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For µ ∈ (0, 1), let Qµ = C\{−µ, 1 − µ}. For q ∈ Qµ ⊂ C ≃ R
2 and positive

ε, define the controlled circular restricted three body problem (planar model)
according to1

q̈(t) − 2∂Ωµ(q(t)) + 2iq̇(t) = εu(t), |u(t)| ≤ 1.

Here, (q, q̇) ∈ Xµ = TQµ ≃ Qµ × C are Cartesian coordinates in the rotating
frame and

Ωµ(q) =
1

2
|q|2 +

1 − µ

|q + µ|
+

µ

|q − 1 + µ|
·

Another choice of coordinates consists in letting Xµ = T ∗Qµ, taking the cotan-
gent bundle instead to write the drift in Hamiltonian form. Let p = q̇ + iq and
let

Jµ(q, q̇) =
1

2
|q̇|2 − Ωµ(q),

=
1

2
|p|2 + p ∧ q −

1 − µ

|q + µ|
−

µ

|q − 1 + µ|

be the Jacobian integral. Then,

q̇(t) =
∂Jµ

∂p
(q(t), p(t)), ṗ(t) = −

∂Jµ

∂q
(q(t), p(t)) + εu(t), |u(t)| ≤ 1.

More compactly,

ẋ(t) = F0(x(t)) + εu1(t)F1(x(t)) + εu2(t)F2(x(t)), |u(t)| ≤ 1,

with, in (q, p) coordinates for x ∈ Xµ,

F0 =
−→
Jµ, F1 =

∂

∂p1

, F2 =
∂

∂p2

,

where
−→
Jµ = (∇pJµ,−∇qJµ) is the symplectic gradient.

The drift has five equilibrium points L1(µ), . . . , L5(µ) known as Lagrange
points [3] whose position depends on µ. Let ji(µ) = Jµ(Li(µ)), i = 1, . . . , 5 de-
note the Jacobian constants of these points. For µ ∈ (0, 1), j2 < j1 < j3 < j4 =
j5. The open subset {x ∈ Xµ | Jµ(x) < j1(µ)} has two connected components,
and we denote by X1

µ the component containing L2(µ) (see Fig. 1).

1We use ∂ = (1/2)(∂/∂q1 + i∂/∂q2) to represent the gradient with respect to q is complex
form.
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Figure 1: Projection of the open submanifold X1

µ in the (q1, q2, Jµ)-space. The
boundary of the volume is an apparent contour generated by the projection. It is
the zero velocityset. Above each interior point there is an S

1-fiber corresponding
to the argument of q̇. For µ ∈ (0, 1), j2 < j1 and X1

µ is connex.

Theorem 1. For any µ ∈ (0, 1), for any positive ε, the system is controllable

on X1

µ.

Proof. The control set is a neighbourhood of the origin and, as the system is
a second order controlled system, the family {F0, F1, F2} is bracket generating
as, for all x ∈ Xµ, Vectx{F1, F2, [F0, F1], [F0, F2]} is of rank four. We may
so conclude that the system is controllable, provided the drift is recurrent [1].
Let x0, xf in X1

µ, and let j be strictly smaller than the Jacobian constants of

both endpoints. Set X̃1

µ = X1

µ ∩ {Jµ > j}. Outside a subset of zero measure
associated with initial conditions generating collisions (q = −µ or 1 − µ), the
drift is a complete Hamiltonian vector field whose exponential is defined for all
times and is a volume preserving bijection in (q, p) coordinates. By definition,

X̃1

µ which is a union of level sets of the Hamiltonian Jµ is invariant with respect

to the exponential. For x = (q, p) ∈ X̃1

µ,

j + Ωµ(q) <
1

2
|p − iq|2 < j1(µ) + Ωµ(q).

Then, for a fixed q, the volume of the q-section of X̃1

µ is bounded by 2π(j1(µ)−j)
as is clear integrating with respect to dp1dp2 = ρ dρ dα (set p− iq = ρ exp(iα)).

Since the projection on the (q1, q2)-space of X̃1

µ is also bounded, the dq ∧ dp-

measure of X̃1

µ is finite (Fubini). We conclude as in [2] that almost every point

of X̃1

µ is recurrent by Poincaré theorem. Controllability on X̃1

µ implies the
existence of a trajectory joining x0 to xf , which in turn implies controllability
on X1

µ.
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