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Abstract

The minimum time control of the circular restricted three-body problem
is considered. Controllability is proved on an adequate submanifold. Sin-
gularities of the extremal flow are studied by means of a stratification of
the switching surface. Properties of homotopy maps in optimal control
are framed in a simple case. The analysis is used to perform continua-
tions on the two parameters of the problem: The ratio of masses, and the
magnitude of the control.

Keywords. three-body problem, minimum time control, control-affine
systems, homotopy, conjugate points
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1 Problem statement

The control of the two-body problem was addressed in [15]. The first body
exerted a central force on the second, which was an artificial satellite of negligible
mass whose thrust was the control. The resulting controlled Kepler equation
was shown to be controllable, and minimization of time was studied (see also the
subsequent papers [8, 14]). The present paper is the continuation of this work.
Now under the influence of two primary bodies, the artificial satellite is still
endowed with a thrust. The motion of the two primaries, not influenced by the
third negligible mass, is supposed to be circular. Among the numerous previous
studies on space missions in the three-body framework, one has to mention the
pioneering work of [19], and more recently of [25]. These approaches are purely
celestial mechanical ones and rely on a fine knowledge of the dynamical system
with three bodies or more. More on the control side see, e.g., [4] for numerical
results using direct methods, [6] for a preliminary study on stabilization, and
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[27, 28] for a combination of control and dynamical system techniques. We
present a purely optimal control approach for time minimization. The indirect
methods (shooting) used for numerical computations are driven by the geometric
analysis of the problem. The model we consider is the following [33].

Let µ ∈ (0, 1) be the ratio of the primaries masses, and let Qµ := C\{−µ, 1−
µ}. For q ∈ Qµ ⊂ C ' R2 and positive thrust magnitude ε, define the controlled
circular restricted three-body problem (planar model) according to

q̈(t)−∇Ωµ(q(t)) + 2iq̇(t) = εu(t), |u(t)| =
√
u2

1(t) + u2
2(t) ≤ 1.

Here, (q, q̇) ∈ Xµ = TQµ ' Qµ × C are Cartesian coordinates in a rotating
frame (q = e−itξ where ξ is the position vector in a fixed frame) and

Ωµ(q) :=
1
2
|q|2 +

1− µ

|q + µ|
+

µ

|q − 1 + µ|
·

Another choice of coordinates consists in letting Xµ = T ∗Qµ, taking the cotan-
gent bundle instead to write the uncontrolled part of the dynamics in Hamilto-
nian form. Let p = q̇ + iq and let

Jµ(q, q̇) :=
1
2
|q̇|2 − Ωµ(q),

=
1
2
|p|2 + p ∧ q − 1− µ

|q + µ|
− µ

|q − 1 + µ|

be the Jacobian integral. Then,

q̇(t) =
∂Jµ

∂p
(q(t), p(t)), ṗ(t) = −∂Jµ

∂q
(q(t), p(t)) + εu(t), |u(t)| ≤ 1.

More compactly,

ẋ(t) = F0(x(t)) + εu1(t)F1(x(t)) + εu2(t)F2(x(t)), |u(t)| ≤ 1,

with, in (q, p) coordinates for x ∈ Xµ,

F0(q, p) :=
−→
Jµ, F1(q, p) :=

∂

∂p1
, F2(q, p) :=

∂

∂p2
,

where the symplectic gradient
−→
Jµ = (∇pJµ,−∇qJµ) is the drift of the system.

When µ = 0, we get a two-body problem: J0 = E−C with energy and momen-
tum respectively equal to

E :=
1
2
|ξ̇|2 − 1

|ξ|
=

1
2
|q̇|2 − 1

2
|q|2 − q ∧ q̇ − 1

|q|
,

C := ξ ∧ ξ̇ = q ∧ q̇ + |q|2.

Restricting to the elliptic domain, X0 ∩ {E < 0, C > 0}, another system of
coordinates tailored for the analysis is obtained using orbital elements describing
the geometry of the osculating ellipse. Let n > 0 be the mean motion (a3n2 = 1
if a the semi-major axis), (ex, ey) ∈ D be the eccentricity vector (where D is
the open unit ball of R2), and l ∈ R the longitude (the class modulo 2π of l is
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just the polar angle in the fixed (ξ1, ξ2)-frame). Alternatively, one can use polar
coordinates (e, θ) ∈ (0, 1) × S1 for the eccentricity on the (pointed) Poincaré
disk D (θ is called the argument of pericenter). In this system, x = (n, e, θ, l),

F0(x)|µ=0 =
nW 2

(1− e2)3/2

∂

∂l
, W = 1 + e cos τ,

F̃1(x) =
√

1− e2

n1/3

(
−3ne sin θ

1− e2
∂

∂n
+ sin τ

∂

∂e
− cos τ

1
e

∂

∂θ

)
,

F̃2(x) =
√

1− e2

n1/3

(
− 3nW

1− e2
∂

∂n
+ (cos τ +

e+ cos τ
W

)
∂

∂e
+ (sin τ +

sin τ
W

)
1
e

∂

∂θ

)
where τ = l − θ. We have also used a feedback on the control to express the
control not in the {∂/∂ξ̇1, ∂/∂ξ̇2} frame but in the radial-orthoradial one, so

F̃1(ξ, ξ̇) =
ξ1
|ξ|

∂

∂ξ̇1
+
ξ2
|ξ|

∂

∂ξ̇2
, F̃2(ξ, ξ̇) = − ξ2

|ξ|
∂

∂ξ̇1
+
ξ1
|ξ|

∂

∂ξ̇2
·

The criterion under consideration is the final time, and the paper is organized
as follows.

Section 2 is devoted to controllability. Independently of the bound on the
control, it is proved that admissible trajectories between arbitrary points exist
provided the Jacobian integral is smaller than the one given for some equilibrium
point of the uncontrolled system. The structure of optimal controls is addressed
in Section 3, refining the results of [15]. In particular the role of peri and
apocenters with respect to global bounds on the number of switchings of the
control is emphasized, in connection with averaging of the system. The system
has indeed two parameters: The bound of the control, ε, which can be taken
very small with low-thrust applications in mind [29] thus leading to averaging;
and the ratio of masses, µ, on which a continuation à la Poincaré may be
performed to embed the two-body problem into a three-body one. This idea is
the key to solve the problem as explained in Section 4 where continuations both
with respect to µ and ε are considered. The peculiarity of homotopy maps in
optimal control is then illustrated in a simple framework, in relation to second
order optimality conditions.

2 Controllability

The drift has five equilibrium points, L1(µ), . . . , L5(µ), known as Lagrange
points [33], whose position depends on µ. The points L1, L2 and L3 are
the collinear or Euler points, the points L4 and L5 form two equilateral tri-
angles with −µ and 1 − µ. When µ = 0, L1 = L2 = 1, L3 = −1, and
L4 = exp(iπ/3), L5 = − exp(iπ/3) (all belong to S1 which is a continuum of
equilibrium points in this particular case). The Jacobian Jµ is the only first inte-
gral of the non-integrable uncontrolled system. Every level set {Jµ = j} projects
onto Ωµ(q) + j = |q̇|2/2 ≥ 0 in the (q1, q2)-space, defining the Hill regions
where the free motion has to take place (see Fig. 1). Let ji(µ) := Jµ(Li(µ)),
i = 1, . . . , 5 denote the Jacobian constants of these points. For µ ∈ (0, 1),
j2 < j1 < j3 < j4 = j5 (these values all degenerate to −3/2 when µ goes to
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Figure 1: Lagrange points and associated Hill regions, µ ∈ (0, 1). The forbidden
regions of motion (complementary to the Hill regions) monotonically decrease
as the Jacobian constant tends to Jµ(L4) = Jµ(L5) (then disappear past this
value) and opens up past Jµ(L1).

zero). The open subset {x ∈ Xµ | Jµ(x) < j1(µ)} has two connected compo-
nents, and we denote by X1

µ the component containing L2(µ) (see Fig. 2). The
result below essentially asserts that controllability for the restricted three-body
problem holds provided the Jacobian is less than the Jacobian at L1, emphasiz-
ing the role of Lagrange points. (Regarding the role of L2, see Fig. 5 and the
numerical results in Section 4.)

Theorem 1. For any µ ∈ (0, 1), for any positive ε, the circular restricted
three-body problem is controllable on X1

µ.

We postpone the proof to the end of the section and first recall some basic facts
needed to assert controllability.

Consider a smooth1 control-affine system on a manifold X,

ẋ(t) = F0(x(t)) +
m∑

i=1

uiFi(x(t)), u(t) ∈ U ⊂ Rm,

such that U is a neighbourhood of the origin. The attainable set (by piecewise
constant controls) from x0 ∈ X depends only on the drift, F0, and on the

1That is C∞-smooth.
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distribution D spanned by the vector fields F1, . . . , Fm. It is the set of points
obtained by compositions of flows,

etpGp ◦ · · · ◦ et1G1(x0), Gi ∈ F0 + D , ti ≥ 0,

with ti small enough for the composition to be defined. Now, if F is an ar-
bitrary subsheaf of C∞ vector fields on X, assuming for simplicity all F ∈ F
complete, define the subgroup G of the diffeomorphisms of X generated by the
one parameter subgroups exp tF , t ∈ R, F ∈ F . According to the orbit theo-
rem [1, 31], the orbit of G through x0 is an immersed submanifold of X whose
tangent space is

TxG (x0) = Spanx{(Adϕ)F, ϕ ∈ G , F ∈ F}.

In coordinates,
(Adϕ)F|x = [ϕ′(x)]−1F (ϕ(x)), x ∈ X.

Restricting to the C ω-category, the adjoint action and the exponential commute
in the sense that, for arbitrary vector fields F,G,

(Ad etF )G|x = (et adF )G|x =
∑
n≥0

tn

n!
(adnF )G|x, x ∈ X,

where (adF )G is the Lie bracket [F,G] = F ·G−G ·F , and recursively for adn.
In this case, the orbit theorem then simply reads

TxG (x0) = LiexF .

If the vector fields are not complete, G is just a pseudo-group [23] but the
conclusion of the orbit theorem—which is local—is preserved. Coming back to
control-affine systems, assuming that

Liex{F0, F1, . . . , Fm} = TxX, x ∈ X, (1)

and that the drift F0 is recurrent2 it can be proven that compositions with
the flow of −F0 can be added when computing the attainable set (see [21]).
So the attainable set is equal to the orbit of the pseudo-group associated with
{F0, F1, . . . , Fm}. Because of the orbit theorem and of (1), this orbit has to be
the whole manifold (supposed to be connected). In the control-affine three-body
case, the rank condition holds as is clear from

Lemma 1. A second order controlled system on Rm,

q̈(t) + g(q(t), q̇(t)) = u(t),

is a control-affine system on R2m with an involutive distribution D and a drift
F0 such that {F1, . . . , Fm, [F0, F1], . . . , [F0, Fm]} has maximum rank.

2Given a vector field F , a point x ∈ X is recurrent or positively Poisson stable for F
if, for any neighbourhood V of x, for any positive T , there is t ≥ T such that exp tF (x) is
defined and belongs to V . The vector field itself is said recurrent when it has a dense subset
of recurrent points.
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Proof. As a first order system,

F0(q, q̇) = q̇1
∂

∂q1
+ · · ·+ q̇m

∂

∂qm
− g1(q, q̇)

∂

∂q̇1
− · · · − gm(q, q̇)

∂

∂q̇m

and Fi = ∂/∂q̇i (so D is clearly involutive). Then

[F0, Fi] = −∂/∂qi mod D

and the rank is maximum.

Applying the lemma to the planar three-body problem (m = 2), one obtains
controllability in the following way.

Proof (of Theorem 1). Let x0, xf in X1
µ, and let j be strictly smaller than the

Jacobian constants of both endpoints. Set X̃1
µ := X1

µ ∩ {Jµ > j}. Outside a
subset of zero measure associated with initial conditions generating collisions
(q = −µ or 1 − µ), the drift is a complete Hamiltonian vector field whose
exponential is defined for all times and is a volume preserving bijection in (q, p)
coordinates. By definition, X̃1

µ which is a union of level sets of the Hamiltonian
Jµ is invariant with respect to the exponential. For x = (q, p) ∈ X̃1

µ,

j + Ωµ(q) <
1
2
|p− iq|2 < j1(µ) + Ωµ(q).

Then, for a fixed q, the volume of the q-section of X̃1
µ is bounded by 2π(j1(µ)−j)

as is clear integrating with respect to dp1 ∧ dp2 = ρdρ ∧ dα (set p − iq =:
ρ exp(iα)). Since the projection on the (q1, q2)-space of X̃1

µ is also bounded, the
dq ∧ dp -measure of X̃1

µ is finite (Fubini). We conclude as in [30] that almost
every point of X̃1

µ is recurrent by Poincaré theorem. Controllability on X̃1
µ

follows and implies the existence of a trajectory joining x0 to xf , which in turn
implies controllability on X1

µ.

Remark 1. In the two-body case, µ = 0, controllability still holds on X1
0 , the

bounded component of {J0 < j1(0) = −3/2}. Each section of X1
0 by a level

set {J0 = j} is a pointed disk containing bounded, hence periodic, trajectories
of of the uncontrolled system. The energy is negative but, as J0 = E − C, X1

0

contains both direct (C > 0), retrograde (C < 0) and collision orbits (C = 0).
In contrast, the controllability result in [15] was obtained on the elliptic domain,
X0 ∩ {E < 0, C > 0}, using the periodicity of the drift and excluding collisions
(a sign had then to be imposed on the momentum so that the manifold be
connex).

Remark 2. In order to obtain an existence result for minimum time, one has to
prove that minimizing trajectories remain into a fixed compact (which depends
on the prescribed boundary conditions). Then, from any minimizing sequence
one can extract a converging subsequence whose limit is an admissible trajectory
by virtue of the convexity of the velocity field {F0(x)+εu1F1(x)+u2F2(x), |u| ≤
1} for all x ∈ X (Filippov theorem). One of the difficulties due to collisions is
so to give bounds on the distance to the singularities, −µ and 1− µ.
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Figure 2: Projection of the open submanifold X1
µ in the (q1, q2, Jµ)-space. The

boundary of the volume is an apparent contour generated by the projection. It
is the zero velocity set. Above each interior point there is an S1-fibre corre-
sponding to the argument of q̇. For µ ∈ (0, 1), j2 < j1 and X1

µ is connex. It
is necessary that Jµ becomes greater than j2 to make the transfer from x0 to
xf . This strategy is observed on time minimum trajectories which pass in the
neighbourhood of the L2 point (see Fig. 5, Section 4).

3 Singularities of the extremal flow

Let u : [0, tf ] → R2 be a measurable time-minimizing control of the control-
affine system

ẋ(t) = F0(x(t)) + u1F1(x(t)) + u2F2(x(t)), u2
1(t) + u2

2(t) ≤ 1, (2)

defined on a manifoldX of dimension four. Let x denote the associated Lipschitz
trajectory. Pontrjagin maximum principle [1] asserts that x is the projection of
a Lipschitzian function, z = (x, p) : [0, tf ] → T ∗X\0, valued in the cotangent
bundle minus the null section. The triple (x, u, p) is the reference extremal. In
coordinates, there is a nonpositive scalar p0 such that, a.e. on [0, tf ],

ẋ(t) =
∂H

∂p
(x(t), u(t), p(t)), ṗ(t) = −∂H

∂x
(x(t), u(t), p(t)),

with Hamiltonian H(x, u, p) := p0 + H0(x, p) + u1H1(x, p) + u2H2(x, p) and
Hamiltonian lifts Hi(x, p) := 〈p, Fi(x)〉, i = 0, 1, 2. Moreover, the maximization
condition holds a.e.,

H(x(t), u(t), p(t)) = max
|v|≤1

H(x(t), v, p(t)).
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As a result, H is a.e. equal to a constant (zero, here, because the final time is
free) along (x, u, p), and

u(t) =
ψ(t)
|ψ(t)|

whenever the switching function ψ(t) := (H1,H2)(x(t), p(t)) does not vanish.
The switching surface is

Σ := {(x, p) ∈ T ∗X | H1(x, p) = H2(x, p) = 0},

and the crux for regularity is to study contacts (switching points) with Σ since,
outside the surface, extremals are smooth. Extremals along which ψ does not
vanish are bang extremals (denoted γb), while those on which ψ is identically zero
are singular ones (denoted γs). We use the notation Fij := [Fi, Fj ] (resp. Hij :=
{Hi,Hj}) for Lie (resp. Poisson3) brackets of vector fields (resp. Hamiltonian
lifts of these). The following analysis refines the one in [8, 15] using the tools of
[9, 22].

We assume that

(i) D(x) := det(F1(x), F2(x), F01(x), F02(x)) 6= 0, x ∈ X.

This assumption, which in particular implies that the span of F1 and F2 is of
constant rank two, so that Σ is an embedded codimension two submanifold of
the cotangent bundle, is geometric in the following sense. Let D be a rank 2
distribution over the 4-dimensional manifold X (subbundle of TX with fibres of
constant dimension two). Equipped with a Riemannian tensor g, (D , g) defines
a sub-Riemannian structure [3]. Given a vector field F0 over X, consider the
problem of finding the minimum time Lipschitz trajectories subject to

ẋ(t) = F0(x(t)) + v, v ∈ D , |v|g :=
√
gx(t)(v) ≤ 1,

that connect prescribed points of X. Given any local frame {F1, F2} of D ,
orthonormal with respect to g, this problem is reformulated as (2). Obviously,
the previous assumption only depends on the distribution and on the drift (see
also Lemma 3).

Lemma 2. If a singular extremal passes through z0 ∈ Σ, then H12(z0) 6= 0.

Proof. The switching function is Lipschitz and, almost everywhere,

ψ̇1(t) = H01(z(t))− u2(t)H12(z(t)), (3)
ψ̇2(t) = H02(z(t)) + u1(t)H12(z(t)). (4)

Assume by contradiction H12(z0) = 0. Along a singular extremal, ψ vanishes
identically and so does ψ̇. Then H1, H2, H01 and H02 vanish at z0 = (x0, p0),
which implies p0 = 0 because of assumption (i). This is impossible along a
minimum time extremal.

3The Poisson bracket of two smooth functions f , g on T ∗X is {f, g} :=
Pn

i ∂xig ∂pif −
∂xif ∂pig, n = dim X. In particular, the Poisson bracket of lifts vector fields Fi, Fj is the lift
of their Lie bracket, {Hi, Hj} = Hij .
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In the neighbourhood of z0 ∈ Σ such that H12(z0) 6= 0, the following dynamical
feedback is well defined,

us(z) :=
1

H12(z)
(−H02,H01)(z). (5)

(Compare [16] where, on the contrary, singular extremals are studied in the
involutive case.) Plugging this control into H sets up a new Hamiltonian,

Hs(z) := H(z, us(z)) = p0 +H0(z) + us,1(z)H1(z) + us,2(z)H2(z).

Proposition 1. Let z0 ∈ Σ, H12(z0) 6= 0; there is exactly one singular extremal
passing through z0, and it is defined by the flow of Hs.

Proof. First we show that Σ is invariant with respect to the flow of Hs. Let
z0 ∈ Σ, H12(z0) 6= 0, and let zs be the associated integral curve of Hs through
it. Let ϕ := (H1,H2) ◦ zs; then ϕ is smooth and

ϕ̇1(t) = {Hs,H1}(zs(t)),
= H01 − us,2H12 |zs(t)︸ ︷︷ ︸

0

+{us,1,H1}H1 + {us,2,H1}H2 |zs(t),

and similarly for ϕ̇2, so ϕ̇(t) = A(t)ϕ(t) with

A(t) :=
[
{us,1,H1} {us,2,H1}
{us,1,H2} {us,1,H2}

]
(zs(t)).

Since ϕ(0) = (H1,H2)(z0) = (0, 0), ϕ is identically zero and zs remains on Σ.
Now,

H ′
s(z) =

∂H

∂z
(z, us(z)) +

∂H

∂u
(z, us(z))u′s(z),

∂H

∂u
(z, u) = (H1,H2)(z),

so
−→
H s(zs(t)) =

−→
H (zs(t), us(zs(t))) as ∂H/∂u vanishes along zs, and (zs, us ◦ zs)

is extremal.

Consider the stratification of Σ = Σ− ∪ Σ0 ∪ Σ+ where

Σ− := {z ∈ Σ | H2
12(z) < H2

01(z) +H2
02(z)},

Σ0 := {z ∈ Σ | H2
12(z) = H2

01(z) +H2
02(z)},

Σ+ := {z ∈ Σ | H2
12(z) > H2

01(z) +H2
02(z)}.

We use a nilpotentatization to study the behaviour of bang extremals in the
neighbourhood of points in Σ− ∪ Σ+.

In the nilpotent approximation around a point z0 = (x0, p0) ∈ Σ\0, Poisson
brackets of length greater or equal to three vanish; since the time derivatives
of the length two brackets only involve such brackets, H01, H02 and H12 are
constant in this approximation. Under assumption (i), {F1, F2, F01, F02} form
a frame so (H01,H02)(z0) 6= (0, 0) since p0 would otherwise be zero. Set

H01(z0) =: a1, H02(z0) =: a2, H12(z0) =: b,
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z0 ∈ Σ− z0 ∈ Σ+

Figure 3: Phase portraits of the switching function under assumption (i). For
z0 ∈ Σ−, the half-line θ = π− θb(z0) (resp. θ = θb(z0)) goes to the origin (resp.
departs from the origin).

with (a1, a2) 6= (0, 0). Making a polar blowing up (ψ1, ψ2) = (ρ cos θ, ρ sin θ), the
differential equation for the switching function in the nilpotent approximation
in the neighbourhood of z0 reads

ρ̇(t) = a1 cos θ(t) + a2 sin θ(t), ρ(t)θ̇(t) = b− a1 sin θ(t) + a2 cos θ(t),

which, up to some rotation and rescaling, can be normalized to

ρ̇(t) = cos θ(t), ρ(t)θ̇(t) = c− sin θ(t),

with c := b/
√
a2
1 + a2

2. This system is integrated according to

ρ(θ) = ρ(θ(0))
∣∣∣∣c− sin θ(0)
c− sin θ

∣∣∣∣ ,
whence the phase portraits Fig. 3 for |c| < 1 (z0 ∈ Σ−) and |c| > 1 (z0 ∈ Σ+).
When |c| < 1, the origin is reached along θ = π − θb(z0) (ρ̇ < 0) and departs
from it along θ = θb(z0) (ρ̇ > 0) where

θb(z0) := arcsin
H12√

H2
01 +H2

02

(z0).

Summarizing,

Theorem 2. Let z0 ∈ Σ−; every extremal is locally of the form γbγsγb (γs

empty if H12(z0) = 0); every admissible extremal is locally the concatenation of
at most two bang arcs. Let z0 ∈ Σ+; every extremal is locally bang or singular;
every optimal extremal is locally bang. Optimal singular extremals are given by
the flow of Hs and contained in Σ0 (saturating).

Proof. A singular extremal passing through z0 ∈ Σ− cannot be admissible since,
if H12(z0) 6= 0, the singular control is well defined but |us(z0)| > 1. A singular
extremal passing through z0 ∈ Σ+ is admissible since |us(z0)| < 1 but cannot
be optimal: As it is interior to the constraint, it must satisfy the Goh second
order necessary condition [1],{

∂H

∂u1
,
∂H

∂u2

}
(z0, us(z0)) = H12(z0) = 0,
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which is excluded. In the neighbourhood of Σ+ points, the connection between
bang and singular extremals is not possible according to the phase portrait in
the nilpotent approximation.

An example of saturating singular control is provided by the following nilpotent
system (compare [8]). Let

F0(x) = (1 + x3)
∂

∂x1
+ x4

∂

∂x2
, F1(x) = x4

∂

∂x1
+

∂

∂x3
, F2(x) =

∂

∂x4
·

One checks thatH12 = H01 = −p1, H02 = −p2, so Σ0 is defined by x4p1+p3 = 0,
p4 = 0 and p2 = 0. The singular control is us(z) = (−p2/p1, 1) and

Hs(x, p) = (1 + x3)p1 −
p2p3

p1
+ p4.

Through z0 ∈ Σ0 such that x40 = 0 passes the singular extremal

x1(t) = (1 + x30)t+ x10, x2(t) =
t2

2
+ x20, x3(t) = x30, x4(t) = t,

p1(t) = p10 6= 0, p2(t) = 0, p3(t) = −p10 t, p4(t) = 0,

associated with us = (0, 1).
Let us now define

D1(x) := det(F1(x), F2(x), F12(x), F02(x)),
D2(x) := det(F1(x), F2(x), F01(x), F12(x)),

to strengthen and replace assumption (i) by

(i’) D2
1(x) +D2

2(x) < D2(x), x ∈ X.

This assumption only depends on the sub-Riemannian structure and the drift.

Lemma 3. Assumption (i’) is independent of a particular choice of orthonormal
frame on (D , g).

Proof. Let {F1, F2} and {F̂1, F̂2} be two orthonormal bases in the neighbour-
hood of some point on x. There exists a smooth function θ such that, in coor-
dinates,

F̂1(x) = cos θ(x)F1(x) + sin θ(x)F2(x),
F̂2(x) = ε(− sin θ(x)F1(x) + cos θ(x)F2(x)),

with ε = ±1. One can restrict to ε = 1 and use the following facts

[F, βG] = [F,G] mod RG, [αF, βG] = [F,G] mod Span{F,G},

to check that D̂1 = D1, D̂2 = D2 and D̂ = D where

D̂1(x) := det(F̂1(x), F̂2(x), [F̂1, F̂2](x), [F̂0, F̂2](x)), etc.
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Remark 3. When the distribution is involutive (which we shall assume later),
D1 = D2 = 0 and, with obvious notation, (i’) simply asserts that D + [F0,D ]
has full rank—this is assumption (i). Assumption (i’) can so be interpretated
as ”bounding the non-holonomy” of D with respect to F0.

Corollary 1. Every extremal is locally of the form γbγsγb (γs possibly empty);
for such a sequence, the total angle switch of the control between the entry point
into Σ, z0, and the exit point z′0 is θb(z0)+ θb(z′0)+π. Admissible extremals are
the concatenation of finitely many bang arcs.

Proof. Computing,

det(F1(x), F2(x), F01(x)− u2F12(x), F02(x) + u1F12(x)) =

D(x)− u2D1(x) + u1D2(x), x ∈ X, u ∈ R2.

Hence, for |u| ≤ 1, {F1, F2, F01 − u2F12, F02 + u1F12} form a frame by virtue of
(i’). Let z0 = (x0, p0) belong to Σ\0. For an arbitrary u ∈ R2, |u| ≤ 1,[

〈p0, F01(x0)〉
〈p0, F02(x0)〉

]
+ 〈p0, F12(x0)〉

[
−u2

u1

]
6=

[
0
0

]
,

since p0 would otherwise be zero. As a result

H2
12(z0) < H2

01(z0) +H2
02(z0),

so Σ\0 = Σ− and the local structure follows from the previous theorem. If the
singular arc is not empty, by virtue of (5) the angle switch at the bang-singular
junction is (επ/2 + θ0)− (π − θb(z0) + θ0) with ε := signH12(z0), θ0 being the
argument of (H01,H02)(z0) 6= (0, 0). Similarly, the angle switch at the singular-
bang junction is (θb(z′0) + θ′0)− (ε′π/2 + θ′0). As H12 does not vanish along the
singular arc, ε = ε′, whence the result. If the singular arc is empty (notably
when H12(z0) = 0), the angle switch is (θb(z0) + θ0)− (π− θb(z0) + θ0) and the
formula still holds with z0 = z′0.

Assuming moreover that

(ii) D is involutive,

we get

Corollary 2 ([15]). The switching function is continuously differentiable, and
every extremal is locally bang-bang with switchings of angle π (“π-singularities”).

Proof. For z0 ∈ Σ\0, one has H12(z0) = 0 because of (ii), so no singular arc
passes through a switching point; θb(z0) = π and the angle switch is π. As
the bracket H12 vanishes at switching points, ψ̇ is continuous as observed from
(3-4).

In order to give a global bound on the number of switchings, we finally add
assumption

(iii) F0 /∈ Span{F1, F2, F01},
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and define

Σ1 := Σ ∩ {(x, p) ∈ T ∗X | F0(x) ∈ Spanx{F1, F2, F02}}.

Remark 4. (i’) + (ii) are equivalent to (i) + (ii). In contrast to (i), (i’) and
(ii), property (iii) (and Σ1) does depend on the particular choice of orthonormal
basis of D .

Theorem 3 ([15]). In the normal case, there cannot be consecutive switchings
in Σ1. In particular, if Σ = Σ1, any normal optimal control has at most one
switching which is a π-singularity.

Proof. According to (i), there are continous scalar functions λ1, λ2 on X such
that

F0 = λ1F01 + λ2F02 mod D .

At a switching point z0 = (x(t0), p(t0)) ∈ Σ1\0,

H(x(t0), u(t0), p(t0)) = −p0 = λ2(x(t0))H02(z0) = λ2(x(t0))ψ̇2(t0).

In the normal case, p0 < 0 so

λ2(x(t1))ψ̇2(t1)λ2(x(t2))ψ̇2(t2) = (p0)2 > 0

if we assume that t1 < t2 are consecutive such switching times. Because of (iii),
λ2 never vanishes; by continuity its sign is constant so ψ̇2(t1)ψ̇2(t2) > 0, and
the contradiction follows.

Thanks to Lemma 1, these results apply to the problem under consideration:
The circular restricted three-body has bang-bang time-minimizing controls with
finitely many π-singularities. The study of such singularities is important since,
in practice, the rotation speed of the thrust is limited. A remarkably simple
geometric interpretation of Σ1 is obtained when restricting to a two-body sys-
tem, µ = 0. This case is not only important in itself as it also corresponds to
the initial and final phases of a typical three-body low-thrust transfer. Such a
trajectory resembles a heteroclinic trajectory connecting periodic orbits around
each one of the primaries (see Fig. 5). We use for the analysis the geometric
coordinates and the radial-orthoradial frame introduced in Section 1. We as-
sume the eccentricity positive, 0 < e < 1, to obviate the singularity of these
coordinates at circular orbits. With x = (n, e, θ, l) ∈ R∗

+ × (0, 1)×S1 ×R (and
τ = l − θ), p = (pn, pe, pθ, pl) ∈ (R4)∗, we set

α := − 3n
1− e2

pn, β := pe, γ :=
pθ

e
, c := cos τ, s := sin τ,

so Σ is defined by the following algebraic system:

αes+ βs− γc = 0,

α(1 + ec) + β(c+
e+ c

1 + ec
) + γ(s+

s

1 + ec
) = 0,

c2 + s2 = 1.

Lemma 4. The switching surface Σ for µ = 0 is stratified as follows:
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(a) If γ = 0, either (α, β) = (0, 0), or s = 0 and α, β belong to the union of
the two distinct lines

(1 + e)α+ 2β = 0, (1− e)α− 2β = 0.

(b) If γ 6= 0, s is not zero and α, β are uniquely determined.

Proof. The algebraic system in α, β

αes+ βs = γc,

α(1 + ec) + β(c+
e+ c

1 + ec
) = −γ(s+

s

1 + ec
),

has determinant ∣∣∣∣∣ es s

1 + ec c+
e+ c

1 + ec

∣∣∣∣∣ = −s(1− e2)
1 + ec

,

whence the result.

Proposition 2. In the two-body case µ = 0, the subset Σ1 is the stratum {s = 0}
of Σ. Accordingly,

Σ ∩ {pθ = 0} = Σ1 ∪ {(pn, pe, pθ) = (0, 0, 0)}.

Proof. Using the fact that F0 ∈ Span{∂/∂l} and that, for smooth functions f, g

[fF0, gF̃2] = fg[F0, F̃2] mod Span{F0, F̃2},

the condition det(F0, F̃1, F̃2, [F0, F̃2]) = 0 is equivalent to∣∣∣∣∣∣∣∣∣∣∣

0 es 1 + ec −es

0 s c+
e+ c

1 + ec
−s− s(1− e2)

(1 + ec)2

0 −c s+
s

1 + ec
c+

e+ c

(1 + ec)2
1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣
= 0,

that is to
s = 0 or e(1 + ec) = 0,

so the conclusion follows.

Geometrically, s = sin τ = 0 (that is, l − θ = 0 mod π) corresponds to peri
and apocenters. The importance of the stratum Σ ∩ {pθ = 0} comes from
the analysis of the system when the control magnitude ε goes to zero (low-
thrust case). When the control is small, not only the time but also the angular
length (longitude) needed to connect two Keplerian orbits in the two-body model
becomes large. It thus makes sense to use averaging to analyze the behaviour
of extremal trajectories. In the case of the minimization of the L2-norm of the
control (energy minimization), this approach goes back to [18] (see also [12] for
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a recent treatment of this question). One first uses the fact that, in the planar
model, the drift only acts on the longitude,

l̇(t) = ω(x(t)), ω(x) :=
nW 2

(1− e2)3/2
, W = 1 + e cos τ,

to set l as the new time. In this new parameterization, minimum time extremals
are integral curves of the maximized Hamiltonian

Ĥ(l, x̂, p̂) :=
p0

ω(l, x̂)
+ ε

√
Ĥ2

1 (l, x̂, p̂) + Ĥ2
2 (l, x̂, p̂) ,

with x̂ = (n, e, θ), p̂ = (pn, pe, pθ), and

Ĥ2
1 (l, x̂, p̂) + Ĥ2

2 (l, x̂, p̂) =
(1− e2)4

n8/3W 4

{
9n2

(1− e2)2
(1 + 2e cos τ + e2)p2

n

− 12n
1− e2

(e+ cos τ)pnpe

+
[
1 +

2(e+ cos τ)
W

cos τ +
(e+ cos τ)2

W 2

]
p2

e

}
+ · · ·

where the dots indicate terms in p2
θ, pnpθ and pepθ. The averaged Hamiltonian

is

Ĥ(x̂, p̂) :=
1
2π

∫ 2π

0

Ĥ(l, x̂, p̂) dl. (6)

Proposition 3. The argument of pericenter θ is a cyclic variable of the averaged
system. On the stratum {pθ = 0}, the integral (6) is hyperelliptic of genus 2.

Proof. As is clear from the whole dynamics in geometric coordinates (see Sec-
tion 1), only the difference τ = l − θ appear in Ĥ. Averaging with respect to
l—or equivalently to τ—kills terms in θ and pθ becomes a linear first integral.
On {pθ = 0} then, √

Ĥ2
1 + Ĥ2

2 =
1
W 3

√
R(cos τ)

where R is a degree 3 polynomial with coefficients depending nonlinearly on x̂
and quadratically on p̂. Setting for instance u = cos τ leads to∫

du
1− u2

√
(1− u2)R(u)

which is an integral parameterized by a genus 2 hyperelliptic curve [20].

For circular targets (which are of great practical importance in two or three-
body control), the transversality condition is pθ = 0. The previous analysis
then suggests that, for small control magnitudes, pθ should also remain small
so that the switching structure be close to the one on Σ ∩ {pθ = 0}: Assuming
there are no trivial switchings (pn, pe, pθ) = 0, one would get a global bound
on the number of π-singularities (at most one). Nevertheless, one should notice
that, if pθ is small but not zero, the switchings do not belong to Σ1 according
to Lemma 4 and Proposition 2. Moreover, when studying the convergence of
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the system towards the averaged one, one should take into accout the lack of
regularity due to the radicand vanishing. For instance,∫ π/2

0

√
sin2 l + z2 dl = |z|E(−iz−1)

where E is the complete elliptic integral of second kind. Such a function has a
z2 log |z| singularity at the origin and is not C 2 (logarithmic branch on the sec-
ond derivative). See [7] for results on averaging of such fast oscillating systems.

4 Homotopy

Consider a control problem with smooth data on an n-manifold X,

ẋ(t) = f(x(t), u(t)), u(t) ∈ U,

with cost ∫ tf

0

f0(x(t), u(t))dt→ min

and prescribed boundary conditions

x(0) = x0, x(tf ) = xf .

For the sake of simplicity tf is supposed to be fixed, but the analyis below can
be made with appropriate changes for free final time as well. We also suppose
that U is a manifold without boundary. In coordinates, this is assuming that u
belongs to some open subset of Rm, where m is the dimension of U . Regard-
ing the results of the previous section, in the three-body case this amounts to
assuming there are no π-singularities.

Let u : [0, tf ] → U be a measurable and essentially bounded control, and
let x : [0, tf ] → X be the resulting trajectory. Pontrjagin maximum principle
implies that there exists a nonpositive constant p0 and a Lipschitz covector
function p : [0, tf ] → (Rn)∗, not both zero, so that in coordinates on T ∗X,

ẋ(t) =
∂H

∂p
(x(t), u(t), p(t)), ṗ(t) = −∂H

∂x
(x(t), u(t), p(t)),

and
H(x(t), u(t), p(t)) = max

v∈U
H(x(t), v, p(t))

a.e. on [0, tf ]. Here,

H(x, u, p) := p0f0(x, u) + 〈p, f(x, u)〉.

We assume that, on a neighbourhood of the extremal (x, p), the maximized
Hamiltonian

(x, p) 7→ max
v∈U

H(x, u, p)

is well defined and smooth; then (x, p) is an integral curve of the maximized
function (see [1]), still denoted H (but now depending only on x and p). We
finally make the Legendre regularity assumption that, uniformly on [0, tf ],

∇2
uuH(x(t), u(t), p(t)) ≤ −αIm
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for some α > 0. As a consequence, there must exist in a neighbourhood of
the extremal a smooth implicit function u(x, p) solving the first order necessary
condition∇uH = 0 such that u(t) = u(x(t), p(t)) andH(x, p) = H(x, u(x, p), p).
Summarizing, p(0) ∈ (Rn)∗ is a zero of the shooting function4

p0 7→ x(tf , x0, p0)− xf ,

where the exponential mapping

expx0
: (t, p0) 7→ x(t, x0, p0)

sends a given p0 to the x-projection of the integral curve at t of the maximized
Hamiltonian. Both functions are well defined and smooth on neighbourhoods of
p(0) and (tf , p(0)), respectively. A time tc is conjugate to 0 along (x, p) whenever
p(0) is a critical point of p0 7→ exp(tc, p0). The critical value xc = exp(tc, p(0)) is
the corresponding conjugate point. These notions are related to local necessary
or sufficient second order conditions of optimality [1, 9]. Testing conjugacy is
done in practice by a simple rank evaluation (see [8]; see also Fig. 4).

The endpoint mapping

Ftf ,x0 : u 7→ x̂(tf , x0, u)

is well defined and smooth on a neighbourhood in L∞([0, tf ], U) of (the class of)
u and maps a control to the solution at tf of the augmented system (x̂ = (x0, x))

ẋ0(t) = f0(x(t), u(t)), t ∈ [0, tf ] (a.e.),
ẋ(t) = f(x(t), u(t)), x0(0) = 0, x(0) = x0.

The optimal control u must be a critical point5 of the endpoint mapping:
ImF ′tf ,x0

(u) has codimension in Rn. If we assume that u is a corank one critical
point, and moreover that it is analytical (with analytical data for the problem
as well), the absence of conjugate time in (0, tf ) is necessary for L∞-local opti-
mality.6 Conversely, replacing the corank one and analyticity conditions by the
assumption that the extremal is normal (p0 < 0), the absence of conjugate time
on (0, tf ] is sufficient for C 0-local optimality.7

Having in mind these connections with second order conditions in optimal
control (see also [10]) we consider a one-parameter smooth Hamiltonian,

H : R2n ×R 3 (x, p, λ) 7→ H(x, p, λ) ∈ R.

Given a positive final time tf and an initial condition x0, we define the shooting-
like8 homotopy function9

h(p0, λ) := x(tf , x0, p0, λ)
4A chart (O, ϕ) in the neighbourhood of xf has to be chosen and the definition should read

p0 7→ ϕ(x(tf , x0, p0))− ϕ(xf ). We may actually suppose that ϕ(xf ) = 0.
5This statement, weaker than the maximum principle, is obvious: Were the function a

submersion at u, it would be locally open and would send neighbourhoods of u onto neigh-
bourhoods of the augmented state, (x0(tf ), x(tf )). This would contradict L∞-local optimality.

6That is optimality on a neighbourhood of u in L∞([0, tf ], U).
7Optimality of the trajectory among all admissible trajectories belonging to some neigh-

bourhood of x.
8The target xf is normalized to 0.
9For the use of homotopy in optimal control (in particular for motion planning), see also
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that maps (p0, λ) to the coordinate x of the solution at tf of

ẋ(t) =
∂H

∂p
(x(t), p(t), λ), ṗ(t) = −∂H

∂x
(x(t), p(t), λ)

with initial conditions x(0) = x0, p(0) = p0. By restricting it if necessary, we
may assume that its domain of definition, Ω ⊂ Rn+1, is open and made only of
regular points of h so that

rankh′(p0, λ) = n, (p0, λ) ∈ Ω.

As a consequence, the level set {h = 0} is a one-dimensional submanifold of
Rn+1 called the path of zeros. Typically, one knows a zero of h(., λ) for, say,
λ = 0, and wants to follow this path to reach if possible a zero for a target value
of the parameter, λ = 1. For any c := (p0, λ) ∈ Ω, dim Kerh′(c) = 1 so one
can define the (tangent) vector T (c) as being the unique—up to orientation—
unit vector in the kernel. The orientation is chosen so that the nonvanishing
determinant

det
[
h′(c)
tT (c)

]
has constant sign on each connected component of Ω. This provides a parame-
terization by arc length of the connected components of {h = 0} which can be
practically computed by integrating the following differential equation [2] (with
′ = d/ds):

c′(s) = T (c(s)), c(0) = c0 ∈ {h = 0}.

The aim is to classify each component up to diffeomorphisms, knowing that
there are only two possibilities [26]: It is diffeomorphic either to R or to S1.

In such a parameterization, a point c(s) = (p0(s), λ(s)) in {h = 0} is a
turning point [2] when λ′(s) = 0. This is equivalent to say that

rank
∂x

∂p0
(tf , x0, p0(s), λ(s)) = n− 1,

that is to say that tf is a conjugate time for λ = λ(s) (and that p0(s) and
x(tf , x0, p0(s), λ(s)) are the corresponding critical and conjugate point, respec-
tively). A turning point of order one, that is such that λ′′(s) 6= 0, actually results
in a change of variation on λ, hence the name. We define c = c(s) ∈ {h = 0} to
be a first turning point (along the path starting at c(0)) if, for all s ∈ [0, s), the
curve t 7→ x(t, x0, p0(s), λ(s)) has no conjugate time on (0, tf ].

Theorem 4. Let c(s) ∈ {h = 0} be a first turning point of order one; then for
s > s, |s− s| small enough, there exist conjugate times in (0, tf ).

[17, 32] where the point of view is slightly different; the idea is to devise a path lifting equation
to construct a path of zeros in the infinite dimensional set of controls. In this setting, the
obstructions described at the end of the current section are translated as non degeneracy and
non-explosion issues on the so-called Wazewski equation. Assuming more structure than we
do on the dynamics (driftless affine control systems are considered), the authors are able to
provide conditions in terms of the Lie algebra of controlled vector fields that overcome these
difficulties. The emphasis is also on Galerkin procedures to solve the problem. To some
extent, the situation is simpler in our case as considering the shooting function instead of the
endpoint mapping restricts the problem to finite dimension.
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The next lemmas are necessary to prove this result. We first recall that, at a
corank one critical point x of a smooth function g : Rn → Rn, one can define
(up to a scalar) the intrinsic second order derivative [5] as

µg′′(x)|Ker g′(x)×Ker g′(x) ∈ L2(Ker g′(x),Ker g′(x);R) ' R

where µ ∈ (Rn)∗ is any nonzero covector with kernel Im g′(x). The critical
point is said nondegenerate provided this quantity is not zero.

Lemma 5. The turning point c(s) is of order one if and only if p0(s) is a
nondegenerate corank one critical point of p0 7→ h(p0, λ(s)).

Proof. Differentiating twice h(c(s)) = 0, one gets

h′′(c(s)) · (c′(s), c′(s)) + h′(c(s)) · c′′(s) = 0.

As c′(s) = (p′0(s), 0), p′0(s) generates the kernel of ∂h/∂p0(p0(s), λ(s)) and

∂h

∂p0
(c(s)) · p′′0(s) +

∂h

∂λ
(c(s)) · λ′′(s) = −∂

2h

∂p2
0

(c(s)) · (p′0(s), p′0(s)).

Multiplying both sides by any nonzero µ whose kernel coincides with the image
of ∂h/∂p0(p0(s), λ(s)), one gets

µ
∂h

∂λ
(c(s)) · λ′′(s) = −µ∂

2h

∂p2
0

(c(s)) · (p′0(s), p′0(s)).

At the turning point c(s) ∈ Ω, ∂h/∂λ is transverse to the image of ∂h/∂p0

(regularity). So µ∂h/∂λ(c(s)) 6= 0, and λ′′(s) = 0 if and only if the intrinsic
second derivative vanishes.

Remark 5. The order one assumption thus puts some restriction on

∂2x

∂p2
0

(tf , x0, p0(s), λ(s)).

It was previously mentioned that the first order derivative with respect to p0

of this function is connected with second order optimality conditions. Here we
have a condition of order three.

Lemma 6. Let x be a corank one critical point of a smooth function g : Rn →
Rn. Then x is degenerate if and only if

(det g′)′(x) = 0 on Ker g′(x).

Proof. Let h ∈ Rn; one has

(det g′)′(x) · h = tr(g̃′(x) · g′′(x) · h).

Since g′(x) is of rank n − 1, one can find a nonzero vector ξ ∈ Ker g′(x) (resp.
covector µ with kernel Im g′(x)) such that the adjugate matrix

g̃′(x) = ξµ.
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Thus,

(det g′)′(x) · h =
n∑

j=1

tr(ξµ
∂g′

∂xj
(x))hj =

n∑
j=1

µ
∂g′

∂xj
(x)ξhj = µg′′(x)(ξ, h).

In particular, for h = ξ ∈ Ker g′(x),

(det g′)′(x) · ξ = µg′′(x)(ξ, ξ),

whence the conclusion.

Remark 6. Under the assumptions of the lemma, χ(x, µ) := det(µIn − g′(x))
has root µ = 0 for x = x, with algebraic multiplicity k ≤ n (while the geometric
multiplicity of 0, as an eigenvalue of g′(x), is one). By Malgrange preparation
theorem [24], there are smooth scalar functions a0, . . . , ak−1 and b such that, in
the neighbourhood of (x, 0),

χ(x, µ) = b(x, µ)(µk + ak−1(x)µk−1 + · · ·+ a0(x)),

and a0(x) = · · · = ak−1(x) = 0, b(x, 0) 6= 0. Accordingly,

(det g′)′(x) = b(x, 0)a′0(x).

The nondegeneracy at x is then equivalent to the statement that x is not a
critical point of a0, plus that g and a0 are transverse at x. The quantity a0

can be interpretated as a smooth (and signed) singular value of g′ when x is
varied in the neighbourhood of x, as is clear from the following example. Take
g(x1, x2) = (x2, x

2
1/2); x = (0, 0) is a nondegenerate corank one critical point.

In a small enough neighbourhood of x, the smallest singular value of

g′(x) =
[

0 1
x1 0

]
is σ(x) = |x1|, which is not differentiable at the critical point. In contrast,
a0(x) = −x1 is smooth and provides the information needed to check nonde-
generacy.

Proof (of Theorem 4). Define the extended homotopy

h̃(p0, λ, tc) = (x(tf , x0, p0, λ),det
∂x

∂p0
(tc, x0, p0, λ)).

By assumption, the point (p0(s), λ(s), tf ) belongs to {h̃ = 0}, and is regular.
Indeed, vectors (δp0, δλ, δtc) in the kernel of h̃′ at this point verify δλ = 0 and

∂h

∂p0
(p0(s), λ(s)) · δp0 = 0,

∂

∂p0
det

∂x

∂p0
(tf , x0, p0(s), λ(s)) · δp0 +

∂

∂tc
det

∂x

∂p0
(tf , x0, p0(s), λ(s)) · δtc = 0.

One has two cases depending on whether the partial derivative with respect
to tc vanishes or not in the second equation. If it does not, the kernel is one-
dimensional and parameterized by

δp0 ∈ Ker
∂h

∂p0
(p0(s), λ(s)).
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If it does, δp0 has to be zero since otherwise the previous lemmas would imply
that

∂

∂p0
det

∂x

∂p0
(tf , x0, p0(s), λ(s)) · δp0 6= 0

because of the order one assumption on the turning point. So the kernel of h̃′ is
parameterized by δtc ∈ R and is also of dimension one. The extended homotopy
is therefore well defined and regular in a neighbourhood of (p0(s), λ(s), tf ).
Parameterizing by arc length, σ, on {h̃ = 0}, one has tc(σ) = tf . Since the point
is a first turning point, it is enough to prove that t′c(σ) 6= 0 (here ′ = d/dσ); then
necessarily t′c(σ) < 0, as there would otherwise be conjugate times on (0, tf ) for
σ < σ in {h̃ = 0}, that is for s < s in {h = 0}. According to the description of
the kernel,

∂

∂p0
det

∂x

∂p0
(tf , x0, p0(σ), λ(σ))·p′0(σ)+

∂

∂tc
det

∂x

∂p0
(tf , x0, p0(σ), λ(σ))·t′c(σ) = 0.

The two previous alternatives result either in p′0(σ) being non-zero, in which
case neither the first term in the sum nor t′c(σ) can vanish; or in p′0(σ) = 0,
so |t′c(σ)| = 1 (unit tangent vector). In both situations we conclude that t′c(σ)
cannot be zero.

In addition to turning points, there are two other issues on homotopy. First,
when the connected component of the path considered is diffeomorphic to R,
boundary points (if any) are critical points of h. The classification of points
in ∂Ω starts with the following result which is a simple consequence of Morse
lemma.

Proposition 4 ([2]). Let c ∈ {h = 0} be a nondegenerate hyperbolic corank one
critical point of h. Then, there are coordinates d1, . . . , dn+1 such that, in the
neighbourhood of c, {h = 0} is equal to

d2
1 − d2

2 = 0, d3 = · · · = dn+1 = 0.

In this case, we have a critical point jointly in (p0, λ) and the intrinsic second
order derivative is, up to a scalar,

µh′′(c)|Ker h′(c)×Ker h′(c) ∈ Sym(2,R) ⊂ M(2,R) ' L2(Kerh′(c),Kerh′(c);R)

where µ ∈ (Rn)∗ is any nonzero covector with kernel Imh′(c). Hyperbolicity
means that this order 2 symmetric matrix is nondegenerate with eigenvalues
of opposite signs. As a consequence, the path of zeros is locally made of two
smooth curves intersecting transversally, resulting in a bifurcation. The last
issue is due to global features in parametric optimal control. For a given value
λ0 of the parameter, one has to compare the costs associated to zeros in each
connected component of {h = 0} ∩ {λ = λ0}. Each zero of the shooting homo-
topy function defines an extremal and global solutions, if any, are those giving
the infimum of the cost among them. In the three-body problem, the topology
of the state manifold, Xµ = T ∗Qµ, comes into play; Qµ has the topology of
the eight curve with π1(Qµ) = Z ∗Z, and a heuristic classification of extremals
based on homology is proposed in [13].

Two homotopies are used to compute numerically minimum time trajectories
of the restricted three-body problem. A continuation on the ratio of masses,
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µ, is first considered. In practice, the isolated contacts with the codimension
two switching surface are neglected, and we restrict the computation to smooth
extremals without π-singularities. This yields regularity of the µ-parameterized
minimum time problem in view of

Lemma 7. In the absence of π-singularities, Legendre condition holds.

Proof. If the switching function never vanishes, one has |u| = 1 everywhere. So
we can restrict the control set U to S1. The manifold is without boundary and,
in the chart u = (cosα, sinα), α ∈ R, one has10

H(x, α, p) = p0 +H0(x, p) + ε(cosαH1(x, p) + sinαH2(x, p)).

Accordingly,

∇2
ααH(x, α, p) = −ε(cosαH1(x, p) + sinαH2(x, p)).

Along an extremal, ∇2
ααH(x(t), α(t), p(t)) = −ε|ψ(t)| which is bounded over by

some negative constant on [0, tf ] as ψ is smooth and nonvanishing.

Using previous knowledge on the two-body minimum time trajectories [14, 15],
we are able to compute transfers from a circular orbit around the first primary
towards the L2 point when µ = 0, then to follow the path until any value µ ∈
(0, 1). The absence of conjugate points—ensuring local optimality—is checked
along the path using the hampath code [11] that embeds the relevant rank test,
see Fig. 4. A continuation on the target eventually allows to obtain solutions,
for instance in the Earth-Moon system (µ ' 1.21e − 2) from a geostationary
orbit to a circular lunar one for average values of the control magnitude ε, see
Fig. 5. To reach lower values of ε, a continuation on this parameter is finally
employed as in [14], which emphasizes the role of the topology of the state space
previously mentioned. Many local minima exist, yielding as many zeros of the
shooting function. When decreasing ε, at some point on the resulting path the
number of revolutions around the first primary has to be increased to retain
global optimality, which means using a heuristic to jump to another connected
component (branch) of the zero set (see Fig. 6). The situation is analogous to
the one in Riemannian geometry with cut and conjugate points: Up to some
point, the path provides minimizers; then global optimality is lost (typically
because of the topology of the manifold), but local optimality persists up to
another point; past this second point (a turning point, in the simple case we
framed in the beginning of the section), even local optimality is lost (see Fig. 7).
Table 1 summarizes the results obtained.

The computations combining shooting and homotopy presented here are
meant to initialize the solution of more complicated problems. A time minimum
trajectory of the three-dimensional model of the SMART-1 mission [29] is given
Fig. 8. The 3D case proves to be much more difficult to solve numerically
than the coplanar one; this is probably due to the angle between the planes
containing the initial and final orbit. Multiple shooting provided by hampath
and initialized by results on the coplanar model is used; two arcs are considered
with a junction point in the neighbourhood the L2 Lagrange point. Work in
progress includes the treatment of the maximization of the final mass.

10The Hamiltonian lift H0 implicitly depends on µ, since F0 =
−→
Jµ (compare Section 1).
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Figure 2: Extremals and conjugate points ∆β = 0.01, N = 1000

3

Figure 4: Conjugate point computation (rotating frame). Extremals (here pro-
jected on the (q1, q2)-space) from a circular orbit around the first primary to-
wards the L2 Lagrange point are extended beyond the target. Conjugate points,
in red, appear after tf , ensuring local optimality. Green dots indicate isocost
(isotime) lines.

Conclusion

In this paper, we have given a controllability result for the restricted three-
body problem; under mild assumptions, two orbits around the primaries with
Jacobian constants less than the Jacobian at the L1 Lagrange point can be
connected. Using the control-affine structure of the dynamics, we have given a
primary classification of extremals and provided global bounds on the number of
switchings of time minimizing controls. Homotopy techniques are instrumental
in solving numerically the problem which has natural small parameters; the
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Table 1: Earth-Moon system (µ ' 1.21e − 2). Minimum time tf from the
geostationary orbit to the L2 Lagrange point, and first conjugate time, t1c.
That t1c > tf ensures local optimality of the computed extremal.

ε tf t1c

2.4405 1.4705 2.2750
0.2440 8.4401 10.640
0.2221 9.7710 12.045
0.2026 11.152 13.500
0.1806 13.157 15.595
0.1586 14.369 16.900
0.1293 18.024 20.700
0.1074 21.323 24.125
0.0732 32.216 35.295
0.0437 51.504 54.930
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the notion of focal point [Ibid.] to encompass the case of submanifold targets.
Such an example for a lunar orbit target is provided Fig. 6.
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Fig. 5. Conjugate point computation, ε = 0.04148. The reference trajectory is
prolongated up to the first conjugate point, beyond the L2 target. Local optimality
up to the target is guaranteed. The cuspidal point of first kind observed is generically
due to the condition q̇f = 0.
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Fig. 6. Focal point computation, ε = 0.2440. The target is a lunar orbit, and the
focal point test ensures local optimality of the trajectory. The leftmost frame is the
rotating frame, the rightmost one is fixed.

Whatever the target, the value function ε !→ tf (ε) of the minimum time
problem is decreasing: The smaller ε, the larger the transfer time. This is

Figure 5: Minimum time trajectory in the Earth-Moon system (µ ' 1.21e− 2,
ε = 2.44e−1). Left, in the rotating frame; right, in the fixed frame to emphasize
capture by the second primary at the end of the transfer. Before the capture,
the trajectory approaches the projection of the L2 point in the (q1, q2)-plane.

link between turning points and local optimality of extremals along the path
of zeros of a parameterized shooting function has been established in a simple
framework. This preliminary analysis of the problem has allowed us to compute
minimum time solutions for the boundary conditions of the SMART-1 mission
using a two to three-body continuation.

Future work could be devoted to reaching very low thrusts, typical of this
kind of mission. The performance index should also be changed to consider
instead minimization of the fuel consumption, equivalent to minimizing the L1-
norm of the control. The final time should then be fixed, tf = c ·tf , c ≥ 1, where
tf is the minimum time for the prescribed boundary conditions. The additional
difficulty in this problem comes from the existence, for c > 1, of balistic arcs
u = 0 (zero-bang structure of |u|). A related issue would be to use a 4-body
model so as to include the existence of ”cheap” trajectories [25] whose existence
rely on the presence of the fourth body.
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DISCRETE AND DIFFERENTIAL HOMOTOPY IN THREE-BODY CONTROL 7
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Figure 5. Homotopy on ε, Earth-Moon case (µ � 1.21e−2), minimum

time transfer towards a circular orbit around the second primary. Top

pictures are transfers for ε = 2.440e−1 (left) and ε = 2.342e−1 (right),

respectively. Bottom pictures are transfers for ε = 2.294e− 1 (left) and

ε = 2.196e− 1 (right), respectively. While the two previous trajectories

wind up positively around the two primaries, both transfers wind up

negatively around the second primary, illustrating a first difference of

homological nature. Moreover, the last transfer differs from the three

others in having one more revolution around the first primary.

classification is coarse as it takes into account neither the q̇ coordinate, nor the
adjoint p).

First restricting to extremals with boundary conditions on q2 = 0 (the line defined
by the two punctures in Qµ), one can associate to any such extremal a closed curve
by patching to it the curve symmetric with respect to q2 = 0 (and orientation
reversed), see Fig. 7. The homology of this curve turns to be sufficient to classify the
different types of solutions observed on disjoint components of the homotopy path.
Note nevertheless that in Fig. 5, the first two curves (upper part) belong to the same
branch, have the same winding number around the first singularity but not around
the second one (though the winding sign is unchanged). For arbitrary boundary
conditions, the same symmetric closure has to be performed on the truncation of
the q-projection of the extremal from its first intersection with q2 = 0 until the
last one. As a case study, the path between ε = 2.441e − 1 and ε = 2.196e − 1
is discussed in Fig. 8. The optimality status of each homology class is analyzed in

Figure 6: Minimum time trajectory for ε between 2.44e − 1 and 2.196e − 1
(µ ' 1.21e− 2, rotating frame). As the control magnitude is decreased, strate-
gies are evolved. In the upper graphs, the first two extremals have the same
rotation number around the first primary and both wind around the second
one positively. Conversely, the third extremal (bottom left) winds negatively
around the second primary, while the fourth (bottom right) makes an additional
revolution around the first one.
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[4] Betts, J. T.; Erb, S. O. Optimal Low Thrust Trajectories to the Moon.
SIAM J. Appl. Dyn. Syst. 2 (2003), no. 2, 144–170.

[5] Boardman, J. M. Singularities of differentiable maps. Publ. Math. IHES,
33 (1967), 383–419.

[6] Bombrun, A.; Chetboun, J.; Pomet, J.-B. Transfert Terre-Lune en poussée
faible par contrôle feedback. La mission SMART-1. INRIA Research report
(2006), no. 5955, 1–27.



Minimum time control of the restricted three-body problem 26

1�

2�

"

"0

⇠ = (tf , p0)

3
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zero level set of the Hamiltonian. Past ε0, global optimality is lost on branch 1
and a switch to branch 2 has to be made (resulting in a loss of regularity of the
value function). Past the turning point on branch 1 (conjugacy of the target
point), even local optimality is lost.

400 300 200 100 0 100 200 300 400
200

0

200

50

0

50

Figure 8: Three-dimensional minimum time transfer, SMART-1 boundary con-
ditions (fixed frame). The control magnitude ε is 0.7 Newtons for an initial
mass of 350 Kilograms and a specific impulse of 1640 seconds (the variation of
mass has been taken into account for this simulation, see [29]). The final time is
26.2 days. The dotted black circle represents the orbit of the Moon. The green
trajectory represents the uncontrolled motion after capture by the Moon.



Minimum time control of the restricted three-body problem 27

[7] Bombrun, A.; Pomet, J.-B. The averaged control system of fast oscillating
control systems. HAL preprint (2011), no. 00648330, 1–27.
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design near libration points Vol. III. Advanced methods on collinear points.
World Scientific Publishing, 2001.

[20] Jones, G. A.; Singerman, D. Complex Functions. An Algebraic and Geo-
metric Viewpoint. Cambridge University Press, 1987.

[21] Jurdjevic, V. Geometric control theory, Cambridge University Press, 1996.



Minimum time control of the restricted three-body problem 28

[22] Kupka, I. Generalized Hamiltonians and optimal control: A geometric
study of extremals. Proceedings of the International Congress of Mathe-
maticians, 1180–1189, Berkeley, 1987.

[23] Kupka, I.; Sallet, G. A sufficient condition for the transitivity of pseudo-
semigroups: Application to system theory. J. Differential. Eq. 47 (1983),
462–470.

[24] Malgrange, B. Ideals of differentiable functions. Oxford University Press,
1967.

[25] Marsden, J. E.; Ross, S. D. New methods in celestial mechanics and mission
design. Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 1, 43–73.

[26] Milnor, J. W. Topology from the Differentiable Viewpoint, Princeton Uni-
versity Press, 1997.

[27] Mingotti, G.; Topputo, F.; Bernelli-Zazzera, F. Low-energy, low-thrust
transfers to the Moon. Celest. Mech. Dyn. Astr. 105 (2009), 61–74.

[28] Ozimek, M. T.; Howell, K. C. Low-thrust transfers in the Earth-Moon
system, including applications to libration point orbits. J. Guidance Control
Dynam. 33 (2010), no. 2, 533–549.

[29] Racca, G.; et al. SMART-1 mission description and development status.
Planetary and space science 50 (2002), 1323–1337.

[30] Siegel, C. L.; Moser, J. K. Lectures on celestial mechanics. Berlin, 1971.

[31] Sussmann, H. Orbits of families of vector fields and integrability of distri-
butions. Trans. Amer. Math. Soc. 180 (1973), 171–188.

[32] Sussmann, H. A continuation method for nonholonomic path-finding prob-
lems. IEEE Publications (1993), 2718–2723. Proceedings of the 32nd IEEE
CDC, San Antonio, December 1993.

[33] Szebehely, V. Theory of orbits: The restricted problem of three bodies, Aca-
demic Press, 1967.


	Problem statement
	Controllability
	Singularities of the extremal flow
	Homotopy

