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ABSTRACT

Context. Classical Be stars are hot non-supergiant stars surroundedby a gaseous circumstellar disk that is responsible for the observed
IR-excess and emission lines. The influence of binarity on these phenomena remains controversial.
Aims. δ Sco is a binary system whose primary suddently began to exhibit the Be phenomenon at the last periastron in 2000. We want
to constrain the geometry and kinematics of its circumstellar environment.
Methods. We observed the star between 2007 and 2010 using spectrally-resolved interferometry with the VLTI/AMBER and
CHARA/VEGA instruments.
Results. We found orbital elements that are compatible with previousestimates. The next periastron should take place around July 5,
2011 (±4 days). We resolved the circumstellar disk in the Hα (FWHM = 4.8±1.5 mas), Brγ (FWHM = 2.9±0.5 mas), and the 2.06µm
Hei (FWHM = 2.4 ± 0.3 mas) lines as well as in the K band continuum (FWHM≈ 2.4 mas). The disk kinematics are dominated by
the rotation, with a disk expansion velocity on the order of 0.2 km s−1. The rotation law within the disk is compatible with Keplerian
rotation.
Conclusions. As the star probably rotates at about 70% of its critical velocity the ejection of matter doesn’t seems to be dominated
by rotation. However, the disk geometry and kinematics are similar to that of the previously studied quasi-critically rotating Be stars,
namelyα Ara,ψ Per and 48 Per.

Key words. Techniques: high angular resolution – Techniques: interferometric – Stars: emission-line, Be – Stars: winds, outflows–
Stars: individual (δ Sco) – Stars: circumstellar matter

1. Introduction

Classical Be stars are close-to-main-sequence hot stars that show
or have shown infrared-excess and emission lines in their spec-
tra. Such features stem from a dense gaseous circumstellar envi-
ronment. However, the presence of a diluted wind with a ter-
minal velocity of several hundreds of km s−1 have also been
deduced from ultraviolet spectroscopy (Marlborough & Peters
1986). Consequently, taking into account the fact that theyare
also fast rotators, a generally accepted view of these objects is
that their circumstellar environment consists of two distinct re-
gions: a dense equatorial disk dominated by rotation where most
of the infrared radiation and emission lines are produced and a
more diluted polar wind responsible for the highly broadened
ultraviolet lines.

There is general agreement on the importance of stellar rota-
tion on the ejection of matter and the break of the spherical sym-
metry of the circumstellar environment. However, the question
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of whether or not additional physical processes are needed to
produce ejection remains uncertain. Taking into account effects
of gravitational darkening, Frémat et al. (2005) derived amean
value for the average rotational velocity of Be stars on the order
of 88 % of their critical velocity (Vc) thus insufficient to fully ex-
plain the ejection of matter. In a statistical study of the rotation
velocity of 462 Be stars Cranmer (2005) found that early type
Be stars (O7-B3) exhibit a roughly uniform spread of intrinsic
rotation speed extending from 40 % up to 100 %Vcrit, whereas
late types (B3-A0) are all quasi-critical rotators. This isa strong
clue that rotation is essential in the formation of circumstellar
envelopes for late type Be stars, whereas other physical mecha-
nisms such as radiative pressure, pulsations or magnetism may
dominate the ejection of matter for some of the earlier spectral
type Be stars.

First VLTI/AMBER observations of Be starsα Ara
(Meilland et al. 2007a) andκ CMa (Meilland et al. 2007b)
have shown evidence of different geometries and kinematics,
reinforcing the hypothesis of the heterogeneity of this group
of stars in terms of mass-ejection processes (Stee & Meilland
2009). Moreover, recent discoveries of a companion around
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Table 1.VLTI /AMBER and CHARA/VEGA observing logs forδ Sco.

VLTI /AMBER
Observing Time Telescopes Base Length Position Angle Mode Exposure/Frame Seeing Calibrators

Start (UTC) (m) (o) (s) (”) (HD)
2007-09-05 23:52 D0-H0-G1 67/56/71 -28/82/20 MR-K-F 1.00 0.67 146791
2008-05-03 06:12 A0-K0-G1 90/90/127 -151/-61/-106 LR-HK 0.05 0.79 139663
2008-05-24 04:28 A0-D0-H0 64/32/96 -109/-109/-109 LR-HK 0.05 0.99 139663, 132150
2008-05-25 04:05 A0-D0-H0 64/32/96 -110/-110/-110 LR-HK 0.05 0.81 139663
2008-07-11 01:48 A0-K0-G1 90/90/127 -151/-61/-106 LR-HK 0.05 0.97 139663, 166295
2009-04-11 07:40 A0-K0-G1 90/90/128 -151/-62/-106 LR-HK-F 0.05 0.63 139663
2009-04-11 08:19 A0-K0-G1 90/88/125 -148/-57/-103 LR-HK-F 0.05 0.82 139663
2009-06-04 05:20 E0-G0-H0 30/15/45 -100/-100/-100 LR-HK-F 0.05 0.74 139663
2009-06-04 05:20 E0-G0-H0 28/14/42 -97/-97-/97 LR-HK-F 0.05 0.94 139663
2009-07-30 02:27 D0-H0-G1 67/55/71 -26/83/20 MR-K-F 1.00 0.76 139663
2010-04-15 07:12 D0-H0-G1 64/71/71 72/-172/135 MR-K-F 0.50 0.82 139663
2010-04-15 07:55 D0-H0-G1 63/71/71 76/-167/140 MR-K-F 0.50 0.94 139663
2010-04-19 05:14 D0-H0-G1 60/71/69 60/177/127 HR-K-F (2.17µm) 6.00 0.85 139663
2010-04-20 09:14 D0-H0-G1 54/71/66 84/-159/155 HR-K-F (2.06µm) 6.00 0.60 139663
2010-05-10 05:11 D0-H0-G1 128/90/90 -110/115/-156 LR-K 0.05 0.83 139663
2010-05-10 05:52 D0-H0-G1 126/90/90 -107/119/-90 LR-K 0.05 0.95 139663

CHARA/VEGA
Observing Time Telescopes Length Position Angle Mode Detector r0 Calibrators

Start (UTC) (m) P(o) (cm) (HD)
2010-05-05 08:50 S1-S2 20 -16 MR Red 17 144470
2010-05-05 09:37 S1-S2 21 -25 MR Red 18 144470
2010-05-05 10:14 S1-S2 23 -30 MR Red 17 144470
2010-06-24 04:31 E1-E2 63 -111 MR Red 9 144470

Fig. 1. (u,v) coverage for the complete VLTI/AMBER (left) and CHARA/VEGA (right) 2007-2010 dataset.

Achernar (α Eri, Kervella et al. 2008) andδ Cen (Meilland et
al. 2008) may indicate that the putative effect of binarity on the
Be phenomenon might have been underestimated. In the case of
Achernar, Kanaan et al. (2008) successfully modeled spectro-
scopic variations as a brief equatorial outburst propagating into
the circumstellar environment. Such phenomena probably orig-
inate from the close encounter between the central star and its
companion.

In this context, a detailed study ofδ Sco (HD 143275, HIP
78401) brings new perspectives to the understanding of the Be

phenomenon. This bright southern object has long been stud-
ied and first evidence of its multiplicity was reported by Innes
(1901) using the lunar occultation technique. However, this
work was forgotten for a long time, and the binary nature ofδ
Sco was rediscovered with three different techniques in 1974:
by speckle-interferometry (Labeyrie et al. 1974), lunar occul-
tation (Dunham 1974), and Intensity interferometry (Hanbury
Brown et al. 1974). Using various interferometric measurements
Bedding (1993) deduced an orbit of 10.6 years. However, theδ
Sco system did not show clear evience of the Be phenomenon



Meilland et al.: The binary Be starδ Sco at high spectral and spatial resolution: I. before the 2011 periastron 3

until the last periastron in June 2000. At this epoch, Otero (2001)
found a 0.4 mag brightening of the object. Simultaneous spectro-
scopic observations published in Fabregat et al. (2000) showed
evidence of strong Hα emission lines.

In this work, we present near-infrared VLTI/AMBER
(Petrov et al. 2007) and visible CHARA/VEGA (Mourard et al.
2009) interferometric measurements ofδ Sco. The paper is or-
ganized as follows. In Sect. 2 we present the observations and
the data reduction process. In Sect. 3 modeling of the data inthe
continuum allows us to constrain the binary orbit and physical
parameters. In Sect. 4 we model the emission lines and constrain
the envelope geometry and kinematics. Finally a short discussion
in Sect 5 is followed by conclusions in Sect. 6.

2. Observation and data reduction

2.1. VLTI/AMBER

We initiated an interferometric follow-up ofδ Sco soon after the
opening of the VLTI/AMBER instrument to the scientific com-
munity. The star was then regularly observed between 2007 and
2010. The corresponding observing log is given in Table 1. Since
this target is bright enough, i.emH ≈ mK ≈ 2.4, all observations
were carried out using the 1.6 m auxiliary telescopes (AT). Low
Resolution (R = 30), Medium Resolution (R = 1500), and High
Resolution (R = 12000) spectral modes were used during the
campaigns. The VLTI fringe tracker FINITO was used for all
observations except those in 2008.

The data were reduced using the AMBER data reduction
softwareamdlib, version 2.2. (Tatulli et al. 2007). The aver-
age raw complex visibility and closure phase was determined
using the standard method, keeping the 20% of the frames with
the higher SNR ratio. The interferometric calibration was then
done using custom scripts described in Millour et al. (2008)1.
The (u,v) coverage for all observations is plotted in Fig 1.

Oscillations due to the binarity ofδ Sco are seen in all LR
and MR observations expect those of 2008-05-03. Moreover
three emission lines (Brγ, Hei 2.06µm and Brδ) Fig 2 are clearly
visible in the MR observations as shown in Fig. 2.

2.2. CHARA/VEGA

δ Sco (mV ≈ 2.3) was observed with the CHARA interfer-
ometer (ten Brummelaar et al. 2005) using the newly available
VEGA instrument (Mourard et al. 2009). This 2-4 telescope vis-
ible beam-combiner has currently the highest spatial resolution
(θmin = 0.3 mas at 0.4µm with the 330m baseline) and high-
est spectral resolution for an optical/IR interferometer (up to
R = 30000 ). Observations were carried out in May and June
2010 using the MR mode centered on the Hα line (656.3nm).
We obtained four measurements, three with the S1-S2 baseline
(≈ 30 m), and one with the WI-W2 baseline (≈ 70 m). The log
of the observations including the star used as an interferometric
calibrator are shown in Table 1.

The data were reduced using the standard CHARA/VEGA
reduction software developed by the VEGA team and described
in Mourard et al. (2009). This software offers two data reduction
modes, the first based on spectral density analysis and the second
on the cross-spectral scheme.

1 The scripts are available to the community at the following web-
page:http://www.mpifr-bonn.mpg.de/staff/fmillour

Fig. 2. Example of a spectrally resolved VLTI/AMBER mea-
surement for one baseline in MR mode. The oscillations of the
visibility and phase plotted as the function of the wavelength are
due to the binarity of the object. This figure also exhibit effects
of theδ Sco circumstellar environment geometry and kinematics
in the Brγ, Hei and Brδ emission lines.

3. The binary system

3.1. Calculating the binary separation

We used theLITpro2 model fitting software for optical/infrared
interferometric data developed by the Jean-Marie Mariotti
Center (JMMC) to analyze our data. It is based on the
Levenberg-Marquardt algorithm, that allows from a set of ini-
tial values of the model parameters to converge to the closetχ2

local minimum. It also include tools to facilitate the search for
the global minimum.LITpro calculates an error on the fitted
parameters based on theχ2 value at the minimum. It uses
data error estimates based on the OI FITS format, which
does not include error correlation estimates. Therefore, in
some cases, LITpro can provide underestimated errors on
the parameters.

Since the aim of this first study is to refine the previous de-
termination of the binary orbit, we only used AMBER LR-K
and MR-K data, where the binary signal is clearly visible. Inour
analysis, we also neglect signal coming from the K band emis-
sions lines visible in Fig 2.

The primary is modeled as a uniform disk to take into ac-
count partial resolution of its circumstellar environmentin the
continuum, whereas the companion is modeled as a point like
source. Consequently our model has only 4 free parameters: the

2 LITpro software available at http://www.jmmc.fr/litpro

http://www.mpifr-bonn.mpg.de/staff/fmillour
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Table 2.2007-2010 evolution of theδ Sco binary system determined from our VLTI/AMBER observations.

Date Model parameters Separation in polar coordinates
x y F1 D1 χ2

r sep θ

(mas) (mas) (mas) (mas) (deg)
2007-09-05 -3.9±0.3 -168.9±0.3 0.96±0.06 1.7±0.4 2.8 168.9 1.3
2008-05-03 - - 1.00 1.7±0.6 10 - -

2008-05-24/25 -7.8±0.4 -163.5±1.0 0.96±0.01 1.4±0.1 6.1 163.7 2.7
2008-07-11 -6.5±0.4 -163.0±0.5 0.99±0.03 0.9±0.1 1.2 163.1 2.3
2009-04-11 -11.5±1.0 -156.8±1.0 0.98±0.02 2.0±0.1 3.6 157.2 4.2
2009-06-04 -12.7±0.5 -146.8±3.0 0.94±0.01 1.7±0.1 0.9 147.3 4.9
2009-07-30 -12.8±1.5 -135.3±2.5 0.93±0.01 2.7±0.1 2.3 135.9 5.4
2010-04-15 -27.7±0.1 -101.6±0.1 0.94±0.02 1.9±0.5 2.9 105.3 15.3
2010-05-10 -22.6±0.1 -96.3±0.1 0.95±0.1 1.4±0.1 2.4 98.9 13.2

binary separation in Cartesian coordinates (x and y) where x
(resp.y) is counted positive toward the east (resp. north), the
relative flux of the primary to the total flux (F1), and its diameter
(D1).

The result of the model-fitting is presented in Table 2. The
binary separation decreased from about 170 mas in 2007 to 100
mas in 2010.The estimated error from LITpro, in average
0.8 mas on x and y, is reported in this table. The data points
scatter around the fitted orbit (Sect. 3.2) is of the order of
7 mas. Therefore, our error estimates are very likely un-
derestimated.The K-band primary relative fluxF1 is varying
from 92 to 100 % of the total flux. However, this variation is
linked to the spatial frequency sampling since it depends on
the baseline length and spectral resolution. The minimum val-
ues of F1 are obtained for the MR observations. For the LR
ones its value varies from 98±1% for observations made with the
longest triplet A0-K0-G1 to 94 % for the shorter triplet E0-GO-
H0. By studying the measurements with the intermediate triplet
A0-D0-H0, we clearly see a change in the oscillation amplitudes
from the short baselines to the largest. Such a variation could
have been a consequence of resolving the companion. However,
since these oscillation amplitudes determined using observations
made in MR and LR modes for the same baseline length are
mutually inconsistent, this clearly indicates that it comes from
a technical problem due to the sampling of oscillations. Finally,
we can deduce that the amplitudes measured in MR mode are not
biased by this spatial frequency sampling effect. Thus the real K-
band relative flux of the primary is on the order of 93±1%.

According to almost all measurements, the primary com-
ponent is partially resolved. Modeling it as a simple uniform
disc we can derive a diameter of 1.6±0.6 mas. Adopting the
stellar radius from Carciofi et al. (2006), 7R⊙, and considering
a distance of 150 pc (van Leeuwen 2007), this corresponds to
25.7±9.6R⊙, i.e. 3.67R⋆. This gives us a lower limit of the cir-
cumstellar disk extension in the K band for the case where it
fully dominates the primary K band flux. If only half of the pri-
mary K band emission would originate from the disk, as forα
Ara (Meilland et al. 2007a) orκ CMa (Meilland et al. 2007b), its
extension would be on the order of 2.4 mas, i.e. 4.6R⋆.

3.2. The orbital elements

3.2.1. Previous work

Since the rediscovery of its binarity in 1974,δ Sco has been ob-
served several times using speckle-interferometry, mainly pub-
lished in McAlister & Harkopft (1988). A first attempt to
constrain its orbit using this set of data as well as optical-
interferometry data from the MAPPIT experiment was by

Bedding (1993). New speckle-interferometric measurements al-
lowed Hartkopf et al. (1996) to derive more accurate and sig-
nificantly different parameters. Using the same dataset comple-
mented by radial velocity measurements close to the 2000 peri-
astron, Miroshnichenko et al. (2003) refined the previous anal-
ysis. Tango et al. (2009) have used the same dataset but with a
more consistent model-fitting algorithm from Pourbaix (1998)
to estimate the orbit. Finally the most recent analysis ofδ Sco
orbit was by Tycner et al. (2011) using 96 measurments from
taken with the Navy Prototype Optical Interferometer (NPOI).
The resulting orbital elements determined in these five papers
are presented in Table 3.

The periastron passage (T0) and the eccentricity are ex-
tremely well constrained by the radial-velocity measurements
and small uncertainties remain for the orbit angular parameters
i, ω, andΩ. The main differences between the values of the or-
bital elements derived by two latest and most complete studies
are the orbit period (P) and major-axis (a). One important pa-
rameter for the ongoingδ Sco observing campaigns is the exact
date of the next periastron. According to Miroshnichenko etal.
(2001) it should take place in 2011 on April 9, whereas Tango et
al. (2009) predict that this will occur between May 30 and June
14 and Tycner et al. (2011) that the next periastron passage is
expected to occur on UT 2011 July 6±2 d.

3.2.2. This work

All our measurements are plotted in Fig 3. They are roughly
compatible with the most recent orbits determined by Tango et
al. (2009) and Tycner et al. (2011) that are over-plotted on this
figure. Other measurements available from theFourth Catalog
of Interferometric Measurements of Binary Star3 are also over-
plotted.

In Cartesian coordinates theχ2 for the separation measure-
ments is given by:

χ2
sep(P, T0, a, e, i, ω,Ω) =

Nsep∑

i=1


( xi − x̂i

σx,i

)2
+

(yi − ŷi

σy,i

)2
 (1)

where xi and yi is the measured binary separation in
Cartesian coordinates for the Nsep=150 measurements (i.e, 96
from Tycner et al 2011, 46 from the USNO database, and 8 from
our measurements),σx,i andσx,i, the uncertainties of the mea-
surements,̂xi and̂yi the modeled separation at the corresponding
epochs.χ2

sep is a function of the 7 orbital parameters:P, T0, a, e,
i, ω, andΩ.

3 http://ad.usno.navy.mil/wds/int4.html
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Fig. 3. The visual orbit ofδ Sco. The gray circles are binary separations taken from theFourth Catalog of Interferometric
Measurements of Binary Star, the blue ones from Tycner et al. (2011) and the red ones are our new measurements derived from
our VLTI/AMBER data. The green and blue solid lines represent the orbits derived by Tango et al. (2009) and Tycner et al. (2011),
respectively. Our best-fit orbit is plotted as an orange solid line.

Fig. 4. δ Sco radial velocity around the last periastron. Data (red circles) are taken from Miroshnichenko (2001). The green and
orange lines represent Tango et al. (2009) and our best-fit model, respectively.

As in Tango et al. (2009) we also use radial velocities from
Miroshnichenko et al. (2001) plotted in Fig 4 in our model-fitting
process. Theχ2 for these measurements is given by:

χ2
vrad

(T0, P, e, ω,V0,KA) =

Nvrad∑

i=1

(vradi − v̂radi

σvradi

)2
(2)

wherevrad, i is the measured radial velocity for theNvrad = 30
measurements,σvrad,i the corresponding uncertainty on the mea-
surements, and̂vradi the modeled radial velocities.χ2

vrad
is a func-

tion of the orbital parametersT0, P, e, andω and of two addi-
tional parameters: the systemic radial velocity of the systemV0,
and the amplitude of the velocity variationsKA.

We simultaneously fit the visual separation measurements
and the radial velocities by minimizing the function:

F(P, T0, a, e, i, ω,Ω,V0,KA) = χ2
sep+ χ

2
vrad

(3)

To minimize F we used thedownhill simplex method by
Nelder & Mead (1965). The starting parameters were set in four

different ways. In the three first fitting processes we used the
orbital elements from Tango et al. (2009), Miroshnichenko et al
(2001), and Tycner et al (2011). Finally, in the last fitting process
we used 104 random starting positions. For each starting position
the simplex algorithm was allowed to converge until the differ-
ence inχ2 between two consecutive models is less thanǫ = 10−4.

Using these initial guesses the fit converged to the same so-
lution. The best fit model parameters are shown in Table 3 and
the corresponding visual orbit and radial velocity curve are over-
plotted on Figs 3 and 4, respectively. We found values that fully
agrees with the latest estimates from Tycner et al.(2011). This
is reasonable taking into account that their measurements dom-
inates the sample both in term of number (96 out of 150) and
uncertainties. Finally, we can conclude that the next periastron
should take place around July 5, 2011 (±4 days).

3.3. The binary system physical parameters

We can constrain the total mass of theδ Sco binary system us-
ing Kepler’s third law and our estimation of the binary period
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Table 3.The orbital elements ofδ Sco.

Orbital el. Bedding 1993 Hartkopf et al. 1996 Miroshnichenko Tango et al. 2009 Tycner et al. 2011 This work
et al. 2001

P (yr) 10.5 10.59± 0.075 10.58 10.74±0.02 10.817± 0.005 10.811±0.01
T0 (yr) 1979.3 1979.41± 0.14 2000.693± 0.008 2000.69389±0.00007 2000.6927± 0.0014 2000.6941±0.003
a (mas) 110 106.7± 6.7 107 98.3± 1.2 99.1± 0.1 98.74±0.07

e 0.82 0.92± 0.02 0.94± 0.01 0.9401± 0.0002 0.9380± 0.0007 0.9403±0.0008
i (o) 70 48.5± 6.6 38± 5 38± 6 32.9± 0.2 30.2±0.7
ω(o) 170 24± 13 -1± 5 1.9± 0.1 2.1± 1.1 0.7±2.9
Ω(o) 0 159.6± 7.6 175 175.2± 0.6 172.8± 0.9 174.0±2.5

V0 (km s−1) 6 -6.72±0.05 -7 -6.7±0.2
KA (km s−1) 23.83±0.05 ? 23.9±0.1

and semi major-axis. Since this last parameter is given in an-
gular units (i.e. mas), the binary system distance is also needed
for the mass calculation. Using the distance inferred from the
Hipparcos parallax (Perryman et al. 1997), i.e.d = 123 pc, we
derived a total mass ofMA+B = 15.2± 5 M⊙. On the other hand,
using the distance deduced from van Leeuween (2007) revised
Hipparcos parallax, i.e. d= 150pc, we obtained a total mass
MA+B =27.7± 10 M⊙. The second estimation is in agreement
with the total mass determined previously by Tango et al. (2009),
i.e. 23±10M⊙.

From physical modeling of the spectral energy distribution,
Carciofi et al. (2006) estimated the mass of the primary to be
on the order ofMA = 14M⊙. Assuming that both stars have
the same age and are currently on the main sequence, and con-
sidering the flux ratio measured in the K band, i.e.FB/FA =

0.07/0.93= 0.075± 0.012, the secondary should also be a quite
massive hot star. Thus, it seems thatMA+B = 15.2±5M⊙ is quite
unrealistic. On the other handMA+B = 27.7± 10M⊙ would im-
plies that both components have approximatively the same mass.

Finally, Tango et al. (2009) give an estimation of the sec-
ondary mass ofMB = 8±3.6 M⊙. From the mass ratio they calcu-
lated, i.e.MA/MB = 1.957±0.011 we can deduce the Luminosity
ratio using Mass-Luminosity relation from Griffiths et al. (1988):

LB

LA
=

( MB

MA

)3.51±0.14
(4)

Thus, we can deduce thatLB/LA = 0.095 ± 0.01. This
is compatible with our K band flux ratio measurements, i.e.
FB/FA = 0.075± 0.012. This gives an additional indication that
the two components have similar spectral classes. Considering
the measured flux ratio, this would imply that the secondary
spectral class ranges between B2V and B4V.

4. The envelope geometry and kinematics

During our observing campaign,δ Sco was observed three times
with AMBER in medium resolution (MR): in 2007, 2009, and
2010. All the observations were centered on the fist half of the
K band (1.95-2.25µm) in order to study the circumstellar envi-
ronment geometry and kinematics in the Brγ emission line. The
quality of the data taken in 2007 was too poor to detect any signal
in the line, whereas, as seen in Fig 2, visibility and phase vari-
ations were successfully detected in 2009. We also discovered
that two other K-band emission lines were strong enough to sup-
port the kinematics study: the Hei line located at 2.06µm, and
the Brδ line around 1.94µm. However, the latter is located too
close to the edge of the K-band so that the data SNR is signifi-
cantly lower than for the two other lines. We should have decided
to study the circumstellar environment geometry and kinematics

in MR mode, as it was already done for two other classical Be
stars:α Ara (Meilland et al. 2007a) andκ CMa (Meilland et al.
2007b). However, since the star was bright enough, we decided
to take advantage of the eight times higher spectral resolution
offered by the HR mode. With this resolution ofR = 12000,
kinematics details of about 25 km s−1 are achievable.

Consequently, in 2010,δ Sco was observed twice with
the VLTI/AMBER in HR mode. The first observations were
centered on the Brγ line and the second on the Hei line.
Unfortunately, we did not manage to calibrate the Hei obser-
vation properly. However, this does not affect either the differ-
ential visibilities and phases or the closure phase. Finally, quasi-
simultaneous medium-spectral resolution observations centered
on Hα were carried out with the CHARA/VEGA instrument.

4.1. A qualitative analysis of the high-resolution data

The differential visibilities and phases, the closure phases (only
for VLTI /AMBER data), and line profiles for these observations
are presented in Fig 5. Their morphology is similar to those
shown by Meilland et al. (2007a) for the Be starα Ara. The “S”
shape of the phase variation and the “W” shape of some visibil-
ity variations clearly favor the hypothesis that the circumstellar
environment velocity field is dominated by rotation. Using ei-
ther differential visibility or phase, we can roughly determine
the major-axis position angle in the plane of the sky for a purely
rotating disk knowing that:

• The more pronounced “V” shape of the visibility i, the closer
the baseline is to the minor axis. The more pronounced “W”
shape is related to a position closer to the major-axis.
• For the same projected baseline length, the amplitude of the

differential phase variation through the emission line is zero
if the baseline is aligned with the minor-axis and maximal if
aligned with the major-axis. This is true only if the disk is
not fully resolved by the interferometer. For larger baselines,
the phase amplitude first saturates and then drops, thus sec-
ond order effects become visible causing the phase to lose its
simple ”S” shape.

Thus, both the phase and visibility variations through the ob-
served lines favor the hypothesis of a major-axis roughly inthe
North-South orientation.

4.2. The kinematic model

To model the wavelength dependence of the visibility, the dif-
ferential phase, and the closure phase in the observed emission
lines we use a simple kinematic model developed for fast model
fitting of an expanding and/or rotating thin equatorial disk. This
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Fig. 5. Visibility and phase variations in the Hα, Brγ, and Hei emission lines obtained from the high-spectral-resolution
CHARA/VEGA and VLTI/AMBER observations obtained in 2010 (blue line and circles). The best-fit kinematic-model for this
dataset is over-plotted as a red line. The black dotted line (upper right figure) corresponds to an Hα profile taken from the BeSS
database and used to determine the real line EW.



8 Meilland et al.: The binary Be starδ Sco at high spectral and spatial resolution: I. before the 2011 periastron

model is described in detail in Delaa et al. (2011). The star is
modeled as a uniform disk, the envelope emission in the contin-
uum and the emission line has an elliptical Gaussian distribution
with a flattening due to a projection effect of the geometrically
thin equatorial disk, i.e.,f = 1/cos(i), where i the the object
inclination angle. The radial and azimuthal velocities aregiven
by:

Vr = V0 + (V∞ − V0)
(
1−

R⋆

r

)γ
(5)

Vφ = Vrot

(
r

R⋆

)β
(6)

For each spectral channel in the line an iso-velocity map pro-
jected along the line of sight is then calculated and multiplied
by the whole emission map in the line. Finally the whole emis-
sion map for each wavelength consists of the weighted sum of
the stellar map, the disk continuum map and the emission line
map within the spectral channel under consideration. The map
is then rotated by the major-axis PA, and scaled using the stellar
radius and distance. A 256x256x100 data-cube (i.e. 256x256for
100 wavelengths) can be computed in less than one second on
a standard computer. Finally, visibilities, differential phases, and
closure phases are extracted using two-dimensional fast-Fourier
transforms (FFT). We note that the pixel size was set to avoid
sampling problems.

The model free-parameters can be classified into 4 cate-
gories:

1. The global geometric parameters: stellar radius (R⋆), dis-
tance (d), inclination angle (i), and disk major-axis position
angle (PA).

2. The global kinematic parameters: stellar rotational velocity
(Vrot), expansion velocity at the photosphere (V0), terminal
velocity (V∞), exponent of the expansion velocity law (γ),
and exponent of the rotational velocity law (β). These pa-
rameters describe the global disk kinematics and thus also
should not depend on the observed line.

3. The disk continuum parameters: disk FWHM in the contin-
uum (ac), disk continuum flux normalized by the total con-
tinuum flux (Fc). These parameters depends on the observed
wavelength. As the continuum visibility is highly affected by
the companion and cannot be constrained properly with our
few measurements we decided to neglect this contribution in
our modeling. That is why we have chosen to plot differential
visibilities (i.e., visibility in each spectral channel divided by
the mean visibility) instead of calibrated visibility in Fig 5.

4. The disk emission line parameters: disk FWHM in the line
(al) and line equivalent width (EW). These parameters are
different for the three emission lines.

Consequently, for simultaneous fit of these three emission
lines, we need a model with a total of 15 free parameters. To
reduce the number of free parameters we have finally decided:

• to set the distance to that derived from Hipparcos (von
Leeuween 2007).
• to use typical values for the expansion velocity law, i.e.,γ =

0.86 andv0 = 0 (Stee & Araujo 1994; Stee et al. 1995).
• and to estimate the stellar radius from the fit of the Spectral

Energy Distribution (SED). In Carciofi et al. (2006) they suc-
cessfully fit the SED usingR⋆ = 7R⊙, Teff = 27000K, and
d = 123 pc. In Section 3.3, we found that the distance is bet-
ter given by the new Hipparcos parallax estimation from van

Leeuween (2007), i.e.d= 150 pc. We managed to fit the SED
using this distance, the same Teff as in Carciofi et al. (2006),
and a stellar radius ofR⋆ = 150÷ 123× 7 ≈ 8.5R⊙.

Moreover, the lines EW are easily and efficiently constrained
by the spectra plotted in Fig 5 except for the VEGA/CHARA Hα
line for which the intensity is underestimated by a factor 2-3 due
to a saturation of the photon counting algorithm that is affecting
the line EW but not the corresponding visibilities, as already out-
lined in Delaa et al. (2010). Thus the ”true” Hα line profile used
to compute the EW was taken from the BeSS database4 where
we found spectra recorded at the same epoch as our interferomet-
ric VEGA/CHARA measurements. Finally, running hundreds of
models, we tried to constrain the nine remaining free parame-
ters. Values of the best-fit model parameters are presented in
Table 4. The corresponding differential visibilities and phases,
closure phases, and lines profiles are overplotted in Fig 5.

Table 4.Values of the best-fit kinematic model parameters.

Parameter Value Remarks
Global geometric parameters

R⋆ 8.5 R⊙ from the fit of the SED
d 150 pc from von Leeuween (2007)
i 30 deg from the fit of the binary

PA -12± 7 deg
Global kinematic parameters

Vrot 500±50 km s−1 ≈ Vc

V0 0 km s−1 from Stee et al. 1995
V∞ 0 km s−1 <10m.s−1

γ 0.86 from Stee et al. 1995
β 0.5±0.1 Keplerian rotation

Hα disk geometry
aHα 9.0±3.0 R⋆ = 4.8±1.5 mas

EWHα 7.0±1.0 Å
Brγ disk geometry

aBrγ 5.5±1 R⋆ = 2.9±0.5 mas
EWBrγ 6.5±0.5 Å

He i disk geometry
aHe i 4.5±0.5 R⋆ = 2.4±0.3 mas

EWHe i 8.5±0.5 Å

4.3. The circumstellar disk extension

We managed to constrain significantly the disk extension in Hα,
Brγ, and Hei. Modeled as a Gaussian distribution the respective
FWHM areaHα = 9.0 ± 3.0R⋆, aBrγ = 5.5 ± 1R⋆, andaHeI =

4.5±0.5R⋆. The disk extensions in the infrared lines are compat-
ible with those derived by Millan-Gabet et al. (2010) from 2007
Keck-Interferometer measurements, i.e.aBrγ = 3.6± 0.6 R⋆ and
aHeI = 4.2± 0.8R⋆. Moreover, the size of the Hα emission ob-
tained from our CHARA/VEGA measurements is also roughly
compatible with the Millan-Gabet et al. (2007) estimation using
the line EW, i.e., 14.9R⋆. Consequently, it seems that the disk
did not grow or shrink during the 2007-2010 period.

However, if we compare our measurements to the physical
modeling by Carciofi et al. (2006) from 2005 photometric mea-
surements, i.e. disk outer radius of 7R⋆, it appears that the disk
might have grown between 2005 and 2007 by a factor of at least
1.3. Assuming that the extension of the Hα emission represents

4 http://basebe.obspm.fr
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the physical outer edge of the circumstellar disk, we can esti-
mate the disk expansion velocity. Between 2000 and 2005 the
disk has grown from the stellar surface (i.e. 1R⋆) to 7R⋆. This
represents an average velocity of 0.24 km s−1. Between 2005 and
2007 the disk has grown by an additional 2R⋆, which corre-
sponds to an expansion velocity of 0.19 km s−1. These values are
the same order of magnitude as those derived for the same object
by Miroshnichenko et al. (2003) using the separation of double-
peaked emission line profiles assuming Keplerian rotation,and
for another variable Be star, Achernar (α Eri), by Kanaan et al.
(2008). This value also fully agrees with the model of a viscous
decretion disk proposed by Lee et al. (1991) to explain the for-
mation of Keplerian disks around fast rotation Be stars.

Applying a 0.2 km s−1 expansion velocity between 2007 and
2010, we should have obtained a disk extension of 12.3R⋆ in
2010 which is marginaly larger than the extension found in Hα.
However one have to keep in mind that if the disk extends too
far from the central star, the density and temperature woulddrop
too low to produce a noticeable Hα emission.

4.4. The circumstellar disk kinematics

Using our simple kinematic model we managed to put con-
straints on the disk expansion and rotation velocity laws. As al-
ready stated in Section 4.1, the disk kinematics are fully domi-
nated by rotation. An upper limit of 10 km s−1 can be set on the
expansion velocity. This is compatible with the value of about
0.2 km s−1 derived in the previous section using arguments on
the disk evolution.

Our estimated stellar radius, i.e.R⋆ = 8.5R⊙, is an aver-
age photometric radius. Thus, if the star is rotating close to the
breakup velocity its equatorial radius will be larger, i.e.on the
order of 10R⊙, whereas the polar radius will be smaller, i.e.
about 7R⊙. Using the stellar mass estimated from the binary
orbit, i.e. M⋆ = 14M⊙, the stellar breakup velocity is about
Vcrit = 500 km s−1. Consequently, asV rot ≈Vcrit andβ = 0.5,
the circumstellar matter surrounding theδ Sco circumstellar disk
appears to be in Keplerian rotation.

4.5. The disk asymmetry

To our knowledge, these are the first nearly simultaneously
measured spectrally dispersed visibilities with the correspond-
ing differential phases for 3 visible and infrared emission lines,
namely Hα, Hei (2.06µm) and Brγ. These lines are formed at
various distances from the central star as already measuredfor
γ Cas in the Hα, Hβ and Hei 6678 lines by Stee et al. (1998)
and as seen in the previous section where we foundφHα >
φHe i > φBrγ. But compared to Stee et al. (1998) and other recent
work (Carciofi et al. 2006; Millan-Gabet et al. 2010) we have
now a direct access to the kinematics within each line-forming
region with a velocity resolution of about 25 km s−1.

We see from Fig 5 that the differential phases for these 3
lines are, first, well represented by our very simple kinematical
model, and second that they are all exhibiting a typical ”S” shape
of a rotating disk. The amplitude of this ”S” shape is on the order
of ±10◦ which is very similar to the differential phases obtained
by Carciofi et al. (2009) for the Be starζ Tau. To the contrary of
ζ Tau differential phases, our differential phases are all symmet-
rical.ζ Tau phases showed a very asymmetrical ”S” shape with a
smaller amplitude in the blue part of the ”S” curve with respect

to the central line wavelength. This was a clear evidence fora
one-armed spiral structure in theζ Tau disk.

On the other hand, despite these symmetrical differential
phases, our visibilities across these 3 spectral lines are asym-
metrical, especially for Brγ and Hei lines, with a blue wing of
the visibility systematically smaller than the red wing. The line
profiles are also clearly asymmetrical, with Hα and Brγ line
profiles showing aV/R> 1 whereas the S/N and spectral reso-
lution for Hei are not high enough to exhibit any line asymmetry.

Thus,δ Sco’s circumstellar disk is globally rotating, with a
larger (in size) and brighter emitting region in the blue part of
the line, i.e. coming towards us, and a smaller (more compact),
fainter or more absorbed region in the red part of the line, i.e.
rotating away from us. These emitting regions are also responsi-
ble for the Hα and Brγ line profiles withV/R> 1. Moreover,
since the differential phase is symmetrical, it means that the
photocenter of the emitting regions are symmetric with respect
to the central star (or the rotational axis). Therefore, theone-
armed oscillation scenario would difficultly match the inhomo-
geneities detected inδ Sco’s disk since it would have produced
non-symmetrical spectrally resolved visibilitiesand phases as
measured by Carciofi et al. (2009) forζ Tau. In our case, the
binarity of the system should also play an important role in the
shaping and the kinematics of the circumstellar environment. For
example, one could think of a tidally-warped disk from previous
periastron passages of the companion star (like what is described
in Moreno et al. 2011). This definitely needs a dedicated model-
ing effort to really constrain the detected disk inhomogeneities.

5. Conclusion

Using all available binary separation measurments including our
VLTI /AMBER ones, we check the consistency of previous esti-
mates of theδ Sco orbital elements. We found parameters that
totally agrees with the latest work from Tycner et al. (2011).

Thanks to the combination of high spectral and spatial res-
olution we managed to constrain for the first time, not only the
geometry but also the kinematics of theδ Sco circumstellar en-
vironment. As in the case of Be stars with stable or nearly stable
disks such asα Ara (Meilland et al. 2007a),κ CMa (Meilland
et al. 2007b),Ψ Per, and 48 Per (Delaa et al. 2011), the line
emission originates from a dense equatorial disk dominatedby
rotation. As for most of these objects, the rotation appearsto be
Keplerian, with an inner boundary (photosphere/disk interface)
rotating at the critical velocity (Vc). The expansion is negligible
and considering an outburst scenario, should be on the orderof
0.2 km s−1.

Considering the measured vsini, i.e. 175 km s−1, and the
measured inclination angle, i.e. 30.2± 0.7o, the star rotates at
about 70 % of its critical velocity. This could indicate thatthe
stellar rotation is not the main process driving the ejection of
matter from the stellar surface. However, taking into account
possible underestimation of the vsini due to gravity darkening
(Townsend et al. 2004), the star may rotate faster, up to 0.9Vcrit.

Finally, as the measured extension in the Hα line, 4.8±1.5
mas, is on the order of the binary separation at the periastron,
i.e. 6.14± 0.07 mas (i.e., according to Tycner 2011), we expect
strong interaction between the previously ejected matter and the
companion.
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