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24 A new micromechanical approach for arbitrary multi-coated ellipsoidal elastic inclusions
with general eigenstrains is developed. We start from the integral equation of the linear
25 elastic medium with eigenstrains adopting the Green’s function technique and we apply a
26 ”(n+1)-phase” model with a self-consistent condition to determine the homogenized behavior
27 of multi-coated inclusion-reinforced composites. The effective elastic moduli and eigenstrains
are obtained as well as the residual stresses through the local stress concentration equations.
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30 cromechanical model, some applications to the isotropic thermo-elastic behavior of composites
with and without interphase are given. In particular, ”4-phase” and ”3-phase” models are de-
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32 successfully compared to exact analytical solutions regarding the effective elastic moduli and
33 the effective thermal expansion.
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undergoing eigenstrains in addition to elastic strains. This means that the problem
needs to be solved from the integral equation of the linear elastic microheteroge-
neous solid with eigenstrains. Thus, inclusions, interphases and matrix will have
different elastic properties and different eigenstrains (i.e. piecewise uniform). The
extensions of the technique based on the so called interfacial operators [22-24]
to this multi-coated inclusion problem is here highlighted. The second objective
is to apply the present model to the thermo-elastic behavior of multiple coated
inclusion-reinforced composites. Actually, this problem can be solved analytically
using exact results derived by Hervé and Zaoui [3] for the effective elastic prop-
erties who extended the ”3-phase” model of Christensen and Lo [2]. Later, Hervé
[25] derived the effective thermal expansion using the results of Hervé and Za-
oui [3] and the Levin’s formula [26, 27]. Mean field approximations based on the
multi-inclusion model derived by Nemat-Nasser and Hori [28] were also applied to
this particular case by Li [29]. Variational principles to derive sharp bounds on
the effective thermal expansion coefficients of multiphase composites were given
by Willis [30], Gibiansky and Torquato [31] and Stolz [32, 33]. In particular, the
exact solutions for the ”3-phase” model are retrieved [32, 33]. Results of the present
model are given in the particular case of a spherical inclusion-reinforced material,
i.e. containing an interphase, and compared to exact solutions [3, 25]. In contrast
to [3, 25], the presented methodology can be applied to more complex anisotropic
problems and to ellipsoidal inclusions of arbitrary shapes. The paper is organized
as follows. In section 2, the micromechanical approach for arbitrary multi-coated
ellipsoidal elastic inclusions with general eigenstrains is detailed. We start from
the integral equation of the problem adopting the Green’s function technique, and
we use interfacial relations for perfect bonded interfaces with an averaging proce-
dure, which gives solutions in the form of recurrence relations. Then, we apply a
generalized self-consistent scheme or ”(n+1)-phase” model [2, 3] to determine the
homogenized behavior of multi-coated inclusion-reinforced composites. As a result,
we obtain the effective elastic properties and the effective eigenstrains as well as the
residual stresses due to eigenstrains. It is highlighted that the effective eigenstrains
can be determined by two different ways: the one detailed in the present paper using
concentration tensors, and, the one derived from Levin’s formula [26, 27]. In sec-
tion 3, we apply the present micromechanical approach (”4-phase” and ”3-phase”
versions) to layered homothetic spherical inclusion-reinforced composite materials
with isotropic elastic properties and thermal properties in each phase. In particular,
we compare the results of our ”4-phase” and ”3-phase” approaches respectively to
the exact analytical results of Hervé [25] and Stolz [32, 33| regarding the effective
thermal expansion. Section 4 is devoted to conclusions and perspectives of this
work.

2. Micromechanical approach

2.1. Field Equations and Integral Equation

On the boundary OV of V, a prescribed displacement u? (Dirichlet conditions) is
considered:

ud =E - x on 9V, (1)

where E is a uniform imposed strain on 0V
The other field equations are constituted of:
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- the stress equilibrium condition for the symmetric Cauchy stress tensor o :
divo(x)=0in V, (2)

- the compatibility relation for total strain € where u is the displacement field:

(Vu(x) + Viu(x)) , (3)

| =

€(x) =

- the total strain in the small perturbation hypothesis which writes as the sum of
an elastic strain €® and an eigenstrain €*:

€(x) = €°(x) + €"(x), (4)

- the constitutive equation for linear elasticity (Hooke’s law) with the presence of
eigenstrains:

o(x) = C(x) : €°(x) = C(x) : (e(x) — €"(x)) = C(x) : €(x) + A(x),  (5)

where C(x) denotes the elastic moduli. In this problem, the unknown fields are
the displacement u, from which the total strain €, and, the Cauchy stress o are
derived.

In the following, we consider A(x) = —C(x) : €*(x) as the eigenstress associated
to the eigenstrain €*(x). Then, first order spatial variations of elastic properties
and eigenstresses are respectively denoted 0C(x) and dA(x) so that:

C(x) = C" +6C(x),

’ 6)
A(x) = A7+ 0A(x),

where CY and A° = —C? : €*¥ denote respectively the homogeneous elastic moduli
and eigenstresses of the infinite reference medium (0) described in Fig. 1.

By introducing these fluctuations in the set of field equations (egs.(1) to (5)), we
obtain the so-called integral equation [34-36] of the problem as follows:

e;(x) = Eyj — / T9.01 (% — %) (6Chtmm (% Jemn() + EA () V', (7)
1%

where T%(x — x') is the modified Green’s tensor associated to C°. According to
[37], this one classically writes:

1
[Y(x—x) = ) (Gl ju(x = x') + G u(x = X)), (8)

with G? being the Green’s function of the infinite homogeneous medium CP°.

2.2. Case of a n-phase multi-coated composite inclusion

2.2.1.  Concentration equations

We first apply the integral equation (eq.(7)) to the case of a n-phase multi-coated
composite inclusion of volume V; embedded in an infinite reference medium denoted

http://mc.manuscriptcentral.com/pm-pml
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Figure 1. Multi-coated inclusion problem with eigenstrains considering n phases. The inclusion is embed-
ded in an infinite reference medium (0). In this decription, Phase 2 is called the interphase when n = 3
for instance.

0 (see Fig.1), and, containing a set of phases k with k € [1,2,..,n] characterized
by their volume V}, and the characteristic function 6j(x) defined by:

6o () lifx eV (©)
X) =
g 0if x ¢ Vi,

Then, the first order variations of elastic moduli and eigenstresses follow a piece-
wise uniform decomposition in the form of:

0C(x) =Y ACHg,(x) with ACHO) = cF - C°,

h=t (10)

OA(x) =Y AXFOg, (x) with AXF/O = Xk — X,
k=1

In the following and according to eq.(10), C*¥ and A* denote piecewise constant
values per phase k respectively for C(x) and A(x).

By construction, the volume V; of the composite inhomogeneity is constituted
of the first inhomogeneity (1) and n — 1 other coatings. Thus:

Vi=> Vi (11)
k=1

http://mc.manuscriptcentral.com/pm-pml
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and the volume fraction ¢ of phase k in Vj is defined by:

b = Vi for k € [1,2,..,n]. (12)
Vi

1

The average strain € over Vj is defined by:

©CoO~NOUTA,WNPE

T 1

€ = — e(x)dV, 13
10 VIVI() (13)

13 After simple manipulations using eq.(7) and eq.(10), we obtain:
1o d—E-T/(C": Y ¢ (ACWO) e+ AA(k/O)) , (14)

17 k=1

19 where:
1
IOy - O(y _ ~/ /
29 T(C)_VI/VI/VIF(X x')dV'dV, (15)
and,

1
27 e =— [ ex)dV. (16)
28 Vi Jv,
30 From eq.(13) and eq.(16), we can also write:

32 n
33 e => pe. (17)

k=1

Thus, by comparing eq.(14) and eq.(17), we find out:

39 E-— zn: o [ +T1(C0) - (ACHO e L ax®/)] (18)
41 b=l

43 The concentrations tensors Al and b’ for the composite formed by volume V7, and
44 the concentrations tensors o and B* for each phase k can be introduced [38-43]
45 so that :

47 e =A":E+D
48 (19)
49 Ek:akzzgl_i_ﬂk’

with from eq.(17):

http://mc.manuscriptcentral.com/pm-pml
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where 0 and I are respectively null and unit fourth order tensors. From eqs.(19),
we can also write:

e = AF . E 4 bF, (21)
where:

AF =aF . Al
(22)

Using eq. (18), it comes:

—1
Al <I+TICO (ZmAC’“/O )) :

k=1

2.2.2. Interfacial relations

We consider a perfect bonding at the interface k/k + 1 (Fig. 1), denoted (k),
for which essential properties at any point x of the interface are the continuity
of displacement vector [u] Ek) M1(x) — uF(x) = 0 and the continuity of the
interfacial traction vector [J]Z(f) N;k) = JZHN;M - J%N;k) = 0, where Ni(k) is the
outward unit normal on the interface (k). As detailed elsewhere [22, 24, 44], the
strains and the stresses are discontinuous and their jumps can be related to the
so-called interfacial operators introduced by Walpole [23] or Hill [24]. The strain
jump is obtained from the compatibility relation at any point of the interface and
taking the symmetric part of the displacement gradient jump:

1
L(ON® 1 ON®) o

(x) =u

[l (x) = ef 1 (x) — € (x) =

(k)

where v, is a vector describing the direction and the magnitude of the strain
jump on the interface (k). Starting from eq.(5) in k and k + 1 respectively:

Rl _ okl kbl | \kt
o =Chmen A

k—ck + \F
05 = ijklekl i)

and using the continuity of the interfacial traction vector at the interface, we obtain:

k k k k k k
CEL [ N 4 [0, ey N 1+ D N = o, (26)

where [C]gglll CZJIQ} kal and [)\]Ef) = )\kH )\fj In eq.(26), we replace [e]l(j)

by its expression given by eq.(24). It gives:
k k k k) A (k
mi ) + 101G bV + I N = o, (27)

where th is the Christoffel matrix associated with k 4+ 1 and defined by hflj 1
C’Z:IIN (i )Nl(k). The Christophel matrix is found symmetric if the classic symmetry
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for the elastic moduli are assumed (i.e oRtl — okl — k+1) Following Walpole
€ Yk = Yk = Yijik ) g vvalp

[23] and Hill [24], the interfacial operator Pi];.;gll only depends on the elastic moduli
CF*1 of phase k + 1 and on the unit normal N of the interface (k):

Pil;'—l:ll _ i ((hk-l-l)i—kleNl + (hk-l-l)j—klNiNl + (hk+1)i_lleNk + (hk+1)j_llNiNk) 7
(28)
From eq.(27) (assuming the determinant of hf,j ! is non zero) and eq.(28), it comes
directly :

%) = (g + PN Clinn = Clibh)) b (3) + PEE O = X, (29)

] kimn mn

where ¥, CF, and, A¥*!, CF*1 are respectively uniform in phases k and k + 1.

2.2.3.  Approximation by an averaging procedure and solutions

=

’:.

Figure 2. Multi-coated inclusion problem with eigenstrains considering n phases. Approximation using
the average strain fields over Q2 = V1 U... UV}, the volume of the composite formed by the phases 1 to k.

For each level (k) (Fig. 2), we denote by Q = V3 U ... UV} the volume of the
composite formed by the phases 1 to k. Then, in order to solve the problem, we
adopt the following assumption which avoids complex full field calculations: €* (x) is
substituted by the averaged value of €(x) over € denoted €. Thus, by performing
the average strain over the coating of volume V1 denoted 7!, we obtain the
following recurrence relation at each level (k) from eq.(29):

& = (fz‘jmn + T (C) (Conn — /ffnfn)) Emn* +TEE (CHD O =X,
(30)

http://mc.manuscriptcentral.com/pm-pml
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where:
1
Tk+1(Ck+1) — / lj)k‘-i-ldv*7 (31)
Vi1 Jviy,
and,
k .
Eoy Z 25
I S E— (32)
i=1 Qk &
D¢
=1

C2% and A™* are respectively the elastic moduli and eigenstresses of the composite
inclusion formed by volume . It is noteworthy that C% and A*** will be naturally
eliminated in the following equations by recurrence relations starting from the basic
configuration described by n=2. Indeed, for n = 2, we have €’ = €' from eq.(32),
C™% = C! and A = Al because Q; = V; (Fig. 2). Thus, eq.(30) reduces to:

&> = (Iijmn + T34 (C*)(Chin — Chimnn)) @' + Ty (CH (Mg — AR)- - (33)

Following [6], we can demonstrate in the general case of non homothetic ellip-
soidal inclusions that the expression of TF!(CF*1) takes the form of:

k
> o
Tk+1(ck+1) — 7% (Ck—i-l) _ igl (TQkJrl(Ck"l‘l) — 8 (Ck—i-l)) 7 (34)
i+1

with:

1
TQk(Ck-i-l) _ _/ I‘(Ck—i_l)dw
k JQ

1 (3)

T2k+1 (Ck—i-l) — / F(Ck+1)dv

Qv1 Ja,,,

Furthermore, eq.(30) can be written in the following form:

il — g kLRt (Ac(kﬂ/m) e A)‘(kﬂ/m)) : (36)
where:
Ac(k-i-l/ﬂk) — Ck+1 . CQk

(37)

AA(k‘-i-l/Qk) — Ak+1 o AQk.

Using simple manipulations on the averaged values with the Hooke’s law of each

http://mc.manuscriptcentral.com/pm-pml

Page 8 of 24



February 4, 2010
Page 9 of 24

©CoO~NOUTA,WNPE

0:0 Philosophical Magazine articlepr2
Philosophical Magazine & Philosophical Magazine Letters

Philosophical Magazine 9

phase from 1 to k, we find out:

Zk:@ (Ac(k—i-l/i) e A)\(k—i-l/i))

ACHFT/) ;g% 4 ANEF1/%) =1 - (39)

k
> o
i=1

For n = 2, both sides of eq.(38) give ACE/M) 1€ 4 AX®/D pecause € = €.,
C% = Cland A™ = A

By using eqs.(32)(36)(38), the expressions of a**! and B! in eq.(19) are ob-
tained:

k
Z¢Zw(k+1/z) . ai
=1

k+1 _ 1=
a = - ,
> o
i=1
) (3)
quz <w(k+1/i) . 3 _V(k—i-l/i))
k+1 _ i=1
g = - ,
> o
i=1
where:
w1/ 1 _ TkH(CkH) : AC(k“/i),
40
V(k-‘rl/i) _ Tk—i—l(ck—i-l) . AA(/H-I/Z) ( )
Then, by recurrence, we can transform egs.(39) into the following equations:
af = XL gl
(41)
Bk+1 _ Xk-i—l :,81 —|—Yk+1,
with the recurrence relations for X**1 and Y*+1:
k
Z¢iw(k+1/i) . XZ
k+1 _ i=1
X = p ,
> o
i=1
) (12)
Z¢i (W(kz-i-l/i) s V(k-‘rl/i))
k+1 _ =1
Y - k
> o
i=1

Thus, it is sufficient to derive a' and B! to completely solve the problem. This is

http://mc.manuscriptcentral.com/pm-pml
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done by applying eqs.(20) such that:
n -1
al = (Z mX’“) :
k=1
Bl=—a':> o Y*
k=1

Let us note that the purely linear elastic solution for the m-phase composite
inclusion described by Fig. 1 recently obtained by Lipinski et al. [21] is retrieved
in eq.(43) by setting A¥ = 0 and 8% = 0 for all k in eq.(36) and eq.(38). This
can be considered as a particular case of the general formalism developed in the
present paper.

2.3. ”(n + 1)-phase” self-consistent model

In this section, we adopt the same methodology as the Generalized Self-Consistent
Scheme (GSCS) introduced by Christensen and Lo [2] (the so-called ”3-phase”
model) for composite spheres (or cylinders), and, extended by Hervé and Zaoui
[3, 45] to a ”(n+ 1)-phase” model with a self-consistent condition. A Homogeneous
Equivalent Medium (HEM) is introduced in Fig. 3 in addition to the n phases
including the matrix phase denoted (0). In the following, the effective properties
associated with the HEM are denoted "ef f”. We consider an imposed strain E
(Fig. 3) such that ud = E - x on the boundary of the Representative Volume
Element (RVE) of total volume V. As highlighted by Hervé and Zaoui [46] and by
Zaoui [10], the Christensen and Lo’s self-consistent energy condition [2] coincides
with the following average strain condition:

n—1 n—1
E=¢7 L/ €(x)dV = Z fe€l = foe® + Z fq€? (44)
Ve =0

Vi e

where fo = g—; for the matrix phase (0), and, f; = VL; for the other phases (q)
from 1 to n — 1 such that:

Yo fo=1 (45)

Thus, the homogenized behavior (or effective behavior associated with the HEM)
writes:

S =CY E4+ NI, (46)

where C¢/f and A°/f are unknown effective elastic moduli and eigenstresses. In
eq.(46), X is the volume stress average in the RVE:

n—1
2= foo + ) oo (47)
q=1

http://mc.manuscriptcentral.com/pm-pml
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The respective constitutive behaviors for the matrix (0) and the other phases (q)
are:

o’ =0C": e+ N\

ol =C7: €%+ )\, (48)

The strain concentration equation for each phase (¢) (including the matrix phase)
writes:

e =A%:E + bl (49)
with:

Al=qa?: A,
b?=a%: b+ 39,
where the concentration tensors a?, 3¢ were introduced in section 2.2 through

eqs.(41) (42) (43), and, A, b are adapted from eqs.(23) for the ”(n + 1)-phase”
model:

-1

n—1
A= |I+T/(CY): | ) fACT) ol :
q=0
(51)
n—1
b=—A:T/(C): qu [AC(Q/Eff) . B9 + A)‘(q/eff)]
q=0
Applying the strain average condition (eq.(44)) yields:
n—1
quAq = KVT = I>
=0
" (52)
Y fb7=b" =0
q=0
The stress concentration equations yield:
c!=B7: ¥ +d, (53)
where from eqs.(48) and (46):
B?=CY:A?: (C//)7!,
(54)

d? = —C9: A9 (CY)yTL XS 7 b7 4 A,

http://mc.manuscriptcentral.com/pm-pml
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d? denote the residual stresses in each phase (¢) (i.e., for 3 = 0). From the stress
average condition (eq.(47)), we have:

n—1

quBq = EVT = IJ
q=0

n—1 v

Y fd?=d" =o0.
q=0

The last equation (HVT = 0) means that the residual stresses are self-equilibrated
over the RVE. Thus, using the previous concentration equations in eq.(47), we find
out the expressions for C¢/f and A/ as:

n—1
celf =0 + quAC(q/O) : A9,
q=1

n—1
ST = A\0 4 qu (Ac(q/O) b+ A)‘(Q/O)> ,
q=1

After a few manipulations and algebra using eq.(56), eq.(50) and eq.(51), we can
also write C¢// and A7 as:

n—1
cell = quCq cal A,

q=0
(57)

n—1
AT =3 f (A4 C7: 7).

q=0

It is worth noticing that another way to obtain the expression of A%/ is to use
directly the Levin’s formula [26, 27] applied to the composite depicted in Fig. 3.
From the knowledge of A? (eq.(50)), we deduce from the Levin’s formula:

n—1
ST — Z f AT A (58)
q=0

where AT is the transpose of A9 such that Agﬁl = Al i

To conclude this part, two significant results of the present model can be reached
through the last equations: the local mechanical fields like the residual stresses
(respectively residual strains), and, the homogenized elastic properties and the
effective eigenstresses (respectively the effective eigenstrains). The Levin’s formula
can only achieve the latter because this does not need a relevant description of the
microstructure.

3. Application to isotropic thermo-elastic materials with homothetic
spherical inclusions

In the case of layered homothetic spherical inclusion-reinforced n-phase composite
with isotropic properties in each phase, Hervé and Zaoui [3] and Hervé [25] re-

http://mc.manuscriptcentral.com/pm-pml

Page 12 of 24



February 4, 2010
Page 13 of 24

©CoO~NOUTA,WNPE

0:0 Philosophical Magazine articlepr2
Philosophical Magazine & Philosophical Magazine Letters

Philosophical Magazine 13
E
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Figure 3. Schematic principle of the ”(n + 1)-phase” model (self-consistent condition).

spectively found the exact expressions for the effective elastic properties and the
effective thermal expansion. In the following, we adapt the equations of our model
to this peculiar case in order to assess the good quality of the estimation of effec-
tive properties resulting from the ”(n 4 1)-phase” self-consistent model described
previously. In particular, ”4-phase” and ”3-phase” models are respectively derived
in the cases of 3-phase and 2-phase composites.

3.1. ”4-phase” model

As a first application, let us apply the concept of interphase as described here in
a ”4-phase” model. Thus, we consider a heterogeneous elastic material with eigen-
strains globally isotropic with isotropic phases and the peculiar case of a layered
homothetic spherical inclusion-reinforced material is examined. Thus, the 3-phase
composite material is formed by a matrix phase (denoted 0), inclusions (reinforce-
ments, denoted 1) and interphases between inclusions and matrix (denoted 2).
Thus, the RVE of this material is reported in Fig. 4. For the description of fourth
order isotropic tensors, we use the orthogonal projection tensors [44, 47] denoted
J and K such that the unit tensor I decomposes as:

I=J+K, (59)
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28 Figure 4. Schematic principle of the ”4-phase” scheme (self-consistent condition). The inclusion phase
29 (phase (1)) is coated by the interphase (phase (2)). Phases (1) and (2) are coated inclusions embedded in

the matrix phase (0). In this decription, we estimate the effective behavior of the Homogenized Equivalent
30 Medium (denoted HEM).

34 with:

37 Liji = = (6adji + 0adji)

1
2
1

39 Jijki = §5ij5kl, (60)

1 2
42 Kij = 5 <6ik5jl + ditdjk — g&'ﬂkl) ;

45 where d;; is the Kronecker operator. Furthermore, J and K have the following
46 properties:

J:J=17,

50 K: K=K,

52 J:K=K:J=0, (61)
J:Is=15:J =15,

55 K:Io=1,: K=0,

58 where Iy is the second order unit tensor, i.e. (I2);; = d;j.
59 For each phase ¢ = 0,1,2 of the composite, the elastic moduli are supposed
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isotropic:
CY = 3kyJ + 2,K, (62)

where k, and p, denote the bulk modulus and the shear modulus, respectively.
The thermal stresses A? are also supposed isotropic:

A? = —3k,a,I20 (63)

where o is the thermal expansion of phase (¢) and © is the temperature rise
relative to a reference temperature which is arbitrarily chosen as zero.

In the isotropic case, the effective elastic moduli C¢// and the effective thermal
stresses A°/7 are of the form:

Ceff = 3k‘effJ + QueffK,

(64)
AT = 3k s racI20.
In Eq.(64), kefr and pie ¢ are respectively the effective elastic bulk and shear mod-
uli, and, aeyy is the effective thermal expansion coefficient.
In the particular case of concentric homothetic ellipsoidal inclusions, eq.(34)
reduces to (see e.g. [6]):

Tt (Citl) = T/ (€t = T (0ot = . = T%(Cith) = T+ (CTHY). (65)
Furthermore, for spherical inclusions, T?(C?) reads [6]:

J 3(kq + 2pq)K
T/(CY) = YR 66
() 3kq + 4piq a Stiq(3kq + 4p1q) (66)

Let us apply the general equations obtained in the section for the homogenized
behavior of the composite described in Fig. 4. In this case, by applying eq.(57),
Ce/7 reads:

CY = (foC”:a’ + f1C' 1 ! + f2C? : &?) : A, (67)
and, X%/ reads:
A= fo XN+ C%: B8 + (AN +C Y + fo (A2 +C*: B2) . (68)

where the concentration tensors A, a®, o, a2, 3°, 3%, B2 can write in the isotropic
symmetry using eqs.(39),(40),(41),(42),(43),(51):

A = MJ + DK,
a® =m®J + d°K,
ol =m!'J +d'K,

o’ =m*J + d°K, (69)
B° = n’1,0,
B! = n'I,0,
3% = n’1,0.
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In the last equation, the expressions of M, D, m°, d°, m!, d*, m?, d?, n°, n', n?

are determined in the Appendix. Let us note that the expressions of n°, n', n?
represent new contributions due to thermal effects in comparison with the work of
Lipinski et al. [21]. M and D depend on kefy and pefy, then, from eq.(67), kess

and ji.py are the solutions of the following system of non linear equations:

kepp —ko— f1 (k1 — ko) m* M — fo (ky — ko) m*M = 0,

70
prefr — o — f1 (u1 — po) d"D — fo (g — po) d*D = 0. i
To solve this system of equations, a standard Levenberg-Marquardt procedure [48]
is chosen with a starting guess at the solutions corresponding to the volume aver-
ages of elastic bulk and shear moduli over the RVE (i.e., a Voigt approximation).
To show the importance of the interphase elastic properties on the effective elastic
moduli of the composite, we used same materials parameters as the ones used by
Hervé and Zaoui [3] (their phase (3) corresponds to our phase (0)), i.e. identical
Poisson’s ratios for all the phases: 11 = 1o = 1y = 0.3, p1/pwo = 6 and f1 +
f2 = 0.2. The results concerning the normalized effective shear moduli prf /10 are
reported in Fig. 5 and Fig. 6. These results are compared with the ones obtained by
Hervé and Zaoui [3] from their equations numbered (47) and (51). Fig. 5 shows the
evolution of jicf¢/po as a function of the interphase volume fraction f, for different
mechanical contrasts between the interphase and the matrix phase characterized
by the ratio 5 = pa/pg. When fo tends to 0.2, it is noteworthy that no influence of
interphase occurs and the ”3-phase” model’s solution [2] is retrieved for all values
of 3, or, when 3 = 6 (i.e. u3 = po for all values of f3). In Fig. 6, the interphase
volume fraction fo is fixed to 0.02 and the evolution of prr/po is plotted as a
function of 8 = ua/up. Two different regimes are observed: a first strong increase
of the effective shear moduli when the values of 3 are lower than 3 followed by a
saturation for the values of 3 larger than 5. As already noticed by Lipinski et al.
[21] for the elastic regime only, the present approach give same results as the exact
solution of Hervé and Zaoui [3].
Once the effective bulk modulus ks is obtained, the effective thermal expansion
coefficient .y can be computed using eq.(64) and eq.(68) as:

1
Qeff =7 - (—fin'ki — fanks — fon’ko + fikion + fokoao + fokoao). (71

The obtained effective thermal expansion coefficient sy is reported in Fig. 7
in the case of a composite material made of coated inclusions as described in Fig.
4. Here, the volume fraction of the interphase fo5 is fixed to 0.01 and the one of
the inclusions f7 is fixed to 0.1. The strong influence of both interphase properties
(g and k) on acfp/aq is here demonstrated. The results are found to be coherent
with Hervé’s result [25] reported in Fig. 8 using the equation numbered (69) from
her paper. Furthermore, she used the effective elastic properties obtained by [3]
(see Fig. 5 and Fig. 6) and Levin’s formula [26, 27] to derive .

In order to double check the results reported in Fig. 7, we also applied the Levin’s
formula [26, 27] according to eq.(58) applied to the composite described in Fig. 4.
In this case (isotropic configuration), a.s¢ can be derived by the following formula:

M
Qeff = keys (flmlklal + fam®koas + fomok‘oao) ) (72)

2 0

where M, m!', m?, m" are given by eq.(69) and are detailed in the appendix. By
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Figure 5. Estimation from the present model of normalized effective shear modulus pess/uo (lines) and
comparison with the exact solutions given by Hervé and Zaoui [3] (points) for a composite material con-
stituted of coated inclusions, versus the volume fraction fa of the interphase (phase 2) (phase 0 denotes
the matrix and phase 1 denotes the inclusions). The results are plotted for different values of 8 = pa/uo
with 11 = v2 = vg = 0.3 (Poisson’s ratios), p1/puo = 6 and fi1 + f2 = 0.2.

1.6
—Present model
1.57 - = =Hervé and Zaoui

0.9
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O'60 2 4 6 8 10
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Figure 6. Estimation from the present model of normalized effective shear modulus pess/uo (lines) and
comparison with the exact solutions given by Hervé and Zaoui [3](dashed lines) for a composite material
constituted of coated inclusions, versus the normalized shear modulus p2/po of the interphase (phase 2)
(phase 0 denotes the matrix and phase 1 denotes the inclusions). The results are plotted for v = v =
vo = 0.3, p1/po = 6, f1 = 0.18 and f2 = 0.02.
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Figure 7. Normalized effective thermal expansion coefficient aeys/a1 of a composite material made of
coated inclusions as described in Fig. 4: result from the present model (eq.(57)) with fi = 0.1, fo = 0.01.
The elastic properties of the different phases are characterized by: ki1/po = 15, pi/po = 7, ko/po = 2,
p2/po = 4 and ag /a1 = 10.

applying this last formula, we find the same numerical results as previously (Fig.
9).

3.2. ”3-phase” model

In the case of a ”3-phase” model (Fig. 10), and, using the same conventions and
notations as in section 3.1, keff, pefs, and, ey are obtained from egs.(70) (71)
or (72) by setting fo = 0 (no interphase). We set f; = f and fy = 1 — f for the
2-phase composite ((0) being the matrix phase and (1) the inclusions). Then, both
eqs.(70) and (71) of the present modeling reduce to:

kepp —ko — f (k1 — ko)m'M =0, 73)
feff — po — f (1 — po) d'D =0,

with fo =0, fi = f, and, fo=1— f in m', M, d' and D given in the Appendix,
and,

Qcff = k—lff (=fn'ky = (1= f)n’ko + flron + (1= fkoao) . (74)

with fo =0, fi = f, and, fo = 1 — f in n' and n® given in the Appendix. In the
case of thermo-elastic heterogeneous materials, Stolz [32] found rigorous bounds
for different morphological assemblages starting from the free energy and develop-
ing a variational procedure. In the case of the ”3-phase” model [2], the effective
bulk modulus is exactly determined (i.e., the bounds give the same value) and
corresponds to the analytical solution given by the Composite Sphere Assemblage
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23 Figure 8. Normalized effective thermal expansion coefficient aeys/a1 of a composite material made of
24 coated inclusions as described in Fig. 4: result from [25] using the effective elastic properties obtained by
25 (3] and Levin’s formula [26, 27] with fi = 0.1, fo = 0.01. The elastic properties of the different phases are
26 characterized by: k1/puo = 15, p1/po =7, ko/po = 2, p2/po = 4 and ap/a1 = 10.

27

28 model [1]:

29

30 f (k1 = ko) (3ko + 4p0)

ke :]{7‘1‘ ’
g; H M0 Bk + Ao + 3 (1 — f) (k1 — ko)

gi and, a.ry reads using the Levin’s formula:
35 .
T VT

3% sy — a4 Mbess = TTF
1/kg —1/k

38 [ko —1/k1

39

40

41

42

43 V.

44 1/kT:f/k1+(1_f)/kO

45

46 According to Fig. 11, the results of the present ”3-phase” model in terms of effective

47 thermal expansion given by eqs.(73) and (74) are found in excellent agreement with

48 the ones given by eqs.(75) and (76) [32] for 2-phase materials with different volume

49 fractions f of inclusions and various ratios v = uy/po (with 4 = 1y = 0.3 and

50 (&%) / a1 = 50).

51

52

53

54 4.

55

g? In this paper, we investigated the effective behavior of multi-coated inclusion-

58 reinforced composites containing interphases with a linear elastic behavior with
59 eigenstrains. These eigenstrains may be encountered in many physical situations of
60

PRPRPOO~NOOOPRAWDNEPE

100

(Oé() N Oél) s (76)

where:

a’" = fay + (1 - faw,
(77)

Concluding remarks
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Figure 9. Normalized effective thermal expansion coefficient aeys/a1 of a composite material made of
coated inclusions as described in Fig. 4: result from the present model using Levin’s formula (eq.(58))
with fi = 0.1, fo = 0.01. The elastic properties of the different phases are characterized by: k1/po = 15,
wi/po =7, ko/po =2, p2/po = 4 and ag/a; = 10.

0: Matrix

inclusions 1 E

Figure 10. Schematic principle of the ”3-phase” scheme (self-consistent condition). The inclusions (phase
(1)) are embedded in the matrix phase (0). In this decription, we estimate the effective behavior of the
Homogenized Equivalent Medium (denoted HEM).
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23 Figure 11. Estimation from the present model (egs.(73) and (74)) (lines) of the normalized effective
24 thermal expansion coefficient a. sy /g of a composite material made of spherical inclusions (phase 1) in a
25 matrix phase (phase 0) (see Fig. 10) as a function of the volume fraction f of inclusions, and, comparison

with the exact solution given by the Levin’s formula using the Composite Sphere Assemblage model for
26 kerr [1, 32] (eqs.(75) and (76)) (points). The results are plotted for different values of v = p1/puo with
27 v1 = vp = 0.3 (Poisson’s ratios) and ag/a1 = 50.

importance in functional materials. By assuming perfectly bonded interfaces, the
31 effective elastic properties and the effective eigenstrains of multi-coated inclusion-
32 reinforced composites are retrieved with a ”(n+1)-phase” self-consistent procedure.
33 Even though the present micromechanical model is not exact due to averaging
34 procedures introduced in section 2.2, this one can be applied to any anisotropic
35 behaviors and reinforced composites with non-homothetic multi-coated ellipsoidal
36 inclusions. Here, we illustrated the efficiency of the model to study the influences of
the interphase thermal expansion and elastic bulk modulus on the effective thermal
expansion with our ”4-phase” model. Furthermore, local and overall thermo-elastic
behaviors are assumed isotropic. In this case, the results of the present formulation
a1 match the exact results reported by Hervé [25] for the "4-phase” model, and, the
42 ones reported by Stolz [32, 33] for the ”3-phase” model. Such framework is sched-
43 uled to be extended to the case of composite elastic materials with eigenstrains
44 and with imperfect interfaces [49, 50] and to functional nanocomposites [51, 52]
45 involving ellipsoidal nano-inhomogeneities.
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Appendix: Expressions of M, D, m°, d°, m!', d', m?, d?, n°, n', n?

in section 3

used

In this appendix, we give the details for the complete expressions of M, D, mY,
d®, mt, dt, m?, d?, n® n', n? present in eqs.(69) to derive the effective elastic
moduli kepr and pers (eqs.(70)) and the effective thermal expansion coefficient
aefr (eq.(71)).

By using simple algebra using eq.(51) and the properties of the orthogonal pro-
jection tensors [44, 47] denoted J and K introduced in section 3 (see also the
developments in [21]), the following expressions of M and D (eq.(69)) are obtained:

3f1(k1 — k‘eff)ml
Skepr +dpiesy

-1
m0>
- 2
D— <1 L 81 = pepp)Chepy + 2bers) o (1)
Stteff(Bkefs + Atesf)

3fa(ka — keff)mz
3keff + 4,ueff

3fo(ko — kegy)

M=(1
( - Bkepr +4piery

6f2(p2 — ttepr)(keps + 20erf) o
Steff(3kepr + Aptess)

6 fo(to — peff)(kers + 2,Ueff)d0> N
Steff(Bkefs + Aptess)

where m!', d', m?, d?, m", d° are involved in the concentration tensors
o', o2, ol respectively (see eqs.(69)). These ones cas be deduced from

eqs.(39),(40),(41),(42),(43) as:

-1
ml — <f1 —|—f2m21 4 flff2 (flm(]l —i—f2m02m21)> ,
-1
1 _ 21 fO 01 02 521
d = <f1—|—f2d +7f1+f2 (fld + fod™d )> ,

~1
m2 — <f1(m21)_1+f2+ fo (f1m01(m21)_1+f2m02)> 7

fi+ f2

-1
flff2 (fldOI(dQI)—l +f2d02)> ,

d* = <f1(d21)_1 +fot

1
0 fi 01 f2 02 21> < f1 01/, 21\—1
m’ = + mo + mom + m
fo f1<f1+f2 itk E\fpm™ )
S 01 f2 02 ;21 - f1 01/ ,721\—1 f2
d = |fo+ <7d + —=—d"d + —— % +
fot fr J1+ fo J1+ fo f2 fi+ fa (@) J1+ fo
(2)
with:
m2t = M2t Bk g g 3R+ 3u) + 4o (3 + 20)
dpo + 3ko D2 (3k2 + 4pus)
01 _ Ao+ 3k oo 3ko(2u1 + 3po) + dpo (3 + 2#0)7 3)
4o + 3ko 5p0(3ko + 4po)
02 _ Ao+ 3k o 02 3Ko(2p2 + 3po) + dpio (B + 2#0)’
4o + 3ko 5p0(3ko + 4po)

such that according to eq.(40), w@D = m2J 4 1K, wO/D = n01J 4 @K,
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and, w(©/2) = m02J 4 42K,

Using again eq.(61) applied to eqs.(39),(40),(41),(42),(43) allows us to find the
following expressions of n!, n?, n®. These ones represent the thermal contribu-
tions present in eqs.(69) to determine the concentration tensors B, 32, 3°. Their
expressions are found to be:

1 1 21 fo 01 02 21 02
no=m e+ —7 e + m-e’ +e ,
(et 4 2 (e o ))
2 21,1 21

n®=m“n —e", (4)

0_ J1 o f2 02,2 02
" _<f1+f2(m "ol )+f1+f2(m "ol )>7

with:
21 3 (ks — ki)
3ko + 4po
601 _ -3 (koao - klal)’ (5)
3]{7(] + 4,[1,0
02 _ —3 (koo — kaa)
3]{7(] + 4,[1,0 ’

where v(2/1) = 21,0, v(0/D) = 01,0, and, v(%/2) = ¢921,0 following eq.(40).
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