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Abstract Inductive databases integrate database querying with database min-
ing. In this article, we present an inductive database system that does not rely
on a new data mining query language, but on plain SQL. We propose an intu-
itive and elegant framework based on virtual mining views, which are relational
tables that virtually contain the complete output of data mining algorithms
executed over a given data table. We show that several types of patterns and
models that are implicitly present in the data, such as itemsets, association
rules, and decision trees, can be represented and queried with SQL using a
unifying framework. As a proof of concept, we illustrate a complete data min-
ing scenario with SQL queries over the mining views, which is executed in our
system.
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1 Introduction

Data mining is an interactive process in which different tasks may be performed
sequentially and the output of these tasks may be combined to be used as input
for subsequent ones. In order to effectively support this knowledge discovery
process, the integration of data mining into database management systems has
become necessary. By integrating data mining more closely into a database
system, separate steps such as data pre-processing, data mining, and post-
processing of the results, can all be handled using one query language. The
concept of inductive database systems has been proposed so as to achieve such
integration [1].

In order to tackle the ambitious task of building an inductive database
system, one has to i) choose a query language that can be general enough to
cover most of the data mining and machine learning toolkit while providing
enough flexibility to the users in terms of constraints, ii) ensure a closure
property to be able to reuse intermediate results, and iii) provide an intuitive
way to interpret the results.

Although SQL is the language of choice for database querying, it is gen-
erally acknowledged that it does not provide enough features for data mining
processes. Indeed, SQL offers no true data mining facilities for, e.g., the dis-
covery of frequent itemsets. Therefore, several researchers have proposed new
query languages, which are extensions of SQL, as a natural way to provide
an inductive database system [2–10]. As we show in [11,12], however, these
languages have some limitations: For example, i) there is little attention to
the closure principle; the output of a mining query cannot or can only very
difficultly be used as the input of another query, ii) if the user wants to express
a constraint that was not explicitly foreseen by the developer of the language,
he or she will have to do so with a post-processing query, if possible at all,
and iii) data mining results are often offered as static objects that can only be
browsed or in a way that does not allow for easy post-processing.

With these limitations in mind, we describe in this article an inductive
database system that is implemented by extending the structure of the database
itself, which can be queried using standard SQL, rather than relying on a new
query language for data mining. More precisely, we propose a system in which
the user can query the collection of all possible patterns as if they were stored
in traditional relational tables. Since the number of all possible patterns can
be extremely high and impractical to store, the main challenge here is how this
storage can be implemented efficiently. For example, in the concrete case of
itemsets, an exponential number of itemsets would need to be stored. To solve
this problem, we introduced the so-called virtual mining views, as presented
in [12–16]. The mining views are relational tables that virtually contain the
complete output of data mining tasks executed over a given data table. For
example, for itemset mining, there is a table called Sets virtually storing all
frequent patterns. Whenever the user queries such a table, or virtual mining
view, an efficient data mining algorithm (e.g., Apriori [17]) is triggered by the
database system, which materializes, that is, stores in this table at least those
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tuples needed to answer the query. Afterwards, the query can be executed as
if the patterns were there all the time.

The proposed system can potentially support as many virtual mining views
as types of patterns of interest. To make the framework more general, however,
such patterns should be represented by an intuitive common set of mining
views. One possible instantiation of the proposed framework is presented in
Section 2. We show how such special tables can be developed for three popular
data mining tasks, namely frequent itemset mining, association rule discovery
and decision tree learning. Such framework, initially discussed in the European
project IQ (“Inductive Queries for Mining Patterns and Models”, IST FET
FP6-516169, 2005-2008) [12], is a reevaluation of the works proposed in [13,
14], leading to a unified framework that is more elegant and simpler than the
originally proposed frameworks.

Note that this querying approach assumes the user uses certain constraints
in his or her query, asking for only a subset of all possible patterns. As an
example, the user may query from the mining view Sets all itemsets with a
certain frequency. Therefore, the entire set of patterns does not always need
to be stored in the mining views, but only those that satisfy the constraints
imposed by the user. In Section 3, we fully describe for the first time an
algorithm to extract constraints from SQL queries over the mining views.

Once the constraints are detected and extracted by the system, they are
exploited by data mining algorithms, the results of which are stored in the
required mining views just before the actual execution of the query. There are
often several possible strategies to fill the required mining views based on the
extracted constraints, an issue discussed in Section 4.

Fig. 1 An inductive database system based on virtual mining views.

All ideas presented in this article, from querying the mining views and
extracting constraints from the queries to the actual execution of the data
mining process itself and the materialization of the mining views, have been



4

implemented into the well-known open source database system PostgreSQL1.
The complete model as was implemented is illustrated in Figure 1 and the
implementation is available upon request2. In our inductive database system,
a user can use the mining views in his or her query as if they were regular
database tables. Given a query, the parser is then invoked by the database
system, creating an equivalent relational algebra expression. At this point, the
expression is processed by the Mining Extension which extracts from the query
the constraints to be pushed into the data mining algorithms. The output of
these algorithms is then materialized in the mining views. After the mate-
rialization, the work flow of the system continues as usual and, as a result,
the query is executed as if all patterns and models were always stored in the
database.

In the remainder of this article, we illustrate the interactive and itera-
tive capabilities of our system with a data mining scenario in Section 5 (for
other example scenarios we refer the reader to [12,15,16]). Section 6 makes
an overview of related work, Section 7 presents a discussion on the limitations
of the system as well as on how to extend it, and the article is concluded in
Section 8.

2 The Mining Views Framework

In this section, we present the mining views framework in detail. This frame-
work consists of a set of relational tables, called mining views, which virtually
represent the complete output of data mining tasks executed over a given data
table. In reality, the mining views are empty and the database system finds
the required tuples only when they are queried by the user.

2.1 The Entity-Relationship Model

Figure 2 presents the entity-relationship model (ER model) [18] which is even-
tually translated into the relational tables (or mining views) presented in this
article. The entities and relationships of the ER model are described in the
following.

2.1.1 Concepts

We begin by describing the entity Concepts. We assume to be working on
a database that contains the table T (A1, . . . , An), having only categorical at-
tributes. In our proposed framework, the output of data mining tasks executed
over table T are generically represented by what we call concepts. We denote
a concept as a conjunction of attribute-value pairs that is definable over T .
Therefore, the entity Concepts represents all such concepts that are definable

1 http://www.postgresl.org/
2 E-mail to Adriana Prado (adriana.bechara.prado@gmail.com).
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Fig. 2 The entity-relationship model which is eventually translated into the mining views
described in this article.

over T . We assume that these concepts can be sorted in lexicographic order and
that an identifier, represented here by the attribute cid, can unambiguously
be given to each concept. In addition, the attribute supp (from “support”)
gives the number of tuples in T satisfied by the concept and sz is its size, in
number of attribute-value pairs.

Example 1 Consider T the classical relational table Playtennis(Day , Outlook ,
Temperature, Humidity ,Wind , Play) [19], which is illustrated in Figure 3. The
concept below is an example concept that is defined over this table:

(Outlook = ‘Sunny’ ∧Humidity = ‘High’ ∧ Play = ‘No’)

Since it is satisfied by 3 different tuples in table Playtennis (highlighted in
Figure 3), its support is 3. Its size is also 3, as it is composed by 3 attribute-
value pairs.

2

Playtennis
Day Outlook Temperature Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Fig. 3 The data table Playtennis.

Next, we explain how itemsets, association rules and decision trees ex-
tracted from table T are represented in our ER model by the concepts in
entity Concepts.
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2.1.2 Itemsets

As itemsets in a relational database are conjunctions of attribute-value pairs,
they are represented here as concepts. Note that the absolute frequency and
size of the itemsets are given by the attributes supp and sz, respectively.

2.1.3 Association Rules

The entity Rules represents the entire collection of association rules that can
be extracted from T . Since association rules are built on top of itemsets and
itemsets are in fact concepts in the ER model, rules are represented here as
a triplet of concepts. More specifically, the entity Rules has 3 relationships
with the entity Concepts, namely “ante” (from “antecedent”), “cons” (from
“consequent”) and the union of these two, referred to here as “rule”. The rela-
tionship “rule” associates each rule with the concept from which the rule itself
is generated, while “ante” and “cons” associate each rule with the concepts
representing its antecedent and consequent, respectively. We assume that a
unique identifier, attribute rid, can be given to each rule, and the attribute
conf is its confidence.

2.1.4 Decision Trees

A decision tree learner typically learns a single decision tree from a dataset.
This setting strongly contrasts with discovery of itemsets and association rules,
which is set-oriented: given certain constraints, the system finds all itemsets or
association rules that fit the constraints. In decision tree learning, given a set
of (sometimes implicit) constraints, one tries to find one tree that fulfills the
constraints and, besides that, optimizes some other criteria, which are again
not specified explicitly but are a consequence of the algorithm used.

In the inductive databases context, we treat decision tree learning in a
somewhat different way, which is more in line with the set-oriented approach.
Here, a user would typically write a query asking for all trees that fulfill a
certain set of constraints, or optimizes a particular condition. For example,
the user might ask for the tree with the highest training set accuracy among
all trees of size of at most 5. This leads to a much more declarative way of
mining for decision trees, which can easily be integrated into the mining views
framework.

In a decision tree, each path from the root to a leaf node can be regarded
as a conjunction of attribute-value pairs. Thus, a decision tree is represented
in our ER model by a set of concepts, where each concept represents one path
from the root to a leaf of the tree.

Example 2 The tree in Figure 4 can be seen as the following set of concepts
(paths):

(Outlook = ‘Sunny’ ∧Humidity = ‘High’ ∧ Play = ‘No’)
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(Outlook = ‘Sunny’ ∧Humidity = ‘Normal’ ∧ Play = ‘Yes’)

(Outlook = ‘Overcast’ ∧ Play = ‘Yes’)

(Outlook = ‘Rain’ ∧Wind = ‘Strong’ ∧ Play = ‘No’)

(Outlook = ‘Rain’ ∧Wind = ‘Weak’ ∧ Play = ‘Yes’)

2

Outlook

sunnys
ss
ss

sss
ss overcast rain

III
II

II
II

Humidity

high
��
�

��
��

normal
99

9

99
99

?>=<89:;Yes Windy

strong
		
	

		
	 weak

66
6

66
66

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

Fig. 4 An example decision tree.

The collection of all decision trees predicting a particular target attribute
A is therefore represented by the entity Trees A. This entity has attributes
treeid (identifier of the trees), acc (accuracy of the tree), and sz (size of the
tree in number of nodes). In addition, it has a relationship, called “path” with
the entity Concepts, which represents the fact that all of its instances have at
least one concept as a path.

Note that the entity Trees A represents the decision trees semantically, not
syntactically. That is: the predictive semantics of a decision tree is determined
entirely by describing its leaves (using the conjunction of attribute-value pairs
from root to leaf), which is exactly what is represented by this entity. The
structure of a tree, however, is not determined uniquely by its leaves: some-
times different trees may have exactly the same set of leaves. Such trees always
represent exactly the same predictive function, though.

2.2 The Relational Model

We now define the virtual mining views themselves, which are a particular
translation of the ER model above into relational tables.

2.2.1 The Mining View T Concepts

Consider again table T (A1, . . . , An) with only categorical attributes. The do-
main of Ai is denoted by dom(Ai), for all i = 1 . . . n. A tuple of T is therefore
an element of dom(Ai)×. . .×dom(An). The active domain of Ai of T , denoted
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by adom(Ai, T ), is defined as the set of values that are currently assigned to
Ai, that is, adom(Ai, T ) := {t.Ai | t ∈ T}. In order to represent each concept
as a database tuple, we use the symbol ‘?’ as the wildcard value and assume
it does not exist in the active domain of any attribute of T .

Definition 1 A concept over table T is a tuple (c1, . . . , cn) with ci ∈ adom(Ai)
∪ {‘?’}, for all i=1 . . . n.

Following Definition 1, the concept in Example 1, which is defined over
table Playtennis in Figure 3, is represented by the tuple:

(‘?’, ‘Sunny’, ‘?’, ‘?’, ‘High’, ‘?’, ‘No’).

We are now ready to define the mining view T Concepts(cid , A1, . . . , An).
This view virtually contains all concepts that are definable over table T and
it is a translation of the entity Concepts with attributes cid, A1,. . . , An.

Definition 2 The mining view T Concepts(cid , A1, . . . , An) contains one tu-
ple (cid , c1, . . . , cn) for every concept defined over table T . The attribute cid
uniquely identifies the concepts.

Figure 5 shows a sample of the mining view Playtennis Concepts , which
virtually contains all concepts definable over table Playtennis. In fact, the
mining view T Concepts represents exactly a data cube [20] built from table T ,
with the difference that the wildcard value “ALL” introduced in [20] is replaced
by the value ‘?’. By following the syntax introduced in [20], the mining view
T Concepts would be created with the SQL query shown in Figure 6 (consider
adding the identifier cid after its creation).

In the remainder of this section, we consider T the table Playtennis and
use the concepts in Figure 7 for the illustrative examples (where an identifier
has been given to each of the concepts).

2.2.2 The Mining Views T Sets and T Rules

All itemsets extracted from table T are represented in our framework by the
mining view T Sets(cid , supp, sz ), which is a translation of the entity Concepts
with attributes cid, supp, and sz. This view is defined as follows:

Definition 3 The mining view T Sets(cid , supp, sz ) contains a tuple for each
itemset, where cid is the identifier of the itemset (concept), supp is its support
(the number of tuples satisfied by the concept), and sz is its size (the number
of attribute-value pairs in which there are no wildcards).

Similarly, association rules are represented by the mining view T Rules(rid ,
cida, cidc, cid , conf ). This view is the translation of the entity Rules along
with its relationships “ante”, “cons”, and “rule”, and is described by the def-
inition below:
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Playtennis Concepts

cid Day Outlook Temperature Humidity Wind Play

id1 ? ? ? ? ? ?
id2 ? ? ? ? ? Yes
id3 ? ? ? ? Weak Yes
id4 ? ? ? ? Strong Yes
. . . . . . . . . . . . . . . . . . . . .

. . . ? ? ? High Weak Yes

. . . ? ? ? Normal Weak Yes

. . . . . . . . . . . . . . . . . . . . .

. . . ? ? Cool High Weak Yes

. . . ? ? Mild High Weak Yes

. . . ? ? Hot High Weak Yes

. . . . . . . . . . . . . . . . . . . . .

. . . ? Sunny Cool High Weak Yes

. . . ? Overcast Cool High Weak Yes

. . . ? Rain Cool High Weak Yes

. . . . . . . . . . . . . . . . . . . . .

. . . D1 Sunny Cool High Weak Yes

. . . D2 Sunny Cool High Weak Yes

. . . . . . . . . . . . . . . . . . . . .

Fig. 5 The mining view Playtennis Concepts.

1. create table T_Concepts

2. select A1, A2,..., An

3. from T

4. group by cube A1, A2,..., An

Fig. 6 The data cube that represents the contents of the mining view T Concepts.

Playtennis Concepts

cid Day Outlook Temperature Humidity Wind Play

. . . . . . . . . . . . . . . . . . . . .

101 ? ? ? ? ? Yes
102 ? ? ? ? ? No
103 ? Sunny ? High ? ?
104 ? Sunny ? High ? No
105 ? Sunny ? Normal ? Yes
106 ? Overcast ? ? ? Yes
107 ? Rain ? ? Strong No
108 ? Rain ? ? Weak Yes
109 ? Rain ? High ? No
110 ? Rain ? Normal ? Yes
. . . . . . . . . . . . . . . . . . . . .

Fig. 7 A sample of the mining view Playtennis Concepts, which is used for the illustrative
examples in Subsections 2.2.2 and 2.2.3.

Definition 4 The mining view T Rules(rid ,cida,cidc,cid ,conf ) contains a tu-
ple for each association rule that can be extracted from table T . The attribute
rid is the rule identifier, cida is the identifier of the concept representing its
antecedent, cidc is the identifier of the concept representing its consequent, cid
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is the identifier of the union of those two concepts, and conf is the confidence
of the rule.

Figure 8 shows the mining views T Sets and T Rules and illustrates how
the rule “if outlook is sunny and humidity is high, you should not play tennis”
is represented in these views by using three of the concepts given in Figure 7.
The rule has identification number 1.

T Sets

cid supp sz

102 5 1
103 3 2
104 3 3
. . . . . . . . .

T Rules

rid cida cidc cid conf

1 103 102 104 100%
. . . . . . . . . . . . . . .

Fig. 8 Mining views for representing itemsets and association rules. The attributes cida,
cidc, and cid refer to concepts given in Figure 7.

Note that the choice of the schema for representing itemsets and association
rules also implicitly determines the complexity of the queries a user needs to
write. For example, one of the three concept identifiers for an association rule,
cid , cida, or cidc, is redundant as it can be determined from the other two.
Also, in the given representation one could even express the itemset mining
task without the view T Concepts , as it can also be expressed in SQL. Nev-
ertheless, it would imply that the user would have to write more complicated
queries, as shown in Example 3.

Example 3 Consider the task of extracting from table T all itemsets (and their
supports) with size equal to 5 and support of at least 3. Query (A) in Figure 9
shows how this task is performed in the proposed framework. Without the
mining views T Concepts or T Sets , this task would be executed with a much
more complicated query, as given in query (B) in Figure 9. 2

Example 4 In Figure 10, query (C) is another example query over itemsets,
while query (D) is an example query over association rules.

Query (C) represents the task of finding itemsets with large area. The
area of an itemset corresponds to the size of the tile, which is formed by the
attribute-value pairs in the itemset in the tuples that support it. The mining
of large tiles, i.e., itemsets with a high area, is useful in constructing small
summaries of a database [21].

Query (D) asks for association rules having support of at least 3 and con-
fidence of at least 80%.

2

Observe that common mining tasks and the constraints “minimum sup-
port” and “minimum confidence” can be expressed quite naturally with SQL
queries over the mining views. Additionally, note that the mining views pro-
vide a very clear separation between the two mining operations, while at the
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(A)

select C.*, S.supp

from T_Sets S, T_Concepts C

where C.cid = S.cid

and S.sz = 5

and S.supp >= 3

(B)

select Day,Outlook,Temperature,Humidity,Wind,’?’, count(*)

from T

group by Day,Outlook,Temperature,Humidity,Wind

having count(*) >= 3

union

select Day,Outlook,Temperature,Humidity,’?’,Play, count(*)

from T

group by Day,Outlook,Temperature,Humidity, Play

having count(*) >= 3

union

select Day,Outlook,Temperature,’?’,Wind,Play, count(*)

from T

group by Day,Outlook,Temperature,Wind,Play

having count(*) >= 3

union

select Day,Outlook,’?’,Humidity,Wind,Play, count(*)

from T

group by Day,Outlook,Humidity,Wind,Play

having count(*) >= 3

union

select Day,’?’,Temperature,Humidity,Wind,Play, count(*)

from T

group by Day,Temperature,Humidity,Wind,Play

having count(*) >= 3

union

select ’?’,Outlook,Temperature,Humidity,Wind,Play, count(*)

from T

group by Outlook,Temperature,Humidity,Wind,Play

having count(*) >= 3

Fig. 9 Example queries over itemsets with (query (A)) and without (query (B)) the mining
views T Concepts and T Sets.

same time allowing their composition, as association rules are built on top of
frequent itemsets.

2.2.3 The Mining Views T Trees A and T Treescharac A

The collection of all decision trees predicting a particular target attribute
Ai is represented by the mining view T Trees Ai(treeid ,cid), which is the
translation of the relationship “path” in the ER model. We formally define it
as follows:

Definition 5 The mining view T Trees Ai(treeid ,cid) is such that, for every
decision tree predicting a particular target attribute Ai, it contains as many
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(C) (D)

select C.*, S.supp, S.sz,

S.supp * S.sz as area

from T_Concepts C, T_Sets S

where C.cid = S.cid

and ((S.supp * S.sz > 60)

or (S.supp > 10))

select Ante.*, Cons.*,

S.supp, R.conf

from T_Sets S, T_Rules R,

T_Concepts Ante,

T_Concepts Cons

where R.cid = S.cid

and Ante.cid = R.cida

and Cons.cid = R.cidc

and S.supp >= 3

and R.conf >= 80

Fig. 10 Example queries over itemsets and association rules.

Outlook
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6

66
66
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T Trees Play

treeid cid

1 104
1 105
1 106
1 107
1 108
. . . . . .

T Treescharac Play

treeid acc sz

1 100% 8
. . . . . . . . .

Fig. 11 Mining views representing a decision tree which predicts the attribute Play. Each
attribute cid of view T Trees Play refers to a concept given in Figure 7.

tuples as the number of leaf nodes it has. We assume that a unique identifier,
treeid , can be given to each decision tree. Each decision tree is represented by
a set of concepts cid , where each concept represents one path from the root
to a leaf node.

Additionally, the view T Treescharac Ai(treeid ,acc,sz ), representing sev-
eral characteristics of a tree learned for one specific target attribute Ai, is
defined as the translation of the entity Trees A as presented next:

Definition 6 The mining view T Treescharac Ai(treeid ,acc,sz ) contains a tu-
ple for every decision tree in T Trees Ai, where treeid is the decision tree
identifier, acc is its corresponding accuracy, and sz is its size in number of
nodes.

Figure 11 shows how the example decision tree in Figure 4 is represented in
the mining views T Trees Play and T Treescharac Play by using the concepts
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in Figure 7. The example decision tree predicts the attribute Play of table T

and has identification number 1.

(E) (F)

create table BestTrees as

select T.treeid, C.*, D.*

from T_Concepts C,

T_Trees_Play T,

T_Treescharac_Play D

where T.cid = C.cid

and T.treeid = D.treeid

and D.sz <= 5

and D.acc =

(select max(acc)

from T_Treescharac_Play

where sz <= 5)

select T1.treeid,

C1.*, C2.*

from T_Trees_Play T1,

T_Trees_Play T2,

T_Concepts C1,

T_Concepts C2,

T_Treescharac_Play D

where T1.cid = C1.cid

and T2.cid = C2.cid

and T1.treeid = T2.treeid

and T1.treeid = D.treeid

and C1.Outlook = ‘Sunny’

and C2.Wind = ‘Weak’

and D.sz <= 5

and D.acc >= 80

Fig. 12 Example queries over decision trees.

Example 5 In Figure 12, we present two example queries over decision trees.
Query (E) creates a table called “BestTrees” with all decision trees that predict
the attribute Play and have maximal accuracy among all possible decision
trees of size of at most 5. Observe that in order to store the results back into
the database, the user simply needs to use the statement “create table as”,
available in a variety of database systems that are based on SQL.

Query (F) asks for decision trees having an attribute test on “Out-
look=Sunny” and on “Wind=Weak”, with a size of at most 5 and an accuracy
of at least 80%.

2

Prediction In order to classify a new tuple using a learned decision tree, one
simply searches for the concept in this tree (path) that is satisfied by the new
tuple. More generally, if we have a test set S, all predictions of the tuples in S

are obtained by equi-joining S with the semantic representation of the decision
tree given by its concepts. We join S to the concepts of the tree by using a
variant of the equi-join that requires that either the values are equal, or there
is a wildcard value.

Example 6 Consider the table BestTrees created after the execution of query
(E), in Figure 12. Figure 13 shows a query that predicts the attribute Play for
all unclassified tuples in an example table Test Set(Day ,Outlook ,Temperature,
Humidity ,Wind) by using the tree in table BestTrees that has identification
number 1.

2
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(G)

select S.*, T.Play

from Test_Set S,

BestTrees T

where (S.Day = T.Day or T.Day = ’?’)

and (S.Outlook = T.Outlook or T.Outlook = ’?’)

and (S.Temperature = T.Temperature or T.Temperature = ’?’)

and (S.Humidity = T.Humidity or T.Humidity = ’?’)

and (S.Wind = T.Wind or T.Wind = ’?’)

and T.treeid = 1

Fig. 13 An example prediction query.

2.3 Combining Patterns and Models

In the mining views framework, it is also possible to perform composed data
mining tasks. In other words, it is possible to formulate data mining tasks that
consist of a combination of different types of patterns.

Example 7 Consider query (H) in Figure 14. The query asks for decision trees
predicting the attribute Play with a size of at most 5, a path of which is an
itemset that generates a rule with support of at least 3 and confidence of at
least 80%. Notice that since in the proposed framework the query language is
SQL, the user can create new combinations of patterns by simply involving
mining views corresponding to different mining tasks in the same SQL query.

2

(H)

select T.*, C.*, S.supp

from T_Sets S, T_Rules R,

T_Concepts C,

T_Trees_Play T,

T_Treescharac_Play D

where C.cid = S.cid

and S.cid = R.cid

and T.cid = R.cid

and T.treeid = D.treeid

and D.sz <= 5

and S.supp >= 3

and R.conf >= 80

Fig. 14 Example query combining patterns.

2.4 Putting It All Together

For every data table T (A1, . . . , An) in the database, with T having only cat-
egorical attributes, the virtual mining views framework consists of a set of
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relational tables, called virtual mining views, which virtually contain the com-
plete output of data mining tasks executed over T . These mining views are
the following:

– T Concepts(cid ,A1,. . . ,An).
– T Sets(cid ,supp,sz ).
– T Rules(rid ,cida,cidc,cid ,conf ).
– T Trees Ai(treeid ,cid), for all i=1 . . . n.
– T Treescharac Ai(treeid , acc, sz ), for all i=1 . . . n.

As shown in the examples given in the previous subsections, in order to
retrieve patterns over table T , the user simply needs to write SQL queries over
the proposed mining views. The expressiveness of these queries is the same as
that of queries over traditional relational tables.

3 Constraint Extraction

In the previous section, we showed how a variety of data mining tasks and
well-known constraints are expressed with SQL queries over the mining views.
Nevertheless, recall that the mining views are virtual tables. Consequently, in
order to answer a query involving one or more of these views, the system first
needs to materialize them, that is, fill them with the corresponding mining
objects (i.e., concepts, itemsets, association rules or decision trees). Storing
the whole collection of mining objects is not tractable. After all, the number
of all possible objects can be extremely high and impractical to store. On the
other hand, as shown in Example 8, the entire set of objects does not always
need to be stored, but only those satisfying the constraints in the given SQL
query.

Example 8 Consider the SQL query in Figure 15. The query asks for deci-
sion trees targeting attribute Play , having a path containing an attribute
test on “Outlook=Sunny”, and also a path containing an attribute test on
“Wind=Weak”. Besides, the trees must have a size of at most 5 and an ac-
curacy of at least 80%. Naturally, to answer this query, not all decision trees
must be stored in view T Trees Play , T Treescharac Play , and T Concepts ,
but only those satisfying the aforementioned constraints. 2

Observe that for the system to determine the set of objects to be stored in
the mining views, it must be capable of detecting the constraints in the given
SQL query. Towards this goal, we describe in this section an algorithm that
extracts constraints from a mining query (i.e., a query that involves mining
views). It is worth noticing that this extraction process is more involved than
just selecting the conditions that relate to the mining views in the where-clause
of the query (i.e., Outlook = ‘Sunny’, Wind = ‘Weak’, sz ≤ 5, and acc ≥ 80
for the query in Figure 15), as the following example shows.
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select T1.treeid, D.acc

from T_Trees_Play T1, T_Trees_Play T2,

T_Concepts C1, T_Concepts C2,

T_Treescharac_Play D

where T1.cid = C1.cid

and T2.cid = C2.cid

and T1.treeid = T2.treeid

and T1.treeid = D.treeid

and C1.Outlook = ‘Sunny’

and C2.Wind = ‘Weak’

and D.sz <= 5

and D.acc >= 80

Fig. 15 Example query over decision trees.

Example 9 Consider the query in Figure 16. This query has exactly the same
constants as the query in Figure 15 (w.r.t. the mining views in its where-
clause), but has a different semantics; it asks for all decision trees in which the
conditions Outlook = ‘Sunny’ and Wind = ‘Weak’ occur in the same path of
the decision tree. 2

select T1.treeid, D.acc

from T_Trees_Play T1,

T_Concepts C1,

T_Treescharac_Play D

where T1.cid = C1.cid

and T1.treeid = D.treeid

and C1.Outlook = ‘Sunny’

and C1.Wind = ‘Weak’

and D.sz <= 5

and D.acc >= 80

Fig. 16 Another example query over decision trees.

As the extracted constraints cannot be presented as a list of constraints,
we will introduce a more advanced structure, the so-called annotation. In sum-
mary, the processing of a given SQL query over the mining views will proceed
as follows:

1. The constraints are extracted from the query and represented in the form
of an annotation. Annotations are introduced in Subsection 3.1 and the
algorithm to extract them in Subsection 3.2.

2. Based on the annotation, one or more constraint-based data mining al-
gorithms are executed. The selection of the algorithms and the order in
which they are executed is not determined by the annotation and different
strategies are possible. The execution step is discussed in Section 4.

3. The output of the mining algorithms is used to fill the virtual tables. From
here on the tables are no longer virtual.
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Fig. 17 Annotation for the query in Figure 15 (left) and Figure 16 (right), respectively.

4. The SQL query is executed by an underlying relational database system,
using normal SQL query optimization and execution.

5. The tables are then emptied and become virtual again. Notice that in this
step there is room for improvement by caching some of the results for
subsequent queries. Such optimizations are, however, beyond the scope of
this paper.

3.1 Annotations

An annotation of an SQL query can be seen as an instantiation of the ER
model of the mining objects in Figure 2. It represents the following three
types of information about the query:

1. Which mining objects are involved in the query and how do they relate to
each other? (e.g., a concept representing a path in a tree)

2. From which mining objects do the attributes in the query result come? (e.g.,
a tree identifier, an attribute of a concept, the identifier of the consequent
of an association rule)

3. Which atomic constraints hold on the attributes of the mining objects?

More formally, an annotation is defined as follows:

Definition 7 (Annotation) An annotation for a query q is a three-tuple
(I,M,C), where I is an abstract instantiation of the ER model, i.e., a set of
objects for which the attribute values have not been specified, and relations
between them, respecting the cardinality constraints in the ER model. M is a
mapping from the attributes of q to a set of attributes in I, which are called
the originating attributes. C is a partial function mapping attributes in I to
constraints. The constraints can be any Boolean combination of attribute-value
comparisons.
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Furthermore, the annotation should describe a sufficient set of mining ob-
jects to compute the answer of the query. That is, for any database, if we fill
the virtual tables with the mining objects (concepts, sets, rules, or trees) that
can be mined from this database and that satisfy all constraints in C and
relations in I, then the query should return the correct answer.

Example 10 Figure 17 contains the annotations for the queries in Figures 15
and 16, respectively. The objects in the instantiation I are depicted by rect-
angles containing the type of the object. Attributes are in rounded boxes.
The relations are depicted by dotted lines. The attributes at the bottom are
the attributes in the query. The arrows pointing out from them indicate the
mapping M . The constraints are included into the attribute they refer to. To
avoid visual clutter, only those attributes that are in the image of the map-
ping M or in the range of C and objects that have such attributes are visually
represented.

The left annotation, e.g., describes the following set of mining objects:
(i) all trees with an accuracy of at least 80% and a size of maximal 5 such
that there is a path in the tree with “Wind=Weak” and a path with “Out-
look=Sunny”, (ii) all concepts with “Wind=Weak” that participate in such
a tree, and (iii) all concepts with “Outlook=Sunny” that participate in such
a tree. “Filling the virtual tables with these mining objects” implies that all
such trees are mined. For each such tree we (i) add to the mining view Trees
as many tuples as there are concepts that describe a path in this tree, (ii) add
a tuple in the mining view Treescharac Play , and (iii) for all concepts that
describe a path in this tree, a tuple is added in the mining view Concepts . If
we fill the tables in this way, the query will clearly be answered correctly.

2

To summarize, an annotation for a given query describes the mining ob-
jects necessary to form the tuples in the result of this query. Notice that the
definition does not insist on minimality, because the problem of creating a
minimal annotation is incomputable (see [13]). This situation is very similar
to the inability to find the most optimal query execution plan for relational
queries; even deciding whether a relational query will always return an empty
answer is undecidable (see, e.g., [22]). The algorithm in the next subsection
will hence describe how to find a correct, but not necessarily tight annotation.

3.2 Bottom-up Construction of an Annotation

We will consider in this section SQL queries that can be translated into rela-
tional algebra expressions [22]. The proposed algorithm, therefore, works on
this type of expressions, rather than on the SQL query itself. Such a relational
algebra expression has the advantage of being procedural, as opposed to SQL,
which is declarative.
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3.2.1 Relational Algebra

Before proceeding to the details of the proposed algorithm, we briefly review
the main concepts of relational algebra.

A relational algebra expression describes a sequence of operations on re-
lations, which results in the answer of the query. Consider, for example, the
SQL query shown in Figure 15. An equivalent relational algebra expression for
this SQL query is given in Figure 18. For ease of presentation, the aliases T1,
T2, C1, C2, and D, which were given to the mining views in the example SQL
query, are also used here. The expression is given by its syntax tree to ease
the explanation of the further parts. Although all mining views have prefix T ,
in the remainder of this section, we will omit it for ease of presentation. The
leaf nodes of the tree are the mining views or normal relations. The internal
nodes represent intermediate results in the computation of the query by ap-
plying one of the operations ×, σ, ∪, ∩, π, ⊲⊳, or − on the intermediate results
represented by its children. For example, the selection operation

σ
C1.Outlook=‘Sunny’ Concepts C1,

represented by node (f), constructs a relation which is composed by those
tuples from the relation Concepts that satisfy the predicate C1.Outlook =
‘Sunny’. The join operation

Rf ⊲⊳C1.cid=T1.cid Rb

of node (i) (where Rf and Rb are the relations represented by nodes (f) and (b),
respectively) combines tuples from Rf and Rb that have the same cid value
into a single tuple. For every tuple of the first relation, Rf , and every tuple
of the second relation, Rb, a new tuple, which is the concatenation of the two
tuples, is in the resulting relation if it satisfies the predicate C1.cid = T1.cid .
The projection operation

πT1.treeid,D.acc

of node (n) produces a new relation that has only the attributes T1.treeid and
D.acc. For a complete description of the relational algebra, we refer the reader
to [23].

3.2.2 Algorithm

We will compute the annotation for the query in a bottom-up fashion. We will
start with basic annotations in the leaf nodes. Next, we will form annotations
for the sub-queries corresponding to the intermediate results in the internal
nodes. This will be done by combining the annotations of their children, based
on the operation they represent. Some of the operations ×, σ, ∪, ∩, π, ⊲⊳, and
− are redundant. These operations will be rewritten using the other opera-
tions. We will now discuss all operations and illustrate our algorithm with the
relational algebra expression in Figure 18. For a fully formal description of the
algorithm, we refer the reader to [24].
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Fig. 18 An equivalent relational algebra tree for the query in Figure 15.

3.2.3 The redundant operations and the union

The join operation Q1 ⊲⊳θ Q2 is rewritten as σθ(Q1×Q2), and the intersection
Q1 ∩Q2 as πA1,...,An

σQ1.A1=Q2.A1,...,Q1.An=Q2.An
(Q1 ×Q2), where A1, . . . , An

are the attributes of both queries Q1 and Q2.
The union will be handled as follows: every relational algebra expression

can be rewritten as Q1 ∪ . . . ∪ Qk, where none of the Qi contains a union
operation. The algorithm will compute annotations for all Qi separately, and
join the tuples needed to answer Qi together for all i = 1 . . . k.

Example 11 Query Q below is an example query with the union and join
operators. It asks for all concepts C, such that either rules C → (Play=‘Yes’)
have confidence of at least 70% or rules C → (Play=‘No’) have confidence of
at least 60%. Also, in both cases, the support of the rules should be at least 5.

Q: πR.cida((σsupp≥5SetsS) ⊲⊳S.cid=R.cid

((σconf≥60Rule R) ⊲⊳R.cidc=C.cid (σPlay=′No′Concepts C)

∪ (σconf≥70Rule R) ⊲⊳R.cidc=C.cid (σPlay=′Y es′Concepts C)))

To compute the annotation for Q, the proposed algorithm will first rewrite
Q as the following queries:

Q1: πR.cida(σS.cid=R.cid((σsupp≥5Sets S)×

(σR.cidc=C.cid((σconf≥60Rule R)× (σPlay=′No′Concepts C)))))
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Q2: πR.cida(σS.cid=R.cid((σsupp≥5Sets S)×

(σR.cidc=C.cid((σconf≥70Rule R)× (σPlay=′Y es′Concepts C)))))

Afterwards, it will compute the annotations for Q1 and Q2. Finally, the
annotation for Q will be the union of the annotations for Q1 and Q2.

2

One important point we would like to stress here is that the rewritings that
we apply to the query to reduce the number of operations needed to be trans-
lated has no effect afterwards, i.e., on the actual computation of the query in
the relational database system; the extracted annotation is used only to fill
the virtual tables. After that, the original SQL query is presented to the nor-
mal SQL query processor, which will rewrite the query for optimal execution.
Such rewriting may be different from the one applied when constructing the
annotation.

3.2.4 Leaf Nodes

The sub-query associated with a leaf node can be seen as a query of type “select
* from X”, where X is the mining view represented by the node. For example,
the sub-query associated with node (a) in the example tree (Figure 18) asks
for all tuples from the mining view Concepts . Therefore, the annotation for a
leaf node is simply the representation of the type of object necessary to form
the tuples to be stored in the mining view being queried. Figure 19 shows the
annotations for all possible types of leaf nodes that represent mining views.
Every annotation also includes a mapping from the attributes of the sub-query
associated with the node itself to the originating attributes.

It is worth noticing that if a leaf node represents the data table T , no
annotation is constructed for that node, as T does not need to be materialized.

3.2.5 Selection with Predicate Attrθa

This node type will include a constraint into the originating attributes of Attr
in the annotation of the child node. Consider, e.g., node (f) in the example
tree. Its associated sub-query selects only those tuples coming from node (a)
that satisfy the selection predicate “C1.Outlook=Sunny”. This means that to
answer this sub-query we only need concepts that contain “Outlook=Sunny”.
The annotation for this node is therefore constructed by simply including
the constraint ‘=“Sunny”’ into the originating attribute of C1.Outlook in the
annotation of node (a), which is reproduced at the top of Figure 20. The
annotation for node (f) is shown at the bottom of the same figure.
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Fig. 19 Annotations for the leaf nodes representing the proposed mining views.

3.2.6 The Cartesian Product

The construction of the annotation for a node of type × consists in simply
taking the union of the annotations of its children. This is because to answer
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Fig. 20 Annotation and corresponding sub-query of node (a) (top), and the annotation
and sub-query of node (f) (bottom).

the query Q1 × Q2 correctly, we need everything necessary to compute Q1 as
well as Q2.

This operation occurs, e.g., when rewriting the join in node (i) in the exam-
ple tree. Its annotation is constructed by first building the annotation for the
Cartesian product Rf × Rb followed by the annotation for the selection oper-
ation “C1.cid=T1.cid”. The annotation for the Cartesian product, illustrated
at Figure 21, is simply the union of the annotations for nodes (f) and (b),
since they represent the mining objects that are necessary for the execution
of such operation.
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Fig. 21 Annotation for Rf × Rb.
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3.2.7 The Selection σAttr1θAttr2

This is the most involved operation, as it may result in the merge of objects
(represented by the rectangles) in the annotation, e.g., when two cid’s are
made equal. Such a merge may cause a cascade of merges, such as when two
rules are merged, resulting in the merge of the antecedents and consequents
of the rules as well. Merging objects will result in merging constraints as well.

Consider the selection “C1.cid=T1.cid” in our running example, follow-
ing the Cartesian product in the rewriting of the join in node (i). From the
Cartesian product annotation (Figure 21), we observe that “C1.cid” originates
from the identifier attribute cid of the concepts represented in the annotation
of node (a), while “T1.cid” originates from the identifier attribute cid of the
concepts in the annotation of node (f). Then, according to the equality defined
by the selection predicate, the concepts to be considered for this operation are
those represented in both annotations (b) and (f), that is, the same collection
of concepts having “Outlook=Sunny” that are also paths of decision trees. As
a result, the annotation for this operation is obtained by merging the Concept
objects in these annotations, as depicted in Figure 22. Observe that due to
the equi-join operation, the query attributes “C1.cid” and “T1.cid” have now
the same originating attribute in this annotation.
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Fig. 22 Annotation for node (i) (bottom) and the corresponding sub-query (top).

Note that if θ is not ‘=’, then the annotation is equal to the annotation for
the Cartesian product operation. This is due to the fact that if θ is not ‘=’, all
mining objects represented in the annotation of the Cartesian product will be



25

Tree Play

path path

�� ���� ��acc
ZZZZZ

�� ���� ��szdddddd

'& %$ ! "#treeid Concept

��
��
��
��
�

==
==

==
==

=

NNN
NNN

NNN
NNN

NNN
N Concept

��
��
��
��
�

==
==

==
==

NNN
NNN

NNN
NNN

NNN
N

'& %$ ! "#cid GF ED@A BCOutlook
=“Sunny”

'& %$ ! "#Wind . . . '& %$ ! "#cid '& %$ ! "#Outlook GF ED@A BCWind=
“Weak”

. . .

iiiiiiiiiiiiiiiiiiiii

T1.tid

T2.tid

T1.cid

C1.cid

C1.Outlook

C1.Wind . . .

T2.cid

C2.cid

C2.Outlook

C2.Wind . . .

JJ�������������������

OO

SS''''''''''

ZZ44444444

TT)))))))))

OO VV-----------

]];;;;;;;;;

WW///////////

SS((((((

Fig. 23 Annotation for node (l).

necessary to execute such operation. In other words, the number of necessary
mining objects cannot be reduced in this case. The same happens when an
equi-join is made between attributes with different names.

Let us now consider another example for the join operation, corresponding
to node (l) in the example tree in Figure 18. In this case, the process to
construct its annotation is very similar to that executed for node (i). Due to
the selection predicate “T1.treeid = T2.treeid”, however, the two tree objects
will be merged. The resulting annotation for node (l) is shown in Figure 23.
Since the relation between tree and concept is one-to-many, the concepts need
not to be merged but become both related to the same tree object. When two
rule objects need to be joined, however, their join would result into a join of
their respective antecedent, consequent, and rule concepts as well, since the
relation between rule and, e.g., antecedent is one-to-one. So, if the two rules
turn out to become the same because of a join, their antecedents, consequents,
and rule concepts will implicitly become the same as well.

3.2.8 Projection with Attribute List Attr1, . . . ,Attrk

The annotation for the projection operator is trivially constructed from that
of the child node; the instantiation does not change as we obviously still need
exactly the same mining objects. Only the attribute mapping will change as
some attributes are removed. As an example, root node (n) simply projects
the tuples coming from node (m) on the attributes T1.treeid and D.acc. Its
annotation is the same as that for node (m), keeping, however, only the pro-
jected query attributes and their originations. The annotation for this node,
which is the final annotation for our example query, is shown in Figure 24.
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Fig. 24 Annotation for node (n), which is the final annotation for the query in Figure 18.

3.2.9 Operation Set-Difference

The treatment of the set-difference operation is not very involved, yet is some-
what counterintuitive. The reason for this is the non-monotonic nature of the
difference operation; sometimes we need to put some objects in the mining
views not because they will be part of the output, but rather to prevent other
objects from appearing in the output.

The result of the operation R1-R2 is a relation obtained by including all
tuples from R1 that do not appear in R2.

Example 12 Consider the relational algebra query in Figure 25. In this query,
R1 is the relation produced by node (n), while R2 is the relation produced by
node (o). The query asks for association rules X → Y with support greater
than 5 and confidence between 70% and 80% (node (n)) that are not the result
of chaining a rule X → Z (with the same characteristics of X → Y ) and a
correct rule (100% confidence) Z → Y (node (o)).

2

Suppose that in the database we have the following rules produced by node
(n): AB → C, AB → D, AC → B, B → C, B → D, and the following 100%
confident rule: C → D. Then, the rules AB → D and B → D will be in the
result of node (o), since they can be obtained by chaining AB → C and C →
D, and B → C and C → D, respectively.

Suppose now that we keep only the annotation for node (n) as the final
annotation for the example query, which means that only the rules coming
from node (n) are materialized in the mining view Rules . In this way, Rules
will not contain any 100% rule and, therefore, the relation produced by node
(o) will be empty and the query will not be properly answered. For instance,
in the case of Example 12, the rules AB → D and B → D would be produced
incorrectly as part of the query’s answer. The annotation for node (p) must
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Fig. 25 A relational algebra tree with a node of type set-difference (node (p)).

be such that all rules needed for the correct evaluation of node (o) are present
in the mining views.

The annotation for a node of type set-difference is thus defined as being the
concatenation of the annotations for both of its child nodes, keeping, however,
only the query attributes in the annotation of the left node. In other words,
the construction of the annotation for this type of node is the same as for a
node of type Cartesian product (described at the beginning of Section 3.2.6)
followed by the projection on the query attributes of the left child node. The
annotation for the right child node is stripped of its query attributes and added
to the annotation for the left child node. The two annotations are disjoint in
the resulting one.

4 Constraint Exploitation

Having presented the steps for constructing the annotation for a given mining
query, in this section we discuss how the materialization of the mining views
itself is performed by the system, based on an annotation.

The mining objects to be stored in the mining views are first computed by
data mining algorithms, which receive as parameters the constraints present in
the given annotation. Next, the results are stored as tuples in the corresponding
mining views.

Each type of mining object considered in this article is associated with a
certain algorithm, as follows:
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– For itemsets and association rules, the system is linked to the Apriori-like
algorithm by Christian Borgelt3 and the rule miner implementation by
Bart Goethals4.

– For decision trees, the system is linked to the exhaustive decision tree
learner called Clus-EX, described in detail in [14], which searches for all
trees satisfying the constraints “minimum accuracy” and “maximum size”.
Clus-EX learns decision trees with binary splits only.

As an example, consider the annotation in Figure 24, which indicates that
the system should store a subset of decision trees that target the attribute Play .
As remarked earlier, a decision tree is spread over the mining views Concepts ,
Trees A, and Treescharac A. Therefore, after mining for such decision trees
using Clus-EX, the system stores the obtained results in the aforementioned
mining views.

It is worth noticing, however, that there are often several possible strategies
to materialize the required mining views depending on the input annotation.
As an example, consider the annotation in Figure 26. Starting from the left of
the figure, the annotation indicates that the system should store: (a) associa-
tion rules with a confidence of at least 80% that are generated from concepts
with support of at least 3 (dotted line with label “rule” between the entities
Rules and Concepts, and the constraint on the attribute supp); (b) decision
trees for attribute Play, having size of at most 5, and at least one path among
the concepts that generate the aforementioned rules (constraint on the at-
tribute sz, and dotted line between the entities Trees Play and Concepts).

Based on this annotation, possible strategies for materializing the mining
views are:

1. First, mine association rules having supp ≥ 3 and conf ≥ 80%. Next,
mine decision trees predicting attribute Play , having sz ≤ 5, and at least
one path among the itemsets previously computed to generate the rules.
The association rules are stored in views Rules , Concepts and Sets , while
the decision trees are stored in views Trees Play , Treescharac Play and
Concepts .

2. First, mine decision trees predicting attribute Play , having sz ≤ 5. Then,
for every path in the generated decision trees, we compute its support and
size. Finally, we mine association rules having supp ≥ 3 and conf ≥ 80%,
using, as itemsets, the paths of the decision trees already generated. In
this case, all generated decision trees are first stored in views Trees Play ,
Treescharac Play , Concepts , and Sets . After that, the view Rules and
Concepts are materialized with the generated association rules.

The choice of strategy depends on the characteristics of the available data
mining algorithms in terms of the constraints they can exploit and the type of
input they need. Currently, the system always mines itemsets first, followed by

3 http://www.borgelt.net/software.html
4 http://www.adrem.ua.ac.be/~goethals/software/
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Fig. 26 Example annotation.

association rules and then decision trees. Given this order, our system adopts
the strategy 1 to materialize the mining views based on the annotation above.

Some materialization strategies as well as mining algorithms may be more
efficient than others and the collection of tuples that are eventually stored may
also differ. However, no matter what strategy the system takes, the query will
be answered correctly, since all the necessary tuples will certainly be stored.

Another aspect of the materialization is the occurrence of duplicates when,
in the final annotation, mining objects of the same type are represented more
than once. This is the case of the annotation in Figure 27. If the system
simply mines for itemsets twice (once for itemsets with supp ≥ 4, and once
for itemsets with supp ≥ 5), duplicates will be generated for itemsets having
support of at least 5. One way to solve this problem is to take the disjunction
of the constraints and put it into disjoint DNF, as proposed by Goethals and
Van den Bussche in [25]: in disjoint DNF, the conjunction of any two disjuncts
is unsatisfiable. The disjoint DNF in this case is (supp ≥ 5) ∨ (supp ≥ 4 ∧
supp < 5). By mining itemsets as many times as the number of disjuncts in
the DNF formula, no duplicates are generated. This is the strategy adopted
by our system.

5 An Illustrative Scenario

In this section, we describe a data mining scenario that explores the main
advantages of our inductive database system. We use the Adult dataset, from
the UCI Machine Learning Repository [26], which has census information, and
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assume it is already stored in our system. It contains 32,561 tuples, 6 numer-
ical attributes and 8 categorical attributes. An extra attribute called ‘class’
discriminates people from having a low (‘≤50K’) or high income (‘>50K’) a
year, while the other attributes describe features such as age, sex, and mar-
ital status. The scenario consists in finding an accurate model to predict the
attribute ‘class’ of tuples that refer only to women.

5.1 Step 1: Discretizing Numerical Attributes

We start by discretizing the numerical attributes ‘age’, ‘capital gain’, ‘capi-
tal loss’, and ‘hours per week’. For this task, we use the SQL CASE expres-
sion, which is available in a variety of database systems (e.g., PostgreSQL,
MySQL, and Oracle). As an example of how to use this expression, consider
the query in Figure 28. It creates a table called adult categ, where the at-
tribute ‘age’ in table adult female is discretized into the categories ‘Young’,
‘Middle aged’, ‘Senior’ and ‘Old’.

create table adult_categ as

select case

when age <= 25 then ’Young’

when age between 26 and 45 then ’Middle_aged’

when age between 46 and 65 then ’Senior’

else ’Old’

end as age,

from adult_female

Fig. 28 Example discretization query.

We then create table adult categ for our scenario, where not only the
attribute ‘age’, but all aforementioned numerical attributes are also discretized
(with the SQL CASE expression in Figure 28). The categories used for each
attribute are shown in Figure 29 and are inspired by those described in [27].
We also only select a subset of the attributes of the original table: we removed
the attributes ‘fnlwgt’, since it only contains information about the data col-
lection process, and the attribute ‘education num’, as it is just a numeric
representation of the attribute ‘education’.
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Attribute Categories

age ‘Young’ (0-25), ‘Middle aged’ (25-45), ‘Senior’ (45-65)’ and ‘Old’ (66+)
capital loss ‘None’ (0), ‘Low’ (< median of values > 0), ‘High’ (≥ median of values > 0)
capital gain ‘None’ (0), ‘Low’ (< median of values > 0), ‘High’ (≥ median of values > 0)
hours per week ‘Part time’ (0-25), ‘Full time’ (25-40), ‘Over time’ (40-60) and ‘Too much’ (60+)

Fig. 29 Discretization categories.

5.2 Step 2: Selecting Transactions

Since we want to classify only women, we now create a new table called fe-

male, having only those tuples from table adult categ with attribute
sex=‘Female’. Figure 30 shows the corresponding SQL query. In the end, ta-
ble female has 10,771 tuples, being 1,179 women with high income and 9,592
women with low income.

create table female as

select age, work_class, education,

marital_status, occupation,

relationship, race,

capital_gain, capital_loss,

hours_per_week, country,

class

from adult_categ

where sex = ’Female’

Fig. 30 Pre-processing query.

5.3 Step 3: Mining Decision Trees with Maximum Accuracy

We now look for decision trees over the new table female, targeting the
attribute ‘class’ and with maximum accuracy among those trees of size ≤ 5.
The query is shown in Figure 31. 5

Eventually, 27 trees are stored in table best trees, all of them with ac-
curacy of 91%.

5.4 Step 4: Choosing the Smallest Tree

Having learned the trees with maximum accuracy in the previous step, we now
want to evaluate the predictive capacity of these trees. Since all trees have the
same accuracy, we choose the smallest one, which is depicted in Figure 32.
This tree has treeid equal to 238 and the corresponding query for this task is
shown in Figure 33.

5 For the sake of readability, ellipsis were added to some of the SQL queries presented in
this section, which represent sequences of attribute names, joins, etc.
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create table best_trees as

select t.treeid,

c.age, ..., c.class

d.acc, d.sz

from female_trees_class t,

female_treescharac_class d,

female_concepts c

where t.cid = c.cid

and t.treeid = d.treeid

and d.sz <= 5

and d.acc=

(select max(acc)

from female_treescharac_class

where sz <=5 )

order by t.treeid, c.cid

Fig. 31 Query over decision trees.

capital gain
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Fig. 32 Decision tree (¬ High = {None, Low})

select treeid

from best_trees

where sz = (select min(sz)

from best_trees)

Fig. 33 Query that selects the smallest tree.

5.5 Step 5: Testing the Chosen Decision Tree

We now check the performance of the chosen decision tree. For this, we use the
test set from the UCI repository. We start by creating table female test by
applying the same discretization rules and selecting only the female examples
(5,421 in total). Next, we check, for each class, the number of misclassified
examples w.r.t the selected decision tree. This task is achieved with the query
in Figure 34. Here, the equi-join, as explained in Section 2, is executed between
tables female test and best trees, from which the tree with treeid = 238
is selected. The misclassified tuples are those for which the predicted class is
different from the real class.

The result of this query reveals that 481 (out of 590) of women with high
income are misclassified, while only 9 (out of 4, 831) of those with low income
are misclassified (490 women are misclassified in total).

Note that the obtained accuracy (91%) is not far from the theoretical
baseline value (89%), which is obtained by assigning all tuples to the majority



33

select F.class, count(*)

from female_test F,

best_trees T

where (F.age = T.age or T.age = ’?’)

and (F.work_class = T.work_class or T.work_class = ’?’)

and (F.education = T.education or T.education = ’?’)

and ...

and (F.country = T.country or T.country = ’?’)

and F.class <> T.class //misclassified

and T.treeid = 238

group by F.class

Fig. 34 Query to compute, for each class, the number of misclassified tuples w.r.t the tree
in Figure 32.

class, ‘≤50K’. In the following, we consider the use of emerging patterns [28]
to obtain a classifier with a higher accuracy.

5.6 Step 6: Mining Emerging Patterns

In this new step, we evaluate whether emerging patterns would better discrim-
inate the two classes. As initially introduced in [28], emerging patterns (EPs)
are patterns whose frequency increases significantly from one class to another
and, as such, can be used to build classifiers.

Since a significant number of women with high income are misclassified
with the decision tree, we now look for EPs within this class. We start by
mining frequent itemsets having support of at least 117 (10%) and keep them
in table female hi, as shown in Figure 35. We obtain 1,439 itemsets.

create table female_hi as

select C.*, S.supp

from female_Sets S,

female_Concepts C

where C.cid = S.cid

and S.supp >= 117

and C.class = ’>50K’

Fig. 35 Query over frequent itemsets within class ‘>50K’ (high income).

Then, we compute the support of each of these itemsets in the other class,
that is, among women with low income. The corresponding query is depicted
in Figure 36: for each itemset i in table female hi, it computes the number
of tuples coming from women with low income (attribute ‘class’ = ‘≤50K’)
that satisfies i.

Finally, we store in table emerging patterns only the EPs, that is, those
itemsets whose relative support within class ‘>50K’ is at least 15 times higher
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create table female_li as

select HI.age, ..., HI.native_country,

F.class, count(*) as supp

from female_hi HI,

female F

where F.class = ’<=50K’

and (F.age = HI.age or HI.age = ’?’)

and (F.work_class = HI.work_class or HI.work_class = ’?’)

and (F.education = HI.education or HI.education = ’?’)

...

and (F.country = HI.country or HI.country = ’?’)

group by HI.age, ..., HI.country, F.class;

Fig. 36 Computing the support of itemsets selected with the query in Figure 35 within
class ‘≤50K’.

than within class ‘≤50K’. This task is accomplished with the query in Fig-
ure 37. In total, we find 196 EPs.

create table emerging_patterns as

select HI.*

from female_hi HI, female_li LI

where (HI.age = LI.age)

and (HI.work_class = LI.work_class)

and (HI.education = LI.education)

...

and (HI.country = LI.country)

and ((HI.supp/LI.supp) * (9592/1179)) >= 15

Fig. 37 Selecting the emerging patterns with respect to class ‘>50K’ (high income).

5.7 Step 7: Classification based on EPs

In this last step, we evaluate the predictive capacity of the EPs in table emerg-
ing patterns. The idea is to assign each woman to the low income class
(‘≤50K’), except those that satisfy at least one EP. The classification accuracy
is thus computed as follows: women with high income in table female test

that satisfy at least one EP in table emerging patterns are considered well-
classified. Conversely, women with low income that satisfy at least one EP are
considered misclassified. The query in Figure 38 computes the number of well-
classified (query before the ‘union’) and misclassified (query after the ‘union’)
women according to this idea.

The result of this query reveals that 300 women (out of 590) with high
income are well-classified and that 121 with low income are misclassified. We
therefore conclude that with the EPs 121 + (590 - 300) = 411 women are
misclassified in total, while the selected decision tree leads to 490 misclassifi-
cations.
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alter table female add column id serial;

select count (distinct F.id)

from female_test F,

emerging_patterns EP

where (F.age = HI.age or EP.age = ’?’)

and (F.work_class = EP.work_class or EP.work_class = ’?’)

and (F.education = EP.education or EP.education = ’?’)

...

and (F.country = EP.country or EP.country = ’?’)

and F.class = EP.class //well-classified

union

select count (distinct F.id)

from female_test F,

emerging_patterns EP

where (F.age = HI.age or EP.age = ’?’)

and (F.work_class = EP.work_class or EP.work_class = ’?’)

and (F.education = EP.education or EP.education = ’?’)

...

and (F.country = EP.country or EP.country = ’?’)

and F.class <> EP.class //misclassified

Fig. 38 Computing the number of well-classified and misclassified women w.r.t the selected
EPs.

This ends the data mining scenario. We demonstrated that the main defin-
ing principles of an inductive database are fully supported by the mining views
framework. It is clear, for instance, that the closure principle is straightfor-
wardly supported, as shown by the queries that create new tables with the
results of mining queries of previous steps. The new tables can then be further
queried with the same language used to perform the original mining tasks,
i.e., SQL. The support for ad-hoc constraints was demonstrated in all queries,
in which no pre-planning was necessary. In other words, the user can simply
think of a new query in SQL and immediately write it using the mining views
or the new tables that were created as a result of the mining operations.

5.8 Performance Counters

We now investigate the efficiency and effectiveness of our inductive database
system. We conducted a set of experiments over 2 SQL queries executed for the
scenario presented above. The chosen queries are those illustrated in Figure 39.

Query (I) asks for decision trees with maximum accuracy among those
trees of size of at most 5, while query (J) asks for frequent itemsets. It is
worth noticing that the source data for both queries had in total 10,771 tuples
and 12 attributes (including the attribute ‘class’).
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(I)

create table best_trees as

select t.treeid,

c.age, ..., c.class

d.acc, d.sz

from female_trees_class t,

female_treescharac_class d,

female_concepts c

where t.cid = c.cid

and t.treeid = d.treeid

and d.sz <= 5

and d.acc=

(select max(acc)

from female_treescharac_class

where sz <=5 )

order by t.treeid, c.cid

(J)

create table female_hi as

select C.*, S.supp

from female_Sets S,

female_Concepts C

where C.cid = S.cid

and S.supp >= 117

and C.class = ’>50K’

Fig. 39 The queries chosen for the experiments.

5.8.1 Intermediate Results

We begin by evaluating the intermediate results that were computed by the
mining algorithms along with the results that were produced as output to the
user. In Table 1, we show the number of intermediately generated concepts,
itemsets (when applicable), decision trees (when applicable), and the size of
the output table (in tuples) for each of the example queries.

Query #Concepts #Itemsets #Trees Output (tuples)

(I) - decision trees 5,100 n/a 241 559
(J) - frequent itemsets 1,439 1,439 n/a 1,439

Table 1 Number of concepts, itemsets or decision trees computed by queries (I) and (J) in
Figure 39, along with the number of tuples in their output.

Decision Trees Observe that query (I) has a nested query (sub-query) in its
where-clause, which computes the maximum accuracy of the decision trees pre-
dicting the attribute ‘class’ with size of at most 5. Since this type of queries can
not be translated into relational algebra [29], to extract constraints from this
query, the system firstly decomposed it into two query blocks (SQL queries with
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no nesting), in the same way as typical query optimizers do [29]. Afterwards,
each query block was translated into a relational algebra tree. The algorithm
described in Section 3 was then applied to both expression trees in isolation,
and, in the end, the final annotation was the union of the annotations that
were constructed for both expression trees.

From the final annotation, the constraint (sz ≤ 5) on decision
trees was extracted. Afterwards, the mining views Female Trees Class,
Female Treescharac Class, and Female Concepts were materialized with the
results obtained by the algorithm Clus-EX, which exploited the constraint
above. The results of the data mining phase consisted of 241 trees (having
5, 100 concepts in total) with a size of at most 5. Notice that, due to the de-
composition of the query, the constraint “max(acc)” itself was not extracted
by the constraint extraction algorithm and thus not exploited by any data
mining algorithm. Nevertheless, the query was correctly computed, since the
DBMS considered it anyway to filter the results before showing them to the
user. Among the 241 trees generated, only the 27 trees with maximal accuracy
(91%) were stored into table best trees. They had 559 concepts in total.

Frequent Itemsets Regarding the query over association rules, (J), the con-
straint (supp ≥ 117 ∧ class = ‘>50K’) on itemsets was extracted by the con-
straint extraction algorithm and exploited by the Apriori-like implementation.
Female Sets and Female Concepts were then materialized with the obtained
results, as well as table female hi.

5.8.2 Execution Times

Finally, we also evaluate the total execution time for both queries. Table 2
presents, for each query, its total execution time (in seconds), the time spent
by the constraint extraction algorithm (in seconds), and the time consumed
by the data mining algorithms plus the time for the materialization of the
required mining views (in seconds). The times shown are the average of 3
executions of the queries.

Query Total Time (in sec.) CEA (in sec.) Mining + materialization (in sec.)

(I) - decision trees 23.86 0.01 21.63
(J) - frequent itemsets 1.51 0.01 0.70

Table 2 Execution times for queries (I) and (J) in Figure 39.

Observe that the time spent by the constraint extraction algorithm was
negligible for both queries. The total execution time consists mostly of the
time consumed by the data mining algorithms along with the materialization
of the required virtual mining views. The difference between the total execution
time and the mining time was due to the time spent by the system to produce
the results as output to the user.
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As can be seen, the total execution times were low for both queries, which
shows the usefulness and elegance of the proposed inductive database system.
Additionally, the experiments demonstrated that the constraint extraction al-
gorithm does not add any extra cost, in terms of execution time, to the query
evaluation process. Indeed, the constraint extraction algorithm can be per-
formed in time linearly proportional to the size of the query, whereas query
evaluation can take exponential time w.r.t. the size of the query (and polyno-
mial time w.r.t. the size of the database).

6 Related Work

There already exist several proposals for developing an inductive database
following the framework introduced in [1]. Below, we list some of the best
known examples.

6.1 SQL-based proposals

The system SINDBAD (structured inductive database development), devel-
oped by Wicker et al. [8], processes queries written in SIQL (structured induc-
tive query language). SIQL is an extension of SQL that offers a wide range
of query primitives for feature selection, discretization, pattern mining, clus-
tering, instance-based learning and rule induction. Another extension of SQL
has been proposed by Bonchi et al. [10] which is called SPQL (simple pattern
query language). SPQL provides great support to pre-processing and supports
a very large set of different constraints. A system called ConQueSt has also
been developed, which is equipped with SPQL and a user-friendly interface.

In the particular case of SIQL, the attention is not focused on the use
of constraints. As we show in [11], the minimum support constraint is not
used within the queries themselves, but needs to be configured beforehand
with the use of the so-called configure-clause. Constraints are therefore more
closely related to a function parameter than to a constraint itself. Additionally,
the number of such parameters is limited to the number foreseen at the time
of implementation. For example, in the case of frequent itemset mining, the
minimum support is the only constraint considered in their system.

Regarding SPQL, the number of constraints that the user can use within
their mining queries is also fixed. Consider the task of finding itemsets with
large area, discussed in Example 4. Based on its description in [10], this task
cannot be expressed in SPQL (nor in SIQL), while being naturally expressed
with the mining views. Even though this natural expressiveness is achieved
thanks to the addition of the attributes sz and supp to the mining views
T Sets, without these attributes, the constraint could still be expressed in
plain SQL (at the cost of writing more complicated queries, as shown in Ex-
ample 3). With these other languages, this would only be possible with the
extension of the language itself, which is considered a drawback here, or with
post-processing queries, if possible at all.
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In Microsoft’s Data Mining extension (DMX) of SQL server [7], a clas-
sification model can be created and used afterwards to give predictions via
the so-called prediction joins. Although the philosophy behind the prediction
join is somewhat related to what we propose, our work goes much further:
in [16], for example, we present a scenario in which we learn a classifier hav-
ing the maximum accuracy and, afterwards, we look for correct association
rules, which describes the misclassified examples w.r.t this classifier. DMX
would not be appropriate to accomplish this task, since it does not provide
any other operations for manipulating models, other than browsing and pre-
diction. Furthermore, there is no notion of composing mining operations in
their framework.

For a more detailed comparison between other data mining query languages
and the mining views approach, we refer the reader to [11,12].

6.2 Programming language-based approaches

An acronym for “Aggregate & Table Language and System” [6], ATLaS is
a Turing-complete programming language based on SQL that enables data
mining operations on top of relational databases. An important aspect of this
approach is that, in order to mine data, one needs to implement in this lan-
guage the appropriate mining algorithm. For instance, the authors show the
code for the Apriori algorithm, which becomes considerably complex when
implemented with the proposed language. In addition, specific code must be
written to manipulate the mining results, since these should be encoded by
the user into the database. Similarly, found patterns need to be decoded and
encoded back into the database so as to be used in subsequent queries.

Another approach with the same line of reasoning is that presented in [30].
This language, however, is not focused on relational databases, but on deduc-
tive databases.

In [31], an algebraic framework for data mining is presented, which allows
the mining results as well as ordinary data to be manipulated. The framework
is based on the 3W model of Johnson et al. [32]. In short, “3W” stands for the
“Three Worlds” for data mining: the D(ata)-world, the I(ntensional)-world,
and the E(xtensional)-world. Ordinary data are manipulated in the D-world,
regions representing mining results are manipulated in the I-world, and exten-
sional representations of regions are manipulated in the E-world.

Since the 3W model relies on black box mining operators, a first contribu-
tion of the work in [31] is to extend the 3W model by “opening up” these black
boxes, using generic operators in a data mining algebra. Two key operators
in this algebra are regionize κ, which creates regions (or models) from data
tuples, and a restricted form of looping called mining loop λ, which is meant to
manipulate regions. The resulting data mining algebra, which is called MA,
is studied and properties concerning the expressive power and complexity are
established. As ATLaS, MA can also be seen as a programming language
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based on those key operators. These programming languages are much less
declarative, making them less attractive for query optimization.

7 Discussion

7.1 Expressiveness of the Mining Queries

The expressiveness of queries over the mining views is the same as the expres-
siveness of querying any relational table with SQL. Despite not being able to
express everything (e.g., recursive queries), SQL is a full-fledged query lan-
guage, which allows ad-hoc constraints and guarantees the closure principle.
As specified in [1], these are the main characteristics an inductive database
should have. [1] also lists the reasons why this is important. Indeed, the sce-
nario in Section 5 shows the benefit of such characteristics with SQL queries
over the mining views.

The mining views framework can express all fundamental constructions
of the other data mining query languages. Some types of queries are not as
naturally expressed (with the mining views proposed in this paper) as in other
languages, but they can easily be handled with the addition of new mining
views or even by just pre-processing the data being mined. For example, if
the user wants to mine a market basket dataset, where the transactions do
not necessarily have the same size, one would need to firstly pre-process the
dataset, by creating a new table in which each transaction is represented as a
tuple with as many binary attributes (e.g., ‘true’ or ‘false’) as are the possible
items that can be bought by a customer.

Queries on the structure of the decision trees are not easily expressed either.
Indeed, the framework proposed in this article focuses on the representation
of the semantics of the trees (the function they represent) rather than on
their structure, as in [13,14] 6. One advantage of the proposed framework in
comparison with those in [13,14] is that certain operations, such as using the
decision tree for prediction, become straightforward (it is just a join operation).
Conversely, queries about the structure, such as asking which attribute is at the
root of a decision tree, become cumbersome. An alternative would be to add to
the framework separate mining views describing the structure of the decision
trees, according to the preferences of the user. Including characteristics of the
patterns as attributes may simplify the formulation of constraints as queries
(e.g., Examples 3 and 4, Section 2). The schema presented in this article is in
fact one possible instantiation of the proposed framework; the mining views
with the characteristics of the patterns can always be extended with other
characteristics, even if redundant.

6 Although, through the use of wild-cards, some information about the model structure
is still available; for example, the attribute at the root would never have a wild-card value.
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7.2 Extraction of Constraints

The proposed constraint extraction algorithm is currently able to extract the
following types of constraints:

– Structural: minimal and maximal size of itemsets, association rules as
well as their components (antecedent and consequent), or decision trees.

– Syntactic: a certain attribute-value pair must appear in an itemset, the
antecedent of a rule, consequent of a rule, or a decision tree.

– Interestingness measures: minimum or maximum support, minimum or
maximum confidence, and minimum or maximum accuracy.

– Conjunctions of the constraints detailed above.

Note, however, that any constraint expressible in SQL can be used with
our system, even if it is not explicitly extracted by the constraint extraction
algorithm. Those that are not yet recognized may affect the efficiency of the
system, but not its correctness, since the DBMS will consider them anyway to
filter the results before showing them to the user. An example is the “maximum
accuracy” used in Example 5, Section 2. The main reason for not recognizing
such constraint is that the constructions for expressing it are non-trivial in
SQL, requiring sub-queries and aggregations. In any case, Section 8 briefly
discusses a possible strategy to extract constraints such as the “maximum
accuracy”.

There could also be the situation in which constraints extracted by the
system are not yet exploited by the current available data mining algorithms,
e.g., the algorithm Clus-EX, which is not capable of exploiting syntactic
constraints. In this case, the system may store more decision trees than those
necessary to answer a given query. Again, this is not a fundamental problem,
since the non-exploited constraints are used by the DBMS to filter the query’s
results.

7.3 Extending the Mining Views Framework With Other Types of Patterns

Some data mining tasks that can be performed in SIQL and DMX, such as
clustering, cannot currently be executed with the proposed mining views. On
the other hand, note that one could always extend the framework by defining
new mining views representing different patterns. More specifically, to extend
the proposed system with a new kind of pattern, we first need to specify
the schema of the relational tables (or mining views) that will represent the
complete output of such a pattern mining task.

In addition to the tables, the pattern mining algorithm to be triggered by
the DBMS must also be specified, considering the exhaustiveness nature of the
queries the users are allowed to write. Such algorithm should also be, in the
best case, able to explore as many constraints as possible. However, as already
pointed out in this section, the non-exploitation of constraints does not affect
the effectiveness of the system. Once the tables and data mining algorithm are
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defined, the constraint extraction algorithm needs to be adapted to consider
any new structural or syntactic constraints, as well as new interestingness
measures.

8 Conclusions

In this article, we described a practical inductive database system based on
virtual mining views. The development of the system has been motivated by
the need to provide an intuitive framework that covers a wide variety of models
in a uniform way, and enables to easily define meaningful operations, such
as prediction of new examples. We show the benefits of its implementation
through an illustrative data mining scenario. In summary, the main advantages
of our system are the following:

– Satisfaction of the closure principle: since, in the proposed system,
the data mining query language is standard SQL, the closure principle is
clearly satisfied, as we showed with the scenario in Section 5.

– Flexibility to specify different kinds of patterns: our system provides
a very clear separation between the patterns it currently represents, which
in turn can be queried in a very declarative way (SQL queries). In addition
to itemsets, association rules and decision trees, the flexibility of ad-hoc
querying allows the user to think of new types of patterns which may be
derived from those currently available. For example, in Section 5 we showed
how emerging patterns [28] can be extracted from a given table T with an
SQL query over the available mining views Concepts and Sets .

– Flexibility to specify ad-hoc constraints: the proposed system is
meant to offer exactly this flexibility, i.e., by virtue of a full-fledged query
language that allows ad-hoc querying, the user can think of new constraints
that were not considered at the time of implementation. A simple example
is the constraint area, which can naturally be computed with the frame-
work.

– Intuitive way of representing mining results: in our system, pat-
terns are all represented as sets of concepts, which makes the mining views
framework as generic as possible, not to mention that the patterns are
easily interpretable.

– Support for post-processing of mining results: again, thanks to the
flexibility of ad-hoc querying, post-processing of mining results is clearly
feasible in the proposed inductive database system.

We identify four directions for further work. Currently, the mining views
are in fact empty and only materialized upon request. Therefore, inspired by
the work of Harinarayan et al. [33], the first direction for further research is
to investigate which mining views (or which parts of them) could actually be
materialized in advance, as it is too expensive to materialize all of them. This
would speed up query evaluation. Second, the constraint extraction could be
improved so as to incorporate a larger variety of constraints. For example,
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constraints such as “the maximum accuracy” are, at the current time, not
recognized and hence not filtered out. One direction we want to explore in
this perspective is dynamic optimization, where the result of one part of the
query or of a sub-query can be used to constrain another part. Third, to mine
datasets in the context of, e.g., market basket using the current system, one
would need to first pre-process the dataset that is to be mined, by changing its
representation. Since this pre-processing step may be laborious, an interesting
direction for future work would then be to investigate how this type of datasets
could be treated in a easier way by the system. Finally, the system developed
so far covers only itemset mining, association rules and decision trees. Another
direction for further work is to extend it with other models, considering the
exhaustiveness nature of the queries the users are allowed to write.
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