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Abstract

The asymptotic dynamics of random Boolean networks subject to ran-
dom fluctuations is investigated. Under the influence of noise, the system
can escape from the attractors of the deterministic model, and a thorough
study of these transitions is presented. We show that the dynamics is more
properly described by sets of attractors rather than single ones. We gener-
alize here a previous notion of ergodic sets, and we show that the Threshold
Ergodic Sets so defined are robust with respect to noise and, at the same
time, that they do not suffer from a major drawback of ergodic sets. The
system jumps from one attractor to another of the same Threshold Ergodic
Set under the influence of noise, never leaving it. By interpreting random
Boolean networks as models of genetic regulatory networks, we also propose
to associate cell types to Threshold Ergodic Sets rather than to deterministic
attractors or to ergodic sets, as it had been previously suggested. We also
propose to associate cell differentiation to the process whereby a Thresh-
old Ergodic Set composed by several attractors gives rise to another one
composed by a smaller number of attractors. We show that this approach
accounts for several interesting experimental facts about cell differentiation,
including the possibility to obtain an induced pluripotent stem cell from a
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fully differentiated one by overexpressing some of its genes.

Keywords:
random Boolean networks, dynamical systems, noise, cell types,
differentiation, pluripotent cells

1. Introduction

Random Boolean networks are one of the most thoroughly studied models
of complex systems (Kauffman, 1969).They are particularly interesting due to
their rich dynamical behaviour, which ranges from ordered to pseudochaotic
as some parameters are varied. The critical surface in parameter space which
separates the two regions, sometimes called the “edge of chaos”, has also
attracted considerable interest (Kauffman, 1995)

Besides their abstract properties, random Boolean networks (RBNs for
short) have been initially devised as a model of genetie regulatory networks,
and as such they can be compared with actual experimental data. The avail-
ability of genome-wide gene expression data has allowed interesting compar-
isons between the behaviour of these models and that of real cells in different
cases, including the distribution of perturbations induced by gene knock-
out (Serra et al., 2006) and the time course of synchronized leukemia cells
(Shmulevich et al., 2005). The most remarkable results so far are i) the
demonstration that even Boolean models can describe significant quantita-
tive features of biological systems and #i) the finding of indications in favour
of the hypothesis that real cells might be operating at, or close to the edge
of chaos.

The former fact can be surprising, given the crude approximations which
are used, and in particular the fact that the expression levels of the various
genes are forced to take one of two possible values, while in nature they
are multiple valued. However, the above-mentioned results show that even
Boolean models can provide an adequate description of some experimental
data. There are indeed other models of gene regulation which take into
account the fact that gene expression levels may be very different, as for
example the models that make use of continuous variables (Kaneko, 2006).
However, the use of simplified Boolean models has the unique advantage of
allowing one to deal with very large networks!.

this advantage is shared by a peculiar class of continuous networks, i.e. Glass networks



Models based on ordinary differential equations provide a very rich and
useful description of the phenomena of gene regulation, and they also allow
one to explore the possible role of chaotic dynamics. For computational
reasons they can be applied in those case where the number of genes (or of
those which are really important) is limited. Note also that the validity of
deterministic ODE models can be limited in those cases where the number
of molecules of some gene product is very small, thus making the continuum
approximation questionable.

We think that no single kind of model can capture the whole phenomenol-
ogy associated to these complex systems, so it is appropriate to make use of
more than one type and to check which phenomena are better captured by
one or another. It is also extremely important to ascertain which phenomena
are robust with respect to the modelling choices, so they appear in different
models. It is interesting to observe that, at an abstract level, the overall
picture of cell differentiation which comes out of the model we propose here
shares some important features with important continnum models of the
same phenomenon (Huang, 2009; Kaneko, 2006). This point will be better
specified in the final section 6.

Section 2 of this paper briefly summarizes the main features of RBNs and
reviews the results of these previous studies.

Concerning the biological interpretation of RBNs, one of us (S.A.K.) pro-
posed many years ago to associate their attractors to the various cell types
which can be found in multicellular organisms. This interpretation appears
sound, since cell types correspond to different stable patterns of gene expres-
sion given the same genome. The “genome” corresponds to the topology and
to the choice of the Boolean functions associated to the nodes, therefore the
stable patterns should coincide with the network attractors.

Recently it has been proposed (Huang, 2009; Huang et al., 2009) that
the association of cell types to attractors is in principle able to provide a
dynamical description of two of the most interesting phenomena, i.e. cell
differentiation and the development of cancer, which is richer and more con-
vincing than the classical one.

It has also been observed (Ribeiro and Kauffman, 2007) that in order

(Glass and Hill, 1998); their maximum activation values are however equal for all the nodes,
just like in RBNs (while the decay is exponential in time). Moreover, the behaviour of
these networks is known to resemble that of RBNs in many important aspects.



to associate attractors and cell types one has to take into account the role
of noise: biological hardware (wetware) is error prone, and some regulatory
enzymes are present only in small amounts, so it is certainly possible that
one active node switches to inactive, or vice versa (given that also inhibitory
regulations may be subject to the same level of fluctuations).

A more detailed discussion of the presence and the significance of noise
in biological systems will be given in the final section 6.

In Section 3 of this paper we provide an in-depth analysis of the behaviour
of RBNs subject to random fluctuations.

The typical experiment is the following: for a given network (defined by
a given set of connections and Boolean functions) we let the system evolve
from a set of random initial conditions, so we can find a set of attractors?.
Then we choose one attractor, flip a node and record the new attractor which
is reached by the network. By “flip” here (and from now on in this paper)
we mean changing the state of a node for a single time step - after which the
network is back to its usual operations. We do this for all the nodes of all
the states of the attractor cycle, and of course we repeat the experiment for
various network realizations which share the same global parameters. In the
end, for each network we provide a statistics of the jumps between attractors
induced by single flips. In order to test the robustness of these results with
respect to the level of noise, we also tested the behaviour under double flips.

On the basis of the results of Section 3 we see that the attractors of RBNs
have several interesting features which form the basis for identifying them
with cell types, but that they are unstable with respect to noise. One of the
interesting results is that the probability that, by switching a node chosen
at random, the network moves to a different attractor is rapidly decreasing
with network size. So one might be tempted to ignore the problem of noise-
induced transitions, claiming that they are relevant only for unrealistically
small nets.. But this is not justified, since larger nets have also a larger
number of nodes, so the overall effect is that of making the probability of
moving to a new attractor per unit time an increasing function of network
size (as explained in detail in Section 3).

Noise has therefore to be taken seriously into account. In order to do so
Ribeiro and Kauffman proposed to associate cell types to ergodic attractors

2For large networks this can be a subset of the complete set of attractors, but it is
likely to include those with large basins of attraction.



(ES) rather than attractors. ESs are sets of attractors which can be reached
from one to another via single flips, and which can never be abandoned under
such dynamics (see Section 4 for a formal definition), so they are robust with
respect to noise. Unfortunately the authors found that typically there is only
one ES per network, a result which compromises the possibility to identify
them with different cell types. In Section 4 we confirm this negative result
by investigating a set of networks larger than that of Ribeiro and Kauffman.

However there is a way out of this impasse, which allows one to introduce
sets of attractors which are robust with respect to noise and which are, at the
same time, present in multiple realizations in a single RBN. In considering
the transitions among attractors, a more careful consideration of the physics
of the phenomenon leads us to exclude those transitions which are associated
to very rare events, unlikely to take place during a cell lifetime. Following
this line of reasoning, and generalizing a previous work of ours (Barbieiri
et al., 2009), we introduce in Section 4 the notion of Threshold Ergodic Set
(TES). While all the details are described in Section 4; the key idea is easy to
synthesize: suppose that a particular transition from attractor A to B takes
place only when a particular node (say, node 97) is flipped. This event can be
too rare to be seriously taken into account. Depending upon the noise level,
only those transitions which can take place from a certain number (say 4) of
different positions need to be considered. In this case we set the threshold
in such a way as to ignore all the transitions which take place only from 1, 2
or 3 different positions only.

Note that we are not considering multiple flips, but only single flips, ignoring
those transitions which can take place in a too small number of different
ways.

We show that by modifying the threshold the number of TESs changes:
when the threshold is 0-the TES coincides with the usual ES, and we recover
the result that there is almost always just a single exemplar per net. But by
increasing the threshold the single TES breaks into smaller ones. Ultimately,
when the threshold is high enough each TES is composed by a single attrac-
tor. We refer to TESs composed by two or more attractors as multi-attractor
TESs, or multiplet-TESs, and to TESs composed by one attractor only as
single-attractor TESs, or singlet-TESs. In the following we will sometimes
refer for simplicity to a single-attractor TES as to an “attractor”, although
of course a TES is logically a set of attractors.

In Section 5 we then propose to associate cell types to TESs. This choice
appears natural at this point and presents several advantages:



- TESs are robust to noise;
- there can be several TESs in a single network;

- a TES is a more general concept, which includes, by tuning the thresh-
old, both attractors and ESs, i.e. the other two candidates which have
been proposed in the literature to correspond to cell types.

We also show in Section 5 that the identification of cell types with TESs
provides a satisfactory picture of some very interesting phenomena related
to cell differentiation. In particular, we associate a pluripotent cell to a
multi-attractor TES. The idea is that the physical system wanders-among
the different attractors which compose the TES, spending some time also
in the transients between these different attractors. It is known that there
are various degrees of differentiation, so we tentatively associate them to the
number of different attractors. Therefore a pluripotent cell corresponding to
a TES composed by L different attractors is less differentiated than one com-
posed by @ attractors if L > (). Completely differentiated cells correspond
to single-attractor TESs.

By changing the threshold the number of TESs changes; in particular,
when we increase its value from 0 we see that the initial TES (typically,
only one) breaks into a small set of disjoint TESs, which in turn break if the
threshold is further increased, as shown in Figure 2.

According to this approach, differentiation is associated to an increase of
the threshold. This quantity has been introduced as a mathematical entity,
and the question is open-to which biological feature (if any) it can corre-
spond. We tentatively suggest that the simplest answer is that increasing
the threshold corresponds to lowering the level of noise, i.e. the probability
per unit time that a node switches its state, and of course that lowering the
threshold corresponds to an increase in the level of noise. This is intuitively
plausible, given that the threshold is related to the number of different flips
which can lead from an attractor to another, and is quantitatively analyzed
in Section 5.

These theoretical considerations are consistent with the experimental ob-
servation that pluripotent cells express more genes than differentiated cells,
at lower activity levels (Hu et al., 1997), a fact indicating the presence of
higher noise levels. So our suggestion appears indeed coherent with known
facts. Recent work by Yamanaka and by others (Takahashi and Yamanaka,
2006; Takahashi et al., 2007) have shown that it is possible to transform a
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fully differentiated cell into a pluripotent one by overexpressing some of its
genes. We have replicated this experiment in silico as follows: starting from
a mother undifferentiated cell, described by a multi-attractor TES, we in-
crease the threshold up to the point where at least one single-attractor TES
appears (the completely differentiated cell). We then modify the state of
one or a few nodes of this attractor to a constant 1 (“overexpression”) and,
without modifying the threshold any further, we see that the cell switches
to a multi-attractor TES. This process exactly corresponds, at our abstract
level, to the Yamanaka experiment, and further demonstrates the efficacy of
the proposed picture.

The level of noise might be related to the efficacy of the various control
and repair mechanisms which operate in the cell. This point is considered in
Section 6 where we propose and discuss some hypotheses about the biological
mechanisms which can affect the level of noise. These suggestions are ten-
tative ones, and a major purpose of the present paper is that of stimulating
further theoretical and experimental work concerning the biological meaning
of the threshold and the analysis of the “gene expression noise” level.

So, in Section 6 we discuss also some possible experimental tests which are
inspired by our model. Last but not least, we discuss some critical remarks
and propose indications for further theoretical work.

2. A quick overview of random Boolean networks and of previous
studies

There are excellent reviews of RBNs in literature (Aldana et al., 2003;
Kauffman, 1993) so here we will very briefly summarize only some of their
properties. A RBN'is a directed graph with /N nodes, which can assume
binary values; z;(t) € {0,1} indicates the value of the i-th node (i = 1...N)
at time t. Each node has k;, input connections; in the classical model used
here, k;, is the same for all nodes and the input nodes are chosen randomly
with uniform probability among the remaining nodes (prohibiting loops and
multiple connections). To each node a Boolean function f; is associated,
which determines its value at time ¢ from the values of its inputs at the
previous time step. The Boolean function associated to a node is chosen
randomly with uniform probability among all the possible Boolean functions
of k;, arguments. Both the topology and the Boolean function associated
to each gene do not change in time. The network dynamics is discrete and



synchronous, so fixed points and cycles are the only possible asymptotic
states.

Considering the robustness with respect to small changes in initial condi-

tions, the scaling of the cycle period with the system size and other proper-
ties, it is possible to distinguish three different dynamical regimes: ordered,
critical and chaotic. The most interesting behaviour has been shown by nets
in a critical regime, that is the zone of transition between order and chaos.
Critical RBNs show an equilibrium between robustness and adaptiveness (Al-
dana et al., 2007) and it has been suggested that living organisms live in a
dynamical regime close to the boundary between ordered and chaotic phases
(Kauffman, 1993) For this reason in the present study we will coneentrate
on critical RBNs.
The dynamical regime of a RBN depends upon the average connectivity of
the network and upon the magnetization bias p, which is the probability
that the Boolean functions have the outcome 1. Many works have shown
that if all Boolean rules are accepted the critical regime holds when k;, = 2
and p = 0.5, and we will focus our study on networks with these parameter
values. Recent results support the view that biological genetic regulatory
networks operate close to the critical region. In Serra et al. (2004) the au-
thors considered several experiments where a single gene of S. cerevisiae
has been knocked-out and the expression levels of all genes, in cells with a
knocked-out gene have been compared with those in normal, wild-type cells.
This experiment has been simulated in silico by comparing the evolutions of
two RBNs which start from the same initial conditions, except for the fact
that one gene is permanently fixed to the value 0 in the net which simulates
knock-out. Introducing the notion of avalanche, which is the number of genes
affected by the perturbation, and defining a threshold to binarize the exper-
imental results, one finds that the distribution of avalanches in simulated
RBNs accurately reproduce the experimental data. It was later shown by
analytical calculations (Serra et al., 2007) that the distribution of avalanches
depends upon a single parameter, which also determines whether a network
is ordered, critical or chaotic. The good agreement with experimental data
suggests that cells are operating in the critical regime or in the ordered region
close to the critical boundary (Langton, 1992; Ramo et al., 2006; Serra et al.,
2007). Similar conclusions have been obtained in a study which compares
the time course of gene expression of HeLa cells with the results of simulated
RBNs (Shmulevich et al., 2005).



3. The influence of noise

The reasons why noise has to be taken into account have been extensively
discussed in Section 1. So let us consider initially only a very low level of
noise, i.e. the flip of a single node. In particular, we consider networks which
are in an attractor cycle, and we switch the value of a node chosen at random
for a single time step. After that, the network evolves according to its usual
deterministic rules until a new attractor is found. Note that the presence of
noise can induce jumps from an attractor to another.

Let A; (i = 1...M) be the M attractors of a given network (under the
action of the deterministic transition functions), and let A be the set of such
attractors®. Let us now consider a network that, after a finite transient, is in
attractor A;. We say that A; is directly reachable from A; if there is (at least)
a node such as the flip of that node at time ¢ (when the system is in attractor
A;) has the effect of bringing (after a transient) the network to the attractor
A;. We also say that A; is indirectly reachable from A; if there exists a path
from A; to A; as a result of more successive single bit flip. For example a
first flip may lead the system from attractor A; to attractor A, and a second
flip (not necessary of the same node) can lead the system from attractor A,
to attractor A;. An attractor is defined to be reachable from another if it is
either directly or indirectly reachable. In symbols, we represent the fact that
A; is reachable from A; with an arrow: either A, — A; or A; «— A;.

In order to analyze the effects of noise, we generated critical noisy random
Boolean networks (k;, = 2, p=0,5) of different sizes and we characterised
their dynamics by finding the whole set of its attractors, or a subset for large
networks.

For each attractor found we perturb every node in every phase (one flip
at time) and control the identity of the attractor the perturbation is leading
to; this information is memorised in an adjacency matrix?.

3From now on in this work, up to Section 5, the term “attractor” will be used uniquely to
indicate the asymptotic cycles of the deterministic dynamics of the RBN or, occasionally,
a single-state TES (see Section 4). Only in Section 6 the term will be referred to in a
broader sense.

4For small networks (with N < 20) we test all possible initial conditions, so all the
attractors are found. For large networks we explore a predefined numbers of different
initial conditions (5000 for networks with N=100 and 10000 for networks with N=200 and
N=1000). Note that in these latter networks it can sometimes happen that no attractor is
found within the limits of our simulations. However, these occurrences are very few and



From the adjacency matrix we can obtain a graphical representation of
the attractors and of their transitions. Figure 1. shows an example of such
structure: each vertex represents an attractor of a network; there is an edge
from vertex a to vertex b if there exists at least one node belonging to one
state cycle of the attractor a that, if perturbed, leads the system to the at-
tractor b. The edge labels correspond to the percentages of the number of
attractor’s perturbations that lead the system from one attractor to itself or
to another one, calculated upon total number of possible attractor perturba-
tions (equal to N times the attractor period).

FIGURE 1

Figure 1 Graphical representation of the transitions between attractors. Each vertex
represents an attractor. There exist an edge from vertex a to vertex b if perturbing at
least one node in one phase of the attractor a the system goes to attractor b. The edge
labels indicates in percentage the frequency of transitions between two attractors. The

vertex labels indicates in percentage the estimate values of the attractors’ basins.

Analyzing the diagonal of the adjacency matrices, we found that the
higher the network size, the higher is (on average) the percentage of pertur-
bations that don’t cause the system to leave the attractor; this is true both
for the critical and ordered networks (see Table 1). Note also that, as it
should be expected, for each size the ordered networks are less sensible to
the noisy events.

This observation might lead one to dismiss the effect of noise as relevant
only for small networks, but this would be misleading. Let us suppose for
simplicity that in a cell each node has a certain probability of changing its
state independently from the other nodes. Let b be the probability that a
node chosen at random changes its state during the cell lifetime. Then we
expect on average a total Nb flips during the cell lifetime. From Table 1 we
see that, by enlarging N from 10 to 1000, the probability that the system is
taken to another attractor when a particular node is flipped decreases about
tenfold in the case of critical nets. But since there are 100 more nodes, the
total number of expected transitions per unit time increases tenfold when N
is increased from 10 to 1000. Therefore we come to the conclusion that large

are not considered in the adjacency matrix.
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| N | Ordered nets | Critical nets |

10 12,5 19,2

20 10,5 18,5
100 5,1 10,3
200 2,65 6,5
1000 0,29 1.8

Table 1: Mean percentage of perturbations that lead the system to another state cycle
(Q) in critical (ki = 2, p = 0.5) and ordered (ki = 2, p = 0.7) nets for different size
networks.

networks are more susceptible to the transitions induced by flips than smaller
ones. Note that his line of reasoning is robust with respect. to the details of
the calculations. If Q is the mean percentage of perturbations that leads the
system in another state cycle, then it is suffices that the ratio Q(M)/Q(N)
be smaller than the ratio N/M, with N>M.

Another interesting result that emerged from the simulations regards a
behaviour that can be called “phase dependence”. Briefly, perturbing a sin-
gle node, the answer of the system could be different depending upon the
attractor phase in which the node is perturbed. This behaviour involves
both fixed nodes and oscillating nodes. This phenomenon is reminiscent of
the fact that also real cells may behave differently if perturbed in different
phases of their cell cycle.

In order to test the robustness of the previous results, we simulated a
higher noise intensity by simultaneously flipping two different nodes (chosen
randomly and independently). The results, which are shown in Table 2 show
that there are no-substantial differences between the number of transitions
to a different attractor obtained with either one or two flips.

H N || Single flip || Double flip H
10 36,6 36,3
100 15,1 16,4

Table 2: Mean percentage of perturbations that lead the system to a different attractor
in different size networks with different noisy intensity (single bit flip and double bit flip).

11



4. Ergodic Sets and Threshold Ergodic Sets

On the basis of the results of the previous section, we conclude that
attractors (we recall that this term refers here to those of the deterministic
dynamics of the RBN) are unstable with respect to random noise. This
observation opens the question as to how one can properly characterize the
asymptotic states of a noisy RBN.

A partial answer to this question has been provided in (Riberio and Kauff-
man, 2007) who propose to associate asymptotic states to sets of attractors;
rather than to single ones. This is definitely a sound suggestion: under
the influence of noise the system wanders among different attractors, so its
asymptotic behaviour should be associated to such sets.

Let us first of all recall the definitions given in Section 3 of reachability
of an attractor from another one. Let A; (i = 1...M) be the M attractors of
a given network, and let A be the set of such attractors.. We say that A; is
directly reachable from A; if there is (at least) a node such as the flip of that
node at time ¢ (when the system is in attractor A;) has the effect of bringing
the network to the attractor A;. We also define A; to be indirectly reachable
from A; if there exist a path from A; to A; as a result of more successive
single bit flip, and we define A; to be reachable from A, if it is either directly
or indirectly reachable, and we represent reachability by a directed arrow.

Following Kauffman and Ribeiro we now define an ergodic set (ES) as
a subset of A composed by attractors which are reachable from any other
member of the ES, not necessarily in a single step. Also, the ergodic set is
such that (one or more successive) single flips can’t make the system leave
the set itself. Formally:

A result already outlined in the previous study by Kauffman and Ribeiro
(Ribeiro and Kauffman, 2007) and confirmed by several simulations we per-
formed is that, for every size of network, the overwhelming majority of net-
works present only one ES (with very few exceptions having two ESs); there-
fore, if we associate ergodic sets to asymptotic states, the model loses the
possibility to have many different asymptotic states (and therefore to repre-
sent different cell types).

It is however possible to extend the notion to a different set of attractors,
keeping the nice properties of ESs with respect to noise, while at the same
time allowing multiple asymptotic states. What it even more interesting is

12



that the extension of the notion of ergodic set seems well founded on the
basis of the physics of noise-induced jumps between attractors.

Note that the transitions among attractors which are associated to the
flip of just a single specific node could be too rare to occur with appreciable
probability during a cell lifetime, and that the same remark applies to those
transitions which are associated to the flip of a few nodes. In order to take
into account only those transitions which have a reasonable chance to happen
and extend in such a way the notion of ergodic set, we introduce the definition
of Threshold reachability (T-reachability). We say that A; is directly Tp-
reachable from A; with threshold 6 if there are at least a fraction 6 of different
flips, each one of which leads the system, when it is in attractor-A;, to
attractor A;. The extension of the previous notions to those of Ty-indirect
reachability and of Ty-reachability are trivial. In symbols, we represent the
fact that A; is Ty-reachable from A; with threshold 6 (directly or indirectly)
by means of an arrow: either 4,7y — A; or A; — TyA,.

We can now introduce the concept of Threshold Ergodic Set. A Threshold
Ergodic Set of attractors (Tp-ergodic set, or briefly T ESy) of the network is
a subset of A composed by attractors which are Ty-reachable from any other
member of the T'F Sy, not necessarily in a single step. Also, the T'E Sy is such
that (one or more successive) single flips-cannot make the system leave the
set itself>. Formally:

Within this definition, we can describe an ergodic set as a TESy with 8 = 0.

Let us now consider what happens when the threshold is varied. Note
that the percentage of transitions between attractors given by the adjacency
matrix between attractors (see also Figure 1) provides an estimate of the
probability that such transition will occur, that is, the probability that a
flip of an arbitrary state belonging to a cycle leads the system in another
state cycle. So, in order to check which transitions are permitted, we can
directly compare the values of the elements of the adjacency matrix with the
threshold.

When the threshold is increased from zero to higher values, one typically
observes two different phenomena: on the one hand, the initial single TES

5Tf there is no risk of ambiguity is possible to skip the # symbol to brevity purposes, in
these cases we use T instead of Ty and TES instead of T'E Sy

13



(recall that a TESy is just an ES) breaks up into disjoint TESs (see Figure
2), while on the other hand attractors which were not part of the initial TES
can give rise to new ones. For very high values of the threshold all the TE Sy
are composed by a single attractor (loosely speaking, “all the attractors of
the RBN turn out to be TESs”).

FIGURE 2

Figure 2. Graphical representations of the transitions between attractors of a network,
referred to different value of threshold 6. In the first image § = 0 and the net has one
TES. The second image show the T'ESgs of the same net with § = 0.02, whereas the third
and the fourth have respectively 6§ = 0.03 and 6 = 0.04.

Figure 2 indeed shows that there can be several TESs in the same network.
The way in which the ratio n between the number of T'ESy and the total
number of unperturbed networks’ attractors NA (n = TESy/NA) changes
as a function of the threshold and of various network sizes is shown in Figure
3. Figure 4 shows the variation of n with respect to N for different fixed
threshold values.

FIGURE 3

Figure 3. The fraction n of total possible TESs in the network over the total number of
attractors N4, with respect to the variation of the threshold #: the higher is N, the lower
are the values of 6 able to separate all the attractors. All points are averages of 65 different
networks, with the exception of the nets having N = 1000 for which only 20 networks are

analysed.
FIGURE 4

Figure 4. The variation of 1 with respect to the variation of the net size N, for different
fixed value of threshold.
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5. Threshold ergodic sets and cell types

After elucidating the behaviour of TESs in the previous section, we are
now ready to propose to associate cell types to TESs, rather than to ESs or
attractors.

The reasons for this proposal, which have been already outlined in Section
1, are several.

First of all, TESs are attractors of the dynamics, so all the reasons in
favour of associating cell types to attractors hold also for them. Contrary to
attractors, however, TESs are sets of attractors and are stable with respect
to the noise induced by bit flips.

Ergodic sets also share this property, but they have the undesirable prop-
erties of being just one or two per net, so they cannot be associated to.several
different cell types. It may be possible to remedy at least in part this problem
by defining some nodes to be immune by noise, but the biological grounding
of this hypothesis is nor completely clear. On the contrary, there can be
several kinds of TESs in the same network, and moreover their introduction
seems naturally grounded in the physics of the phenomena under study.

Recall indeed that the “gene expression noise” we refer to is not simply
thermal motion, so the smallest noise event is the change of state of a single
gene. This is unlikely to happen very frequently in cells, so it is definitely
appropriate to ignore those transitions among attractors which are too rare.
In a large cells population also rare transitions may occur, but in all the ex-
perimental studies on gene expression (e.g. on DNA microarrays) the results
concern the behaviour of large populations, and are likely to be insensitive
to the presence of a few “unusual” types.

As it was pointed out (Huang, 2009; Huang et al., 2009), identifying
attractors with cell types presents several advantages with respect to the
more conventional views, and all these advantages are retained in referring
to TESs rather than to attractors (with the added benefit of robustness with
respect to flips).

We will now show that this approach has also some major advantages,
concerning in particular the important and intriguing phenomenon of cell
differentiation. It is well known (Huang, 2009) that there some cells which
are pluripotent, i.e. they can differentiate under proper stimuli giving rise
to different cell types. It is also known that there is a sort of hierarchy
of pluripotency, ranging from the totipotent cells (which can differentiate
to any cell type) to various degrees of pluripotency and ultimately to fully
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differentiated cell types.

We propose here to associate pluripotent cells to multi-attractor TESs,
and to associate fully differentiated cells to single-attractor TESs. The rea-
sons for this choice appear rather straightforward: in this approach pluripo-
tent cells are described by a dynamical system that wanders among its at-
tractors, and each attractor (or subset of attractors) describes a possible fate
of cell differentiation.

Differentiation of a pluripotent cell, described by multi-attractor TES,
should then be associated an increase in the threshold; as we have seen in
Section 4 this leads to a breakup of the multiplet-TES into smaller ones,
eventually leading to singlet-TESs.

The threshold has been considered so far as a mathematical device to
induce change in the landscape of TESs, but as it has been discussed in
Section 4 it has a deep physical meaning: a low threshold means that we have
to take into account even those transitions which are led by a few flips, and
this should be important when the noise level is high. In turn, high threshold
means that we consider only those transitions among attractors which can
take place in many different ways, and this corresponds to the case of low
noise level. A crude, order-of-magnitude calculation is the following.

Let ¢ be the frequency of flips in the state of an arbitrary gene (we
suppose this is the same for all the genes of the cell), and let us suppose for
simplicity that all the attractors are fixed points (in this case the extension
to oscillating states only complicates the formulae without adding any new
insight). If the typical lifetime is T and N is the number of genes, then
NT¢ is the expected total number of flips in the whole cell lifetime. Suppose
that the transition between attractor A and attractor B can be achieved by
flipping ¢ different nodes; then in a cell lifetime ¢7'¢ transitions of this kind
are expected. Inorder to have a transition we need that this expected value
be at least one, so we set ¢T¢ = 1 which implies § = 1/NT¢ (recalling that
0 = q/N). Therefore the threshold 6 scales as the reciprocal of the noise level
o

Given that here “noise” means change in the state of a node from active
to inactive or vice versa, one is tempted to relate the level of noise to the
efficiency of various control mechanisms which are at work in the cell. This
aspect will be discussed in Section 6. Let us here just recall that the noise
level in relatively undifferentiated cells is likely higher than that which is
observed in fully differentiated ones (Hu, 1997), an observation which is
coherent with our view of associating differentiation to an increase of the
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threshold.

We also remark that it has been observed that from a population of
pluripotent cells which are treated for differentiation, different cell types may
form. This is exactly what we can expect on the basis of our approach, as
it can be seen e.g. by looking at Figure 2 , where a pluripotent cell (the left
most multiplet-TES) can break in different ways. While Figure 2 shows all
the TESs of that RBN, a specific cell must of course choose one, so we expect
to find a combination of different types.

A major experimental finding in recent years (Takahashi and Yamanaka,
2006; Yamanaka et al., 2007) has been the discovery of the possibility to
revert a fully differentiated cell to a pluripotent one by overexpressing some
of its transcription factors. We show here that the same can happen in our
model in some particular cases. This is not a generic behaviour, but neither
is it generic in real cells; what matters is the possibility to simulate with this
model the experimental results.

Note that reverting from a differentiated cell to a pluripotent one would
be trivial if one were allowed to change the threshold, but here we try to
achieve the same goal simply by overexpressing some genes. In our Boolean
model, overexpressing means that the activation of a gene which is oscillating
(or constantly inactive) in a given attractor is kept constantly equal to 1.

We considered a network composed by 10 nodes, whose attractors and
the corresponding transitions are represented in Figure 5.

FIGURE 5

Figure 5. One TES, composed by all the nodes (four different attractors). The rightmost

attractor is called Ag, the others are A1, Ay and A3 numbered counterclockwise.
By inspection of Figure 5 one can observe that, if ¢ = 0, there is a single

TES which comprises all the attractors. By increasing the threshold we reach
the following situation:

FIGURE 6
Figure 6. One T'ESy.11 composed by the red attractor Ay

Here there is a single TES, composed only by the rightmost attractor,
which corresponds to a fully differentiated cell. Now, by fixing to 1 the value
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of one of the genes of that attractor, we have de facto created a new network
(indeed fixing to 1 the value of a gene is equivalent to modifying its Boolean
function so that it is always 1 irrespective of its inputs). We then analyze the
attractors of this perturbed network and their transitions which are shown
in Figure 7.

FIGURE 7

Figure 7. The T'ESy.11 composed by the red nodes related to the perturbed net. The
rightmost attractor is called Af), the others are A} .. A} numbered counterclockwise.

Note that the transitions and their frequencies refer to the same high

threshold value of Figure 6, but here a multiple-TES appears. This exactly
corresponds, in our model, to the appearance of a pluripotent cell by over-
expressing some genes of a fully differentiated one. Note also that most
attractors of the new network correspond to those of the previous one, in
particular A; = A} , Ay = A}, A3 = A). So not only we have obtained a
TES, but one which is very similar to the one which described the initial
pluripotent cell.
Note that a similar result has been obtained by Yamanaka and Takahashi
(Takahashi and Yamanaka, 2006): when the transcription factors of the fully
differentiated fibroblasts are overexpressed, an induced pluripotent stem cell
(iPS) is obtained which is similar but not identical to the original embryonic
stem cell.

6. Discussion and indications for further work

The present work consists of two main parts, a mathematical analysis of
the asymptotic dynamies of RBNs subject to noise, and a proposal to asso-
ciate cell types to TESs. In this final section we give indications for further
work in both directions, and we present a more detailed discussion of the role
of noise and threshold in cell differentiation
Concerning the mathematical properties of noisy RBNs, one should note that
the flip represents a particular type of transient perturbation, but in cells
there can be also perturbations which last longer than a single time step.
One can model these semipermanent perturbations by fixing the value of a
node chosen at random to a given value, letting the network evolve to its new
attractor, and then removing the constraint on the chosen node. Semiper-
manent perturbations can be associated for example to the exposure to some
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environmental conditions or to some chemicals which are later removed, so
the interesting questions concern the behaviour of the cell during exposure
and after its removal. There can be also permanent perturbations, associated
to never-ending exposure to chemicals or environmental conditions, and also
to some kinds of mutations. The study of the behaviour of the model under
permanent and semipermanent perturbations lies however outside the scope
of the present paper.

Moreover, an interesting study might concern the effects of more frequent
flips, that can be simulated by fixing a certain probability per unit time that
a node is switched, without allowing the network to reach an attractor before
a new flip takes place.

There are of course other interesting venues for further work, including e.g.
the study of the behaviour of random threshold networks (Andrecut et al.,
2009) rather than RBNs under the influence of noise and the analysis of the
influence of the topology .

As far as the biological interpretation of the model is concerned, undif-
ferentiated cells have been associated to systems which wander among a set
of attractors under the action of noise, and differentiation to the freezing of
these states in a smaller region of phase space.

Let us remark that, while in this study we made use of random Boolean
networks subject to noise, the overall picture of cell types and differentiation
can be much more general and applicable to different dynamical models of
the gene regulatory networks (e.g. continuum models). And there are indeed
some models of this kind (Kaneko, 2006) which share the idea that differen-
tiation is a process where the portion of phase space available to the network
gets smaller as it proceeds from a less differentiated to a more differentiated
form.

There are of course important differences between continuous and discrete
models, like for example whether the wandering in phase space is attributed
to chaotic dynamics or to random fluctuations, but the general pictures are
similar. And, as it was already pointed out in the Introduction, the fact that
the same view holds in different kinds of models is an indication in favour of
its validity.

Let us also observe that the present model deals with an isolated cell,
while it is known that intercellular communication can play a key role in
differentiation. It is however important to elucidate which mechanisms might
be at work at the single cell level, so the present work can be seen as a first
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step towards the building of a more comprehensive picture of differentiation®.

Let us now consider in more detail the issue of cellular noise, which is
crucial for our association of differentiation to modifications of the threshold
which in turn, as it has been shown in section 4, corresponds to modifications
of the noise level.

It has indeed been observed that the intracellular states of pluripotent
or multipotent stem cells are heterogeneous and that in some cases gene
expression levels slowly itinerate over several quasi-stable states (Chang et
al., 2008; Furusawa and Kaneko, 2009). This is what should be expected
on the basis of the model described here (a similar behaviour could also be
expected in models where the wandering is attributed to chaotic itineracy).

A major point concerns the comparison of noise levels in undifferentiated
vs differentiated cells. In this respect, there are experimental findings which
suggest that changes in gene expression levels are indeed higher in the former
case (Furusawa and Kaneko, 2009; Hayashi et al., 2008).

Moreover, it has been observed that in multipotent cells a higher number
of genes is activated, albeit at a lower level than that of differentiated cells.
This is indeed what should be expected by using the TES framework, where
multipotent systems wonder through several asymptotic states (belonging
to the same TES) with high levels of noise (i.e. low threshold values). In
fact, it has to be observed that a low expression level (like that found in
undifferentiated cells) implies a smaller- number of mRNA molecules, and
that the relative role of fluctuations is higher when the number of molecules
is small. Turning this into a Boolean description, this corresponds exactly to
a higher level of noise in undifferentiated cells, as we have supposed here.

An important issue concerns the mechanisms whereby a change in the
level of noise can be achieved. While elucidating this point requires further
study, the observation made above suggests that a possible way can be that
of increasing the level of the signal with respect to that of the fluctuations.
Although we do-not know exactly in which way(s) this is done, one can
suggest that, for expressed genes, this could be achieved by an increase of
the speed with which they are transcribed and translated into proteins, and
also by reducing the rate at which the proteins are degraded (this is controlled
by specific enzymes and is therefore also under genetic control). Concerning

6an analysis of the behaviour of the attractors in a cellular automata model of coupled

RBNs, simulating a tissue, has been presented elsewhere (Villani et al., 2006)
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those genes which have to be silenced, a reduction of the noise level could
be accomplished e.g. by increasing the rate of production of miRNAs which
inhibit the expression of the targeted genes (Hornstein et al., 2006).

Let us point out that one of the major outcomes of our study is that of
highlighting the importance of changes in the noise level to achieve differen-
tiation. Note indeed that, according to our model, it is impossible to induce
a transition to a more differentiated state by only activating or inhibiting a
particular gene. This has been shown in several numerical experiments, and
it can be explained by observing that a network with a gene which takes a
constant value coincides with a RBN similar to the original one, where the
only difference is that one Boolean function has been forced to take always
the TRUE or FALSE value. Although this network is no longer completely
random, if there are several genes this change has a minor effect, and so, if
the threshold is 0, one almost always finds just a single TES (or rarely two)
- and in this case no breakup of the original TES into more disjoint TESs is
observed. The same observation can be made for the case where a few genes
are forced to take a constant value.

Therefore, if our view is correct, a change of the threshold, i.e. of the noise
level, necessarily accompanies the differentiation process. To the best of our
knowledge this aspect has not been emphasized before; moreover, it suggests
the importance of performing further experiments targeted to quantitatively
analyze the way in which these changes occur (for example, by measuring the
fluctuations in gene expression levels at various degress of differentiation).

Let us finally observe that also cancer is related to a change to a less differ-
entiated state (Huang et al., 2009), so we hypothesize that this phenomenon
could also be amenable to study by dynamical simulation and Threshold
Ergodic Sets.
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Table1 ACCEPTED MANUSCRIPT

N ORDERED CRITICAL
NETS NETS

10 12,5 19,2

20 10,5 18,5

100 51 10,3

200 2,65 6,5

1000 0,29 1,8




Table2 ACCEPTED MANUSCRIPT

N SINGLE FLIP | DOUBLE FLIP
10 36,6 36,3
100 15,1 16,4






