free or bound in N2. Let Y = (y1, . . . , yn) be a strictly increasing

sequence of variables such that Ω(X) = Ω(Y) and xn < y1. Call N ′
2 the term obtained

by replacing each xi by yi in N2. We can take M ′ = (N1N
′
2).

(2) Suppose M = λx.M1, M1
 β1, x : χ, a = (1) ·a1 and b = (1) ·b1. As a, b ∈ dom(β),

we have also a1, a2 ∈ dom(β1). By induction hypothesis there exists M ′
1 of same kind as

M1, of blueprint α1 = β1[a1 ← β1|b1] and such that dom(M ′
1) ≤ dom(M1). By Lemma

2.14 there exist γ1, c0, . . . , cn such that {c0, . . . , cn} = M−1
1 (x), β1 ⊲

c0
χ . . . ⊲cnχ γ1 and

β = ∗(γ1). Now, a, b ∈ dom(α) implies that for each i: a1 and ci are incomparable

addresses; b1 and ci are incomparable addresses. So α1 = β1[a1 ← β1|b1] ⊲c0χ . . . ⊲cnχ
γ1[a1 ← β1|b1] = β[a← β|b]|(1) = α|1. By Lemma 2.15 there exists a term N1 of same

type and of same domain as M ′
1 such that the greatest variable y free in N1 is of type

χ and N−1
1 (y) = {c0, . . . , cn}. By Lemma 2.14 (2 ⇒ 1), λy.N1
 α, and we may take

M ′ = λy.N1.

Definition 3.7. A term M ∈ NF is compact when there are no a, b, α′ such that a < b,

M|a and M|b are of same kind, M|b
 αb, α
′ ⇑ α and Ω(Free(M|a)) ∈ F (α′).

Lemma 3.8. Every NF-inhabitant of minimal size is compact. Every compact NF-

inhabitant of φ is locally compact.

Proof. Let M by any NF-inhabitant of φ.

(1) Assume M is not compact. Let a, b be such that a < b, M|a and M|b are of same

kind, M|b
 αb, α
′ ⇑ α and Ω(Free(M|a)) ∈ F (α′) (see Figure 11). The conjunction of

Lemma 3.6 and Lemma 2.15 implies the existence of P ∈ NF of blueprint α′
b, of same

kind as M|b, such that |dom(P)| ≤ |dom(M|b)| and Free(P) = Xa. The term M [a← P]

is then a NF-inhabitant of φ of smaller size.

(2) Suppose M meets conditions of Lemma 3.4. By Lemma 2.14, the blueprint αb′ of

M|b′ satisfies Ω(Free(M|b)) = Ω(Free(M|b′) ∈ F (α′
b). Since αb′ ⇑ αb′ , M is not compact.

4. Shadows

So far, we have isolated two properties shared by all minimal inhabitants (Lemma 3.8).

We shall now exploit them so as to design a decision method for the inhabitation problem.

In Section 4.1 and 4.2, we show how to associate each locally compact inhabitant M of

a formula φ with a tree of same domain as M , the shadow of M . At each address a this

tree is labelled with a triplet of the form (χa, γa, ψa) where φa is the type of M|a, the

sequence χa is Ω(Free(M|a)), and γa is ”transversal compression” of the blueprint αa of

M|a (Definitions 4.1 and 4.2). The blueprint γa at a can be seen as a synthesized version

of αa of same relative depth but of smaller “width”, and such that χa ∈ F (γa) ⊆ F (αa).

Each tree prefix of the shadow of M belongs to a finite set effectively computable from

φ and the domain of this prefix. In particular, one can compute all possibles values for

its labels, regardless of the full knowledge of M – or even without the knowledge of the

existence of M . The key-property satisfied by this shadow at every address a is:

— for each γ′ ⇑ γa, there exists α′ ⇑ αa such that F (γ′) ⊆ F (α′).

V. Padovani 20

Fig. 11. Proof of Lemma 3.8, part (1).

This property is sufficient to detect the non-compactness of M for a pair of addresses

(a, b) only from the knowledge of χa, φa, γb, φb and the arity of the nodes at a and b.

Indeed, suppose a < b, φa = φb and the nodes at a, b are of same arity (1, or 2). Now,

assume:

— there exists γ′ ⇑ γb such that χa ∈ F (γ′).

ThenM|a andM|b are of same kind and there exists α′ ⇑ αb such that χa = Ω(Free(M|a)) ∈

F (γ′) ⊆ F (α′), therefore M is not compact.

In Section 4.2, what we call shadow is a tree a 7→ (χa, γa, φa) of a certain shape, no

matter if this tree is the shadow of a term or not. This shadow is compact if there is no

pair (a, b) as above. Of course, the shadow of a compact term is always compact in this

sense.

In Section 5 we will prove that for every formula φ, the set of shadows of compact

inhabitants of φ is a finite set effectively computable from φ (hence the same holds for

the set of compact inhabitants of φ). In other words we will prove the decidability of

Ticket entailment.

4.1. Blueprint equivalence and transversal compression

Definition 4.1. We let ≡ be the least binary relation on blueprints such that:

1 ∅B ≡ ∅B ,

2 φ ≡ φ,

3 if α1 ≡ β1, α2 ≡ β2, then @φ(α1, α1) ≡ @φ(β1, β2),

4 if |a| = |b| = n and αi ≡ βi for each i ∈ [1, . . . n], then ∗a(α1, . . . αn) ≡ ∗b(β1, . . . , βn).

In (3), we assume α1, α2, β1, β2 non-empty. In (4), we assume that the elements of each

sequence a, b are pairwise incomparable addresses.

Ticket Entailment is decidable 21

To some extent this equivalence allows us to consider blueprints regardless of the

exact values of addresses. For instance ∗a(α1, . . . αn) ≡ ∗(α1, . . . , αn) ≡ ∗(αn, . . . , α1),

also ∗(∗(α, β), γ) ≡ ∗(α, β, γ) ≡ ∗(α, ∗(β, γ)), etc. It is easy to check that α ≡ β implies

F (α) = F (β) – this property will be used without reference.

Definition 4.2. For each m > 0, we let xm be the least binary relation such that:

1 if β1 ≡ . . . ≡ βm+1 6≡ ∅B ,

then ∗a(γ1, . . . , γk, β1, . . . , βm) xm ∗a·(b)(γ1, . . . , γk, β1, . . . , βm, βm+1),

2 if αxm β then:

(a) @φ(α, γ) xm @φ(β, γ),

(b) @φ(γ, α) xm @φ(γ, β),

(c) ∗a(α, γ1, . . . , γk) xm ∗a(β, γ1, . . . , γk).

We call m-compression of β every α such that αxm β. The width of β is defined as the

least m for which there is no α such that α xm β.

Again the elements of a ·(b), a must be pairwise incomparable addresses, and α, β, γ must

be non-empty.

If β is of width m, then for all addresses a, for β|a = ∗a(γ1, . . . , γk) and for each

γi 6= ∅B , the sequence (γ1, . . . , γk) contains no more than m blueprints ≡-equivalent

to γi. For instance, if φ, ψ, χ are distinct formulas, ∗(φ, φ, φ, ψ, ψ, χ) is of width 3,

∗(ω,@ω(∗(φ, ψ), φ),@ω(∗(ψ, φ), φ)) is of width 2, etc.

Definition 4.3. We write ⊑m for the reflexive and transitive closure of the union of ≡

and xm. We let ⊑max
m denote the subset of the relation ⊑m of all pairs with a left-hand-

side of width at most m.

For instance, if φ, ψ, χ are distinct formulas:

∗(ψ, χ, φ) ⊑max
1 ∗(χ, φ, φ, ψ, ψ) ⊑max

2 ∗(φ, φ, φ, ψ, ψ, χ)

Of course α ⊑m β implies α ⊑j β for all j ∈ [1, . . . ,m] and clearly, α xm β implies

|dom(α)| < |dom(β)|, therefore xm is well-founded.

Definition 4.4. For all S ⊆ S, for all d ∈ N and for all m ∈ N
∗:

— we let B(S, d,∞) be the set of S-blueprints of relative depth at most d,

— we let B(S, d,m) be the set of all blueprints in B(S, d,∞) of width at most m.

Lemma 4.5. For all finite S ⊆ S, for all d ∈ N and for all m ∈ N
∗:

1 The set B(S, d,m)/ ≡ is a finite set.

2 A selector R (S, d,m) for B(S, d,m)/ ≡ is effectively computable from (S, d,m).

Proof. We prove the two propositions simultaneously by induction on d.

(A) For each α ∈ B(S, 0,m), let a be the increasing sequence of all addresses in dom(α).

Since α is of null relative depth, α is of the form ∗a(φ1, . . . , φn). For each such pair (α, a),

let σ(α) = (φ1, . . . , φk). Clearly, for each φ ∈ S, there are no more than m occurrences of

φ in σ(α). For all α′ ∈ B(S, 0,m), we have α ≡ α′ if and only if σ(α) and σ(α′) are equal

up to permutation of their elements. As a consequence B(S, 0,m)/ ≡ is a finite set and

V. Padovani 22

we may define R (S, 0,m) as the set consisting of all blueprints of the form ∗(φ1, . . . , φk) –

including ∅B – where each null arity symbol of S occurs at most m times in the sequence

(φ1, . . . , φk).

(B) Let R be the set of all blueprints of the form @φ(α1, α2) where @φ ∈ S and

(α1, α2) ∈ R (S, d,m) × R (S, d,m). We may define R (S, d + 1,m) as the union of

R (S, d,m) and the set of all blueprints of the form ∗(β1, . . . , βk) where (β1, . . . , βk)

is a sequence over R in which every element occurs at most m times.

4.2. Shadow of a term

Definition 4.6. For each integer d, for each formula φ, we let R(φ, d) be the set equal to

{∅B} if d = 0, and otherwise equal to R (Sφ, d, d×p), where R is the function introduced

in Lemma 4.5.(2), Sφ is the set of all subformulas of φ and all @ψ where ψ is a subformula

of φ and p is the cardinality of the set of all subformulas of φ.

Definition 4.7. A shadow is a tree in which each node is of arity at most 2 and is

labelled with a triplet of the form (χ, γ, ψ), where χ is a sequence of formulas, γ is a

blueprint and ψ is a formula.

We call φ-shadow every shadow Ξ satisfying the two following conditions. We have

Ξ(ε) = (ε, ∅B , φ). For each a ∈ dom(Ξ), let da be the number of b < a such that the node

of Ξ at b is unary, and let (χa, γa, ψa) = Ξ(a). Then:

— χa is a sequence of subformulas of φ of length at most da,

— γa ∈ R(φ, da),

— χa ∈ F (γa)

— ψa is a subformula of φ.

Definition 4.8. Let M be a locally compact NF-inhabitant of φ. For each a ∈ dom(M):

— let χa = Ω(Free(M|a)),

— let αa be the blueprint of M|a, let γa ∈ R(φ, |Λ(M,a)|) be such that γa ⊑max
|Λ(M,a)| αa,

— let φa be the type of M|a.

The tree Ξ mapping each a ∈ dom(M) to (χa.γa, φa) will be called the shadow of M .

Since M is locally compact, each γa exists, hence the shadow of M is well-defined. Note

that there is possibly more than one choice for γa (although it not the case since R is

selector and one can actually prove that γ ⊑max
m α and γ′ ⊑max

m α implies γ ≡ γ′, but

this property is irrelevant to our discussion). We assume though that some γa is chosen

for each address a in M .

Obviously the shadow of M satisfies the first, second and fourth conditions in the

definition of φ-shadows above – in the next section, we prove that it satisfies also the

third.

4.3. Compact shadows and compact inhabitants

Definition 4.9. A shadow Ξ is compact if and only if there are no a, b such that: a < b,

Ticket Entailment is decidable 23

Fig. 12. A compact inhabitant and its shadow.

the nodes of Ξ at a, b are of same arity, Ξ(a) = (χa, γa, ψ), Ξ(b) = (χb, γb, ψ) and there

exists γ′ ⇑ γa such that χa ∈ F (γ′).

Compare this definition with the definition of compactness for term (Definition 3.7).

With the help of three auxiliary lemmas, we now prove the key-lemma of Section 4: if M

is a compact inhabitant – a fortiori locally compact by Lemma 3.8 – then the shadow of

M is a compact φ-shadow.

Lemma 4.10. If α ⇑ β ⊑1 β
′, then there exists α′ such that α ⊑1 α

′ ⇑ β′.

Proof. (1) An immediate induction on the sum of the lengths of all addresses in dom(β′)

shows that if α = β[a ← β|b] and β ≡ β′, then there exist a′, b′ such that a′ < b′ and

α ≡ α′ = β′[a′ ← β′
|b′]. Consequently an immediate induction on the length of the

derivation of α ⇑ β shows that the lemma holds if β ≡ β′.

(2) Another induction on the sum of the lengths of all addresses in dom(β′) shows

that α ⇑ β x1 β
′ implies the existence of α′ such that α x1 α

′ ⇑ β′. The only non

trivial case is β′ = ∗a·b(γ1, . . . , γk, β1, β2), β = ∗a(γ1, . . . , γk, β1) with β1 ≡ β2 and

α = ∗a(δ1, . . . , δk, α1) where α1 ⇑ β1 and δi ⇑ γi for each i. By (1), α1 ⇑ β1 ≡ β2
implies the existence of α2 such that α1 ≡ α2 ⇑ β2. Hence α = ∗a(δ1, . . . , δk, α1) x1

∗a·b(δ1, . . . , δk, α1, α2) ⇑ ∗a·b(γ1, . . . , γk, β1, β2) = β′.

(3) Using (1) and (2), the lemma follows by induction on the length of an arbitrary

sequence (β0, . . . , βn) such that β0 = β, βn = β′ and βi−1 ≡ βi or βi−1 x1 βi for each

i ∈ [1, . . . , n].

Lemma 4.11. If α ⊑1 β, then F (α) ⊆ F (β).

Proof. By induction on |dom(β)|, that is, the number of symbols in β. Since γ ≡

γ′ implies F (γ) = F (γ′) and |dom(γ)| = |dom(γ′)|, we may consider all blueprints

up to ≡. Note that if β = ∗a(β′, γ1, . . . , γk), then for γ = ∗(γ1, . . . , γn) we have β ≡

V. Padovani 24

∗(β′, ∗(γ1, . . . , γn)) = ∗(β, γ). It suffices to consider the case where α is ≡-equivalent to

some 1-compression of β. The base case β ≡ ∗(α, α) is clear. The case α ≡ ∗(α′, γ),

β ≡ ∗(β′, γ) with γ 6= ∅B and α′
x1 β

′ follows easily from the induction hypothesis, as

well as the case α ≡ @(α1, α2), β ≡ @(β1, β2), with α1 x1 β1 or α2 x1 β2

Lemma 4.12. If α ⊑m β, then the set of all elements of F (β) of length at most m is a

subset of F (α).

Proof. By induction on |dom(β)|. As in the proof Lemma 4.11, we consider all blueprints

up to ≡ and examine only the case α xm α. The case β ≡ ∗(β′, γ) and α ≡ ∗(α′, γ) with

γ 6= ∅B and α′ xm β′ follows easily from the induction hypothesis, as well as the case

α =≡ @(α1, α2), β ≡ @(β1, β2) with α1 xm α2 or β1 xm β2.

The base case is α ≡ ∗(γ1, . . . , γm), β ≡ ∗(γ1, . . . , γm, γm+1) where γi ≡ γ for all i.

Let Φ = F (γ). For each integer k, let Φ(k) = ⊛(Φ1, . . . ,Φk) where Φi = F (γ) for each i.

Let φ = (φ1, . . . , φp) ∈ F (β) be such that p ≤ m. For each J ⊆ {1, . . . , p}, let (j1, . . . , jq)

be the strictly increasing enumeration of all elements of J and let f(J) = (φj1 , . . . , φjq).

We have φ ∈ F (β) = Φ(m+1), hence there exist J1, . . . , Jm+1 such that J1 ∪ . . .∪ Jm+1 =

{1, . . . , p}, and f(Ji) ∈ F (γ) for each i ∈ {1, . . . ,m + 1}. For each j ∈ {1, . . . , p},

let kj ∈ {1, . . . ,m + 1} be such that j ∈ Jkj . Then Jk1 ∪ . . . ∪ Jkp = {1, . . . , p}, so

φ ∈ ⊛({f(Jk1)}, . . . , {f(Jkp)}) ⊆ Φ(p) ⊆ Φ(m) = F (α).

Lemma 4.13. Let M be a locally compact NF-inhabitant of φ. The shadow of M is a

φ-shadow. If M is compact, then this shadow is also compact.

Proof. The first proposition follows immediately from the definition of the shadow of

M , Lemma 1.6 and Lemma 4.12. Let Ξ be shadow of M . Assume Ξ is not compact. There

exist a, b ∈ dom(Ξ) = dom(M) such that Ξ(a) = (χa, γa, ψ), Ξ(b) = (χb, γb, ψ), the nodes

at a,b in Ξ are of same arity, and there exists γ′ ⇑ γb such that χa ∈ F (γ′). We have M|a,

M|b of same kind. Let αa, αb be the blueprints of M|a, M|b. Since γb ⊑max
|Λ(M,a·b)| αb, we

have γ′ ⇑ γb ⊑1 αb. By Lemma 4.10 there exists α′ such that γ′ ⊑1 α
′ ⇑ αb. By Lemma

4.11, we have χa = Ω(Free(M|a)) ∈ F (γ′) ⊆ F (α′), hence M is not compact.

5. Finiteness of the set of compact φ-shadows

Our last aim will be to prove that for each formula φ, the set of all compact φ-shadows

is a finite set effectively computable from φ.

Consider the relation on blueprints defined by α ⋐ β if and only if for each sequence

χ ∈ F (α) there exists β′ ⇑ β such that χ ∈ F (β). The key-lemma of this section (Lemma

5.14) shows that whenever S ⊂ S is a finite set (in particular when S is the set of all

subformulas of φ and all @’s tagged with a subformula of φ), the relation ⋐ is an almost

full relation (Bezem, Klop and de Vrijer 2003) on the set of all S-blueprints: there is no

infinite sequence γ1, γ2, . . . over B(S) such that γi 6⋐ γi+1+k for all i, k. This result will

be proven with the help of Melliès’ Axiomatic Kruskal Theorem (Melliès 1998).

Now, call φ-labels the labels of φ-shadows and consider the relation <φ on the product

of the set of φ-labels and {1, 2} defined by ((χ, γ, ψ), i) <φ ((χ′, γ′, ψ′), i′) if and only

if i = i′, ψ = ψ′ and there exists δ ⇑ γ such that χ′ ∈ F (δ). The fact that <φ is

Ticket Entailment is decidable 25

an almost full relation on the set of φ-labels follows immediately from our key-lemma,

because γ ⋐ γ′ and χ ∈ F (γ) implies ((χ, γ, ψ), i) <φ ((χ′, γ′, ψ), i). In consequence

there is no infinite sequence l1, l2, . . . over the set of φ-labels such that li 6<φ li+1+k for

all i, k. The finiteness of the set of compact φ-shadows follows with the help of König’s

Lemma (see Lemma 5.15). The ability to compute these shadows follows directly from

their definition.

By lemma 4.13, a consequence of this result is also the finiteness for each φ of the

set of all compact NF-inhabitants of φ, although our decision method is based on the

computation of shadows of compact terms rather than a direct computation of those

terms. It is worth mentioning that the proof of Theorem 5.13 is non-constructive and

that it gives no information about the complexity of our proof-search method.

5.1. Almost full relations and Higman’s theorem

Definition 5.1. We let ⋐ be the relation on blueprints defined by α ⋐ β if and only if

for all χ ∈ F (α), there exists γ ⇑ β such that χ ∈ F γ.

Definition 5.2. Let U be an arbitrary set. An almost full relation (AFR) on U is a

binary relation ≪ such that for every infinite sequence (ui)i∈N over U , there exist i, j

such that i < j and ui ≪ uj .

The main aim of Section 5 will be to prove a last key-lemma from which will easily infer

the decidability of Ticket entailment: for each finite S ⊆ S, the relation ⋐ is an AFR on

B(S).

Proposition 5.3.

1 If ≪ and ≪′ are AFRs on U , then ≪ ∩≪′ is an AFR on U .

2 Suppose ≪U is an AFR on U and ≪V is an AFR on V . Let ≪U×V be the relation

defined by (U, V)≪U×V (U ′, V ′) if and only if U ≪U U
′ and V ≪V V

′. Then ≪U×V

is an AFR on U × V .

Proof. See (Melliès 1998).

Definition 5.4. Let U be a set, let ≪ be a binary relation. We let S(U) denote the

set of all finite sequences over U . The relation ≪S induced by ≪ on S(U) is defined by

(U1, . . . , Un) ≪S (V1, . . . , Vm) if and only if there exists a strictly monotone function

η : {1, . . . , n} → {1, . . . ,m} such that Ui ≪ Vη(i) for each i ∈ {1, . . . , n}.

Theorem 5.5. (Higman) If ≪ is an AFR on U , then ≪S is an AFR on S(U).

Proof. See (Higman 1952; Kruskal 1972; Melliès 1998).

5.2. From rooted to unrooted blueprints

Melliès’ Axiomatic Kruskal Theorem allows one to conclude that a relation is an AFR (a

“well binary relation” in (Melliès 1998)) as long as it satisfies a set of five properties or

“axioms” (six in the original version of the theorem – see the remarks of Melliès at the

V. Padovani 26

end of its proof explaining why five axioms suffice). The details of those axioms will be

given in Section 5.3.

Four of those five axioms are relatively easy to check. The remaining axiom is more

problematical. This rather technical section is entirely devoted to the proof of Lemma

5.11, which will ensure that this last axiom is satisfied. We want to prove:

Let S be a finite subset of S. Let Bε be a subset of Bε(S).

Let B = {∗a(β1, . . . , βn)| ∀i ∈ [1, . . . , n], βi ∈ Bε}.

If ⋐ is an AFR on Bε, then ⋐ is an AFR on B.

Recall that Bε(S) stands for the set of all rooted S-blueprints. We want to be able to

extend the property that ⋐ is an AFR on a given set of rooted blueprints to the set all

blueprints that have those rooted blueprints at their minimal addresses.

Higman’s theorem suffices to show that ⋐S is an AFR on the set of finite sequences

over Bε. However, if consider an infinite sequence over B and transform each blueprint

∗a(β1, . . . , βn) into (β1, . . . , βn), the theorem will only provide two sequences (β1, . . . , βn),

(β′
1, . . . , β

′
n, β

′
n+1, . . . , β

′
k), such that βi ⋐ β′

i for each i ∈ [1, . . . , n]. This is sufficient to

ensure ∗(β1, . . . , βn) ⋐ ∗(β′
1, . . . , β

′
n), but not ∗(β1, . . . , βn) ⋐ ∗(β′

1, . . . , β
′
n, β

′
n+1, . . . , β

′
k).

The question is: what should we do with β′
n+1, . . . , β

′
k? There is of course now way we

can make those blueprints disappear from the second blueprint.

To bypass this difficulty we show how for each blueprint β ∈ B(S), one can extract

from the set of all vertical compressions of β a complete set of “followers” of β of minimal

size (Lemma 5.7). This set {α1, . . . , αp} has the property that for each φ ∈ F (β), there

exists at least one αi such that F (αi) contains a subsequence of φ – but not necessarily

φ itself. The relative depths of each αi does not depends on the relative depth on β, but

only on S: it is at most Σ
1+|S@|
i=1 i, where S@ is the set of all binary symbols in S. The

lemma in then proven in four steps.

First, observe that the set of all α ⇑ β of relative depth at most Σ
1+|S@|
i=1 i is a complete

set of followers. If we consider the set of all γ such that γ ⊑max
1 α for at least one such

α, we obtain a (possibly infinite) set closed under ≡ and finite up to ≡. We call it the

set of S-residuals of β.

Second, we prove that the set of S-residuals of β is a complete set of followers of β in

the same sense, that is, for each φ ∈ F (β) there exists an S-residual γ of β such that

F (αi) contains a subsequence of ψ (Lemma 5.9).

Third, we prove that if β = ∗a(β1, . . . , βn), β′ = ∗b(β
′
1, . . . , β

′
n, β

′
n+1, . . . , β

′
n+k) are

such that βi ⋐ β′
i for each i ∈ [1, . . . , n], and if furthermore β, β′ have the same set of

S-residuals, then β ⋐ β′ (Lemma 5.10).

The last step is the proof of the lemma itself. There are only a finite number of possible

values for the set of residuals of each S-blueprint, hence from any infinite sequence over

B, one is able to extract an infinite sequence of blueprints with the same set of residuals.

The conclusion follows from the third step and Higman’s theorem.

Definition 5.6. For every S ⊆ S, we let S@ denote the set of all binary symbols in S.

Lemma 5.7. Let S be a finite subset of S. For all β ∈ B(S), for all ψ ∈ F (β), there

Ticket Entailment is decidable 27

exists α ⇑ β of relative depth at most Σ
1+|S@|
i=1 i such that F (α) contains a subsequence

of ψ.

Proof. Call S-linearisation every pair (γ, χ) such that γ ∈ B(S) and χ ∈ F (γ). Call

starting address for (γ, χ) every address b for which there exist φ, γ′ such that γ ⊲bφ γ
′

and χ ∈ ⊚(F (γ′), (φ)). Call path to b in γ the maximal sequence (b1, . . . , bn, bn+1) over

elements of dom(γ) such that b1 < . . . < bn < bn+1 = b.

Given an arbitrary S-linearisation (β, ψ), we prove simultaneously by induction on

|S@| and the sum of the length of all addresses in dom(β) the following properties:

1 There exists an S-linearisation (γ, χ) such that :

(a) γ ⇑ β and χ is a subsequence of ψ,

(b) γ is of relative depth at most 1 + Σ
|S@|
i=1 i.

2 There exists an S-linearisation (α, φ) such that :

(a) α ⇑ β, φ is a subsequence of ψ, and the last elements of φ, ψ are equal,

(b) for each starting address b of (α, φ) of path (b1, . . . , bn, bn+1),

the values α(b1), . . . , α(bn) are pairwise distinct,

(c) for all c incomparable with each starting address for (α, φ),

(α|c) is of relative depth 1 + Σ
|S@|
i=1 i.

Note that the conjunction of (2.b) and (2.c) implies that every address d in α is of

relative depth at most |S@| + 1 + Σ
|S@|
i=1 i = Σ

1+|S@|
i=1 i. The cases β = ∗a(β′) with a 6= ε

and β = ∗a(β1, . . . , βn) with n > 1 follow easily from the induction hypothesis. Suppose

β = @ψ(β1, β2).

(1) Let d be an address of maximal length in β−1(@ψ). Let δ = @ψ(δ1, δ2) = β|d. By

assumption ε is the only element of δ−1(@ψ). As ψ ∈ F (β), there exist ψ0 ∈ F (δ), ψ1 ∈

F (δ1), ψ2 ∈ F (δ2) such that ψ0 is a subsequence ψ and ψ0 ∈ ⊚({ψ1}, {ψ2}). By induction

hypothesis there exists an (S − {@ψ})-linearisation (γ1, χ1) statisfying conditions (1.a),

(1.b) w.r.t (δ0, ψ1), and an (S − {@ψ})-linearisation (γ2, χ2) satisfying conditions (2.a),

(2.b), (2.c) w.r.t (δ2, ψ2).

Let γ = @ψ(γ1, γ2). We have γ ⇑ δ and β(ε) = δ(ε) = γ(ε), hence γ ⇑ β. Each γi is of

relative depth at most Σ
|S@|
i=1 i, therefore γ is of relative depth at most 1 + Σ

|S@|
i=1 i. Now

χ2 is a subsequence of ψ2 with the same last element, so there exists in ⊚({χ1}, {χ2}) ⊆

F (@ψ(γ1, γ2)) a subsequence χ of ψ0. Thus (γ, χ) satisfies (1.a) and (1.b) w.r.t (β, ψ).

(2) As ψ ∈ F (β), there exist ψ1 ∈ F (β1), ψ2 ∈ F (β2) such that ψ ∈ ⊚({ψ1}, {ψ2}). By

induction hypothesis there exists an S-linearisation (α1, φ1) satisfying conditions (1.a),

(1.b) w.r.t (β1, ψ1), and an S-linearisation (α2, φ2) satisfying conditions (2.a), (2.b), (2.c)

w.r.t (β2, ψ2).

Let α0 = @ψ(α1, α2). We have α0 ⇑ β. The last elements of φ2, ψ2 are equal, and

⊚({φ1}, {φ2}) ⊆ F (α). Hence there exists in F (α) a subsequence φ0 of ψ with the same

last element as ψ. Thus (α0, φ0) satisfies (2.a).

For all c incomparable with each starting address for (α0, φ0), either c = (1) · c′ and

c′ ∈ dom(α1), or c = (2)·c′′ and c′′ ∈ dom(α2) is incomparable with each starting address

in α2. As a consequence, the choice of α1, α2 ensures that (α0, φ0) satisfies (2.c).

V. Padovani 28

If (α0, φ0) satisfies (2.b), then we may take (α, φ) = (α0, φ0). Otherwise some starting

address b for (α0, φ0) does not satisfy condition (2.b). Let (b1, . . . , bn, bn+1) be the path

to b in α. We have b1 = ε, and for each i > 0, there exists di such that bi = (2) · di. The

sequence (d2, . . . , dn+1) is then a path to d = dn+1 in α2, and d is a starting address for

(α2, φ2). The values α2(d2), . . . , α2(dn) are pairwise distinct, so there must exists i > 1

such that α(bi) = @ψ. Since bi is in the path to b, there exists in F (α2|di) a subsequence

φ
′

0 of φ0 of same last element as φ0. For α′
0 = α0[ε ← α2|di], we have α′

0 ⇑ β and

φ
′

0 ∈ F (α′
0). The existence of (α, φ) follows then from the induction hypothesis.

Definition 5.8. Let S be a finite subset of S. For all β ∈ B(S), for all α ⇑ β or

relative depth at most Σ
1+|S@|
i=1 i and for all α0 ⊑max

1 α, the blueprint α0 will be called an

S-residual of β.

Note that the set of S-residuals of β is {∅B } if β = ∅B . Otherwise, it is an infinite set.

Lemma 5.9. Let S be a finite subset of S. For all β ∈ B(S) and for all ψ ∈ F (β), there

exists an S-residual α0 of β such that F (α0) contains a subsequence of ψ.

Proof. (1) Let γ, δ be arbitrary blueprints. Suppose γ ⊑1 δ. We shall prove that for all

φ ∈ F (δ), there exists in F (γ) a subsequence of φ. Our proof is by induction on |dom(δ)|,

in the special case of γ x1 δ. As in the proof of Lemmas 4.11 and 4.12, we consider all

blueprints up to ≡. In order to deal with the case of δ ≡ @(δ1, δ2), we need to prove a

slightly more precise property: if δ is not empty, then for all φ ∈ F (δ), there exists in

F (γ) a subsequence ψ of φ such that the last elements of φ, ψ are equal. The base case

δ ≡ ∗(γ, γ) is clear. Other cases follow easily from the induction hypothesis.

(2) We prove the lemma. By Lemma 5.7 and by definition of an S-residual, there exists

α0, α such that α0 ⊑1 α ⇑ β, F (α) contains a subsequence of ψ and α0 is an S-residual.

It follows from (1) that F (α0) contains a subsequence of ψ.

Lemma 5.10. Let S be a finite subset of S. Suppose:

— β = ∗a(β1, . . . , βn) ∈ B(S),

— β′ = ∗b(β
′
1, . . . , β

′
n, β

′
n+1, . . . , β

′
n+k) ∈ B(S),

— (β1, . . . , βn) ⋐S (β′
1, . . . , β

′
n),

— the sets of S-residuals of β, β′ are equal.

Then β ⋐ β′.

Proof. Let ψ ∈ F (β). There exists for each i ∈ [1, . . . , n] a sequence ψi ∈ F (βi) such

that ψ ∈ ⊛({ψ1}, . . . , {ψn}). By assumption there exists for each i ∈ [1, . . . , n] an αi ⇑ β
′
i

such that ψi ∈ F (αi). As a consequence ψ ∈ F (∗(α1, . . . , αn)). By Lemma 5.7 there exists

γ0, γ such that α0 ⊑1 α ⇑ β, F (α) contains a subsequence φ of ψ and γ0 is an S-residual

of β. By assumption γ0 is also an S-residual of β′, hence there exists γ′1, . . . , γ
′
n+k, b such

that γ0 ⊑1 ∗b(γ
′
1, . . . , γ

′
n+k) ⇑ β′. By Lemma 5.9, there exists in F (γ0) a subsequence φ0

of φ. By Lemma 4.11, we have φ
′
∈ F (∗b(γ

′
1, . . . , γ

′
n+k)). Hence for each i ∈ [1, . . . , n+k],

there exists in F (γ′i) a subsequence of φ
′
, which is also a subsequence of ψ. Now, let

α = ∗b(α1, . . . , αn, γ
′
n+1, . . . , γ

′
n+k). Then α ⇑ β′, ψ ∈ F (∗(α1, . . . αn)), and for each

j ∈ [1, . . . , k] there exists in F (γ′n+j) a subsequence of ψ. As a consequence ψ ∈ F (α).

Ticket Entailment is decidable 29

Lemma 5.11. Let S be a finite subset of S. Let Bε be a subset of Bε(S). Let B =

{∗a(β1, . . . , βn)| ∀i ∈ [1, . . . , n], βi ∈ Bε}. If ⋐ is an AFR on Bε, then ⋐ is an AFR on B.

Proof. Let R = B(S,Σ
1+|S@|
i=1 i, 1).(Definition 5.8, Lemma 5.7, Definition 4.4). By

Lemma 4.5.(1) the set R/ ≡ is finite. For each β ∈ B, let ρ(β) be the set of S-residuals

of β. We have ρ(β) ⊆ R Moreover ρ(β) is closed under ≡ (as ≡ is a subset of ⊑1, see

Definition 4.2). Hence ρ(β)/ ≡⊆ R/ ≡, therefore {ρ(β) |β ∈ B} is a finite set.

For each β = ∗a(β1, . . . , βn) ∈ B where a is increasing w.r.t the lexicographic ordering

of addresses and β1, . . . , βn ∈ Bε, let σ(β) = (β1, . . . , βn). Since {ρ(β) |β ∈ B} is finite,

every infinite sequence over B contains an infinite subsequence of blueprints with the

same set of S-residuals. By assumption ⋐ is an AFR on Bε. By theorem 5.5, ⋐S is an

AFR on the set of all {σ(β) |β ∈ B}. The conclusion follows from Lemma 5.10.

5.3. Axiomatic Kruskal theorem and main key-lemma

Definition 5.12. An abstract decomposition system is an 8-tuple

(T ,L,V ,�T ,�L,�V ,
·
−→,⊢)

where:

— T is a set of terms noted t, u, . . . equipped with a binary relation �T ,

— L is a set of labels noted f, g, . . . equipped with a binary relation �L,

— V is a set of vectors noted T, U, . . . equipped with a binary relation �V ,

—
·
−→ is a relation on T × L× V , e.g. t

f
−→ T

— ⊢ is a relation on V × T , e.g. T ⊢ t.

For each such system, we let ⊲T be the binary relation on T defined by

t⊲T u⇐⇒ ∃(f, T) ∈ L × V , t
f
−→ T ⊢ u

An elementary term t is a term minimal w.r.t ⊲T , that is, a term for which there exists

no u such that t⊲T u.

Theorem 5.13. (Melliès) Suppose (T ,L,V ,�T ,�L,�V ,
·
−→,⊢) satisfies the following

properties:

— (Axiom I) There is no infinite chain t1 ⊲T t2 ⊲T . . .

— (Axiom II) The relation �T is an AFR on the set of elementary terms.

— (Axiom III) For all t, u, u′, f, U ,

if t �T u′ and u
f
−→ U ⊢ u′, then t �T u.

— (Axiom IV-bis) For all t, u, f, g, T, U ,

if t
f
−→ T and u

g
−→ U and f �L g and T �V U , then t �T u.

— (Axiom V) For all W ⊆ V , for W⊢ = {t ∈ T | ∃T ∈ W , T ⊢ t},

if �T is an AFR on W⊢, then �V is an AFR on W .

If furthermore �L is an AFR on L, then �T is an AFR on T .

Proof. See (Melliès 1998).

V. Padovani 30

Lemma 5.14. For each finite S ⊆ S, the relation ⋐ is an AFR on B(S).

Proof. According to Lemma 5.11 it is sufficient to prove that⋐ is an AFR on Bε(S). Let

(T ,L,V ,�T ,�L,�V ,
·
−→,⊢) be the abstract decomposition system defined as follows.

— The set T is Bε(S); we let α �T β if and only if there exists an address c such that

α ⋐ (β|c) and α(ε) = (β|c)(ε).

— The set L is the set of all elements of S of non null arity, the relation �L is the

identity relation on this set.

— The set V is equal to B(S)× B(S).

The relation �V is defined by (α1, α2) �V (β1, β2) if and only if α1 ⋐ β1 and α2 ⋐ β2.

— The relation
·
−→ is defined by α

@φ

−→ (β1, β2) if and only if α = @φ(β1, β2).

— The relation ⊢ is the least relation satisfying the following condition. If V = (α1, α2),

i ∈ {1, 2}, β1, . . . , βn ∈ Bε(S) and αi = ∗a(β1, . . . , βn), then V ⊢ βj for each j ∈

[1, . . . , n].

Note that the elements of V are pairs of blueprints that may be rootless. However when

V ⊢ β the blueprint β is always a rooted blueprint.

(A) For all T ′ ⊆ T , the relation ⋐ is an AFR on T ′ if and only if �T is an AFR on

T ′. Indeed, consider an arbitrary infinite sequence α over T ′. This sequence contains an

infinite subsequence (α)i∈N such that all αi(ε) are equal. Clearly αi ⋐ αj implies αi �T

αj . Conversely, if αi �T αj , then there exists c such that αi ⋐ αj |c and αi(ε) = αj(c).

For all F ∈ F (αi), there exists γ such that γ ⇑ αj |c and F ∈ F (γ). Now the relation ⇑

is such that γ(ε) = αi(ε) = αj(ε) = αj(c), so γ ⇑ αj |c ⇑ αj . Hence αi ⋐ αj .

(B) We now check that all axioms of theorem 5.13 are satisfied. Axiom I is clear. The

set of elementary terms is the set all α ∈ Bε(S) such that dom(α) = {ε}. Since S is

a finite set, the relation �T is of course an AFR on the set of elementary terms, that

is, axiom II is satisfied. Axiom III is immediate. If (α1, α2) �V (β1, β2) then α1 ⋐ β1
and α2 ⋐ β2 implies @ψ(α1, α2) ⋐ @ψ(β1, β2), a fortiori @ψ(α1, α2) �T @ψ(β1, β2),

hence Axiom IV-bis is satisfied. We now prove that Axiom V is satisfied. Let W ⊆ V , let

W⊢ = {β ∈ T | ∃(α1, α2) ∈ W , (γ1, γ2) ⊢ β}. Assuming �T is an AFR on W⊢, we prove

that �V is an AFR on W . By (A), ⋐ is an AFR on W⊢. Let B = {∗a(β1, . . . , βn)| ∀i ∈

[1, . . . , n], βi ∈ W⊢}. We have W⊢ ⊆ Bε(S). By Lemma 5.11 the relation ⋐ is an AFR

on B. Moreover W ⊆ B × B. By Proposition 5.3.(2), �V is an AFR on B × B, therefore

an AFR on W .

Lemma 5.15. For each formula φ, the set of all compact φ-shadows is a finite set

effectively computable from φ.

Proof. For each compact φ-shadow Ξ and for each address a such that a is a leaf in

Ξ, call step-continuation at a of Ξ every compact φ-shadow Ξ′ 6= Ξ such that dom(Ξ′) ⊆

dom(Ξ) ∪ {a · (1), a · (2)} and Ξ,Ξ′ take the same values on dom(Ξ). Let be the

relation defined by Ξ Ξ′ if and only if Ξ′ is a step continuation of Ξ. By Lemma 4.5

and the fact that the set of subformulas of φ is a finite set, for all Ξ, the set of all Ξ′

such that Ξ Ξ′, is a finite set effectively computable from Ξ. Moreover the set C of

all compact φ-shadows is clearly equal to the closure under of {(ε 7→ (ε, ∅B , φ))},

Ticket Entailment is decidable 31

hence it suffices to prove that C is a finite set. Assume by way of contradiction that C

is infinite. By König’s Lemma there exists an infinite sequence Ξ1 Ξ2 . . . over C.

The tree Ξ∞ = ∪i>0 Ξi is then an an infinite compact φ-shadow. Hence there exists an

infinite chain of addresses a1 < a2 < . . . such that all ai are nodes of same arity in Ξ∞,

labelled with the same subformula of φ. If i < j and ai, aj are labelled with (χi, γi, ψ),

(χi, γj , ψ), then we cannot have γi ⋐ γj , as χi ∈ γj and Ξ∞ is compact. A contradiction

follows immediately Lemma 5.14.

6. From the shadows to the light

Theorem 6.1. Ticket entailment is decidable.

Proof. By Lemma 1.10, Lemma 3.8, Lemma 4.13 and Lemma 5.15.

Acknowledgments

This work could not have been achieved without countless helpful comments and invalu-

able support from Pawe l Urzyczyn, Paul-André Melliès and Pierre-Louis Curien.

References

Anderson, A. R., and Belnap Jr, N. D. (1975) Entailment: The Logic of Relevance and Necessity,

Vol. 1. Princeton University Press.

Ackermann, W. (1956) Begrundung einer strengen Implikation. J. Symb. Log. 21 (2), 113–128.

Anderson, A. R. (1960) Entailment shorn of modality. J. Symb. Log. 25 (4), 388.

Anderson, A. R., Belnap Jr, N. D., and Dunn, J. M. (1990) Entailment: The Logic of Relevance

and Necessity, Vol. 2. Princeton University Press.

Barendregt, H., The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and the

Foundations of Mathematics, 103 (Revised ed.), North Holland.

Handbook of Mathematical Logic (1977). Edited by Barwise, J., Studies in Logic and Foundations

of Mathematics, North-Holland.

Bezem, M., Klop, J.,W., de Vrijer, R., (”Terese”) (2003) Term Rewriting Systems. Cambridge

Tracts in Theoretical Computer Science 55, Cambridge University Press.

Bimbó, K. (2005) Types of I-free hereditary right maximal terms. Journal of Philosophical Logic

34 (5–6), 607–620.

Broda, S., Damas, L., Finger, M., and Silva e Silva, P. S. (2004) The decidability of a fragment

of BB′IW -logic. Theor. Comput. Sci. 318 (3), 373–408.

Bunder, M.,W., (1996) Lambda Terms Definable as Combinators. Theor. Comput. Sci. 169 (1),

3–21.

Higman, G. (1952) Ordering by divisibility in abstract algebra. Proc. London Math. Soc. 3 (2),

326–336.

Krivine, J.-L. (1993) Lambda-calculus, types and models. Masson.

Kruskal, J. B. (1972) The theory of well-quasi-ordering: A frequently discovered concept. J.

Comb. Theory, Ser. A 13 (3), 297–305.

Routley, R., and Meyer, R. K. (1972) Semantics of entailment — III. Journal of Philosophical

Logic 1, 192–208.

V. Padovani 32

Melliès, P.-A. (1998) On a duality between Kruskal and Dershowitz theorems. In: Larsen, K. G,

Skyum, S., Winskel, G. (Eds.), ICALP, Lecture Notes in Computer Science 1443, 518–529,

Springer-Verlag.

Trigg, P., Hindley, J. R., and Bunder, M. W. (1994) Combinatory abstraction using B, B′ and

friends. Theor. Comput. Sci. 135 (2), 405–422.

Urquhart, A (1984) The undecidability of entailment and relevant implication. J. Symb. Log.

49 (4), 1059–1073.

