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Abstract

In the context of self-stabilizing processes, that is processes attracted
by their own law, living in a potential landscape, we investigate different
properties of the invariant measures. The interaction between the pro-
cess and its law leads to nonlinear stochastic differential equations. In
[7], the authors proved that, for linear interaction and under suitable con-
ditions, there exists a unique symmetric limit measure associated to the
set of invariant measures in the small-noise limit. The aim of this study
is essentially to point out that this statement leads to the existence, as
the noise intensity is small, of one unique symmetric invariant measure
for the self-stabilizing process. Informations about the asymmetric mea-
sures shall be presented too. The main key consists in estimating the
convergence rate for sequences of stationary measures using generalized
Laplace’s method approximations.

Key words and phrases: self-interacting diffusion; McKean-Vlasov equa-
tion, stationary measures; double-well potential; perturbed dynamical system;
Laplace’s method; fixed point theorem; uniqueness problem.
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Introduction

In the framework of nonlinear diffusions, self-stabilizing stochastic processes
play a particular rule. Introduced by McKean [8] these processes attracted by
their own law are solution of the so-called McKean-Vlasov equation:

dXt = dWt + b[Xt, ut] dt, X0 = x ∈ R , (I)
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where ut is the law of Xt, b[x, u] :=
∫

R
b(x, y)u(dy) for any probability measure

u and (Wt, t ≥ 0) represents a one-dimensional Brownian motion. A solution of
(I) is in fact a couple (Xt, ut) such that, for any t ≥ 0, ut represents the distri-
bution of the variable Xt. Such processes appear naturally in huge systems of
particles in interaction by the so-called propagation of chaos phenomenon, see
[11] for an introduction to this topic.
The common mathematical problems related to these self-stabilizing processes
concern the existence and uniqueness of solutions to (I) and ergodicity proper-
ties like the existence and uniqueness of stationary measures, the convergence
of the law of Xt to the invariant law as time elapses. A relative numerous
literature, based on fixed point technics, free-energy methods or logarithmic
Sobolev inequalities, presents results concerning the existence and uniqueness
of invariant measures and ergodic behavior. Each study deals with a particular
family of interaction function b, let us present an incomplete selection of works:
[1, 2, 3, 4, 9, 12, 13, 14].In the situations described previously, the results are
quite similar than those developed in the classical diffusion context even if the
methods of proof are clearly different.
However the self-attraction structure of (I) can lead to surprising phenomena
like non-uniqueness of invariant measures. The aim of this paper is namely
to focus our attention to some of them. Let us introduce the process we are
interested in: the solution (Xt, t ≥ 0) of the following one-dimensional McKean-
Vlasov equation:

dXt =
√
ǫdWt − V ′(Xt)dt−

∫

R

F ′(Xt − x)duǫ
t(x)dt , (II)

where uǫ
t(x) represents the distribution of Xt and ǫ is a small positive pa-

rameter. In other words the function b introduced above satisfies b(x, y) :=
−V ′(x)−F ′(x− y): V is called the environment potential and F represents the
interaction potential. The functions V and F are assumed to verify different
conditions developed at the end of the introduction and related to [1] and [2].
Let us just note two principal properties: F is an even convex function with
F (0) = 0 and limx→∞ F (x) = +∞ and V is an even double-well potential whose
global minima are reached for x = −a and x = a > 0.
In a preceding paper [6], the authors pointed out, under some suitable con-
ditions and for small-noise intensity ǫ, that the nonlinearity of the dynamical
system permits the existence of at least three invariant measures, one symmetric
(due to the symmetry of F and V ) and two so-called outlying measures which
are concentrated around −a or a, the bottoms of the double-well landscape V .
Moreover, in the particular case of convex functions V ′′ and linear functions F ′,
there exist exactly three invariant measures for ǫ small enough. The aim of this
paper is to take the first steps in order to generalize this nice result to general
interaction functions F .
In other words, we shall present several statements which are close to the follow-
ing conjecture: under suitable conditions (convexity of F ′′ and V ′′ for instance),
for any M > 0 large enough, there exists ǫ0 > 0 such that (I) admits exactly
three invariant measures whose first moments are bounded by M for all ǫ < ǫ0.
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The proofs of such local uniqueness results are based on the convergence rate
for sequences of invariant measures denoted by (uǫ, ǫ > 0) and associated to a
limit measure u0. In fact, the convergence rate depends on the limit measure
u0 considered and is estimated through Laplace’s method type approximations.
The paper shall begin with the detailed assumptions concerning the interaction
function F and the environment function V of (II).

Main assumptions

We assume the following properties for the function V :

(V-1) Regularity: V ∈ C∞(R,R). C∞ denotes
the Banach space of infinitely bounded con-
tinuously differentiable function.

(V-2) Symmetry: V is an even function.

(V-3) V is a double-well potential. The equa-
tion V ′(x) = 0 admits exactly three solu-
tions : a, −a and 0 with a > 0; V ′′(a) > 0
and V ′′(0) < 0. The bottoms of wells are
reached for x = a and x = −a.

(V-4) There exist two constants C4, C2 > 0 such
that ∀x ∈ R, V (x) ≥ C4x

4 − C2x
2.

V

−a a

Figure 1: Potential V

(V-5) lim
x→±∞

V ′′(x) = +∞ and ∀x ≥ a, V ′′(x) > 0.

(V-6) Analyticity: There exists an analytic function V such that V (x) = V(x)
for all x ∈ [−a; a].

(V-7) The growth of the potential V is at most polynomial: there exist q ∈ N∗

and Cq > 0 such that |V ′(x)| ≤ Cq

(

1 + x2q
)

.

(V-8) Initialization: V (0) = 0.

Typically, V is a double-well polynomial function. But our results can be applied
to more general functions: regular functions with polynomial growth as |x|
becomes large. We introduce the parameter ϑ which plays an important role in
the following:

ϑ := sup
x∈R

−V ′′(x) . (III)

Let us note that the simplest example (most famous in the literature) is V (x) =
x4

4 − x2

2 which bottoms are localized in −1 and 1 and with parameter ϑ = 1.
Let us now present the assumptions concerning the attraction function F .

(F-1) F is an even polynomial function of degree 2n with F (0) = 0. Indeed we
consider a classical situation: the attraction between two points x and y
only depends on the distance F (x− y) = F (y − x).
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(F-2) F is a convex function.

(F-3) F ′ is a convex function on R+ therefore for any x ≥ 0 and y ≥ 0 such
that x ≥ y we obtain F ′(x) − F ′(y) ≥ F ′′(0)(x − y).

(F-4) The polynomial growth of the attraction function F is related to the
growth condition (V-7): |F ′(x)−F ′(y)| ≤ Cq|x− y|(1+ |x|2q−2+ |y|2q−2).

Let us define the parameter α ≥ 0 which shall play an essential role in following:

F ′(x) = αx+ F ′
0(x) with α := F ′′(0) ≥ 0 . (IV)

1 Main results

First of all, we are interested in the asymptotic behavior of a sequence of in-
variant measures (uǫ, ǫ > 0) associated with the self-stabilizing process (II).
We shall assume that the sequence of the first 2n-th moments {µ2n(ǫ), ǫ > 0},
defined by

µk(ǫ) :=

∫

R

|x|kuǫ(x)dx

and 2n := deg(F ), is bounded. Let us note that this condition is satisfied
for symmetric invariant measures, see Lemma 5.2 in [7]. In this context, the
authors proved the existence of a subsequence (uǫk , k ∈ N) converging towards
discrete measures (Theorem 3.6 in [7]), the set of limit measures being associated
with particular system of equations. In the following we consider an additional
condition:

Assumption 1.1. The functions F and V satisfy the assumption (UC) if V ′′

and F ′′ are convex functions.

The assumption (UC) permits to describe precisely the set of limit measures
[7] (it shall be assumed in the whole paper). Indeed there exist a unique sym-
metric limit measure 1

2 δ−x0+
1
2 δx0 where x0 is the unique solution (see Theorem

5.4 in [7]) of the system

{

V ′(x0) +
1
2F

′(2x0) = 0,

V ′′(x0) +
1
2F

′′(0) + 1
2F

′′(2x0) ≥ 0 .

Let us just note that x0 = 0 when F ′′(0) ≥ − supx∈R V ′′(x) = −V ′′(0). In the
following, we shall also discuss about the existence of asymmetric limit measures.
The aim of this paper is to describe the convergence rate which depends on the
limit measure u0 considered. Let us first consider the symmetric case which
can be divided into three different situations: either F ′′(0) + V ′′(0) > 0 or
F ′′(0) + V ′′(0) = 0 then the unique symmetric limit measure is the trivial
measure u0 = δ0 (these two situations lead to two different convergence rates)
either F ′′(0) + V ′′(0) < 0 corresponding to the symmetric limit measure u0 =
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1
2 δ−x0 +

1
2 δx0 , with x0 > 0. In general the convergence is linear with respect to

ǫ when we consider the asymptotic behavior of the following expression:

〈f, uǫ〉 − 〈f, u0〉 where 〈f, u〉 :=
∫

R

f(x)u(dx) .

In fact some simple arguments permit to present the invariant measure in a
particular exponential form: this idea was previously presented in [6]. Indeed,
defining

Wǫ(x) := V (x) + F ∗ uǫ(x)− F ∗ uǫ(0) , (1.1)

the following expression holds

uǫ(x) =
exp[− 2

ǫWǫ(x)]
∫

R
exp[− 2

ǫWǫ(y)]dy
. (1.2)

Therefore the convergence of the invariant measure is related with the conver-
gence of the function Wǫ towards the associated limit

W0 := V + F ∗ u0 − F ∗ u0(0) . (1.3)

Theorem 1.2. Case F ′′(0) + V ′′(0) > 0. Let (uǫ, ǫ > 0) be a sequence
of symmetric invariant measures which converges towards the trivial measure
u0 = δ0. Then, for any function f ∈ C4 (R,R) with polynomial growth, we have:

lim
ǫ−→0

1

ǫ

{

〈f, uǫ〉 − 〈f, u0〉
}

=
f ′′(0)

4(F ′′(0) + V ′′(0))
.

When the interaction term in the McKean-Vlasov equation (II) is weaker,
that is F ′′(0) + V ′′(0) < 0, the limit measure is different. Nevertheless the
convergence rate is also of order ǫ.

Theorem 1.3. Case F ′′(0) + V ′′(0) < 0. Let (uǫ, ǫ > 0) be a sequence of
symmetric invariant measures which converges towards the unique symmetric
limit measure u0 = 1

2 δ−x0 + 1
2 δx0 , with x0 > 0. Then, for any function f ∈

C4 (R,R) with polynomial growth, the following convergence rate holds

lim
ǫ→0

〈f, uǫ〉 − 〈f, u0〉
ǫ

=
f ′′(x0) + f ′′(−x0)

8W ′′
0 (x0)

+ χ(x0)
f ′(x0)− f ′(−x0)

8W ′′
0 (x0)

where χ(x0) := −V (3)(x0) + F (3)(2x0)

V ′′(x0) + F ′′(2x0)
.

We can observe a singular phenomenon for the intermediate case F ′′(0) +
V ′′(0) = 0: the asymptotic behavior is completely different, we do not obtain
the classical order ǫ. In this context, the limit measure is given by u0 = δ0
and consequently the pseudo-potential just introduced in (1.3) equals W0(x) =
V (x)+F (x). The convergence rate is directly linked to the slope of the pseudo-
potential in a neighborhood of the origin. We define

k0 := min
{

k ≥ 2 | W
(2k)
0 (0) > 0

}

. (1.4)
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We introduce two other parameters which play a fundamental role for the con-
vergence in the intermediate case: p0 and m0, defined by

p0 := inf
{

k ≥ 2 | F (2k)(0) > 0
}

and m0 := min {k0, p0} . (1.5)

Theorem 1.4. Case F ′′(0) + V ′′(0) = 0. Let (ǫk, k ≥ 0) be a decreasing
sequence satisfying limk→∞ ǫk = 0 and (uǫk , k ≥ 0) a sequence of symmetric
invariant measures converging towards u0 = δ0. Then there exists a subsequence
of (ǫk) (we keep the same notation for simplicity) such that, for any 1 ≤ j ≤ k0,
the sequence

{W (2j)
ǫk (0)ǫ

j
m0

−1

k , k ≥ 1}
converges as k → ∞. We denote by Cj the associated limit. Moreover, for any
function f ∈ C4 (R,R) with polynomial growth, we have the following asymptotic
result:

ǫ
− 1

m0

k

(

〈f, uǫk〉 − 〈f, u0〉
)

−−−−→
k→∞

f ′′(0)

2

∫

R
x2 exp

[

−2
∑k0

j=1
Cj

(2j)!x
2j
]

dx

∫

R
exp

[

−2
∑k0

j=1
Cj

(2j)!x
2j
]

dx
. (1.6)

Let us just note that the coefficients Cj appearing in (1.6) shall be specified
in Corollary 3.8.
We have just observed different rates of convergence for sequences of symmetric
invariant measures depending on the particular interaction and environment
functions F and V . We need now to present convergence rates associated to
non-symmetric stationary measures. For that purpose, we introduce the so-
called outlying invariant measures (see [6]), which are concentrated around δ±a

in the small ǫ limit. Here a and −a represent the locations of the global minimum
of the environment potential V .
In order to study the convergence rate for asymmetric measures, we shall admit
the existence of these extremal outlying stationary measures for ǫ small enough.
In other words, we assume the existence of a sequence of stationary measures
(

u±
ǫk

)

k∈N∗ which converges towards δ±a. We will drop the k for notational
simplicity. Let us just note that this main assumption is satisfied in many
situations.
Let 2n be the degree of F . According to Theorem 4.6 in [6] and Proposition 4.1
in [7], we know that the following condition is sufficient in order to ensure this
existence:

2n−2
∑

p=0

∣

∣F (p+2)(a)
∣

∣

p!
ap < α+ V ′′(a) . (1.7)

In other words, under the conditions (UC) and (1.7), the set of limit measures
contains at least three measures: one symmetric and two asymmetric. For these
asymmetric measures, we obtain the wished convergence rate ǫ.
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Theorem 1.5. Asymmetric case. Let (uǫ, ǫ > 0) be a sequence of invariant
measures converging towards δa. Let f ∈ C4 (R,R) with polynomial growth.
Then

lim
ǫ→0

1

ǫ

{

〈f, uǫ〉 − 〈f, u0〉
}

=
V ′′(a)f ′′(a)− V (3)(a)f ′(a)

4V ′′(a) (α+ V ′′(a))
. (1.8)

Obviously the same convergence result holds for δ−a by symmetry.
The study about the convergence rate permits to estimate the moments of the
associated stationary measures. This feature is crucial for the uniqueness prob-
lem. Indeed, since F is a polynomial function of degree 2n, the first 2n − 1
moments of an invariant measure characterize completely this measure (see the
discussion introducing Section 4.3 in [6]). This essential property shall be used
to discuss the uniqueness problem: in fact, we know that, under simple con-
ditions, there exists several invariant measures for the self-stabilizing process
(see [6]). However we want to precise the statement in order to describe the
set of all invariant measures. This set was already explicitly presented in [6]
for particular situations, namely when V ′′ is a convex function and F ′ is linear.
Our aim is to extend this result to more general interaction functions.
We will now assume that the functions F and V satisfy the condition (1.7).

Theorem 1.6. Local uniqueness.
1) Let (uǫ)ǫ>0 and (vǫ)ǫ>0 two families of stationary measures converging to-
wards δa. Then there exists ǫ0 > 0 such that for all ǫ < ǫ0, uǫ = vǫ.
2) Let F ′′(0) 6= −V ′′(0). There exists a unique symmetric invariant measure
for ǫ small enough.

Let us end the presentation of the main results by a remark. In all the
statements, we essentially assume that the condition (UC) is satisfied in order
to make the paper more accessible. In practice, weaker conditions are sufficient
and shall be presented in the proofs.

2 General asymptotic properties related to the

pseudo-potential Wǫ

In the self-stabilization framework, the convergence rate of sequences of invariant
measures in the small-noise limit is directly related to the asymptotic behavior
of the pseudo-potential Wǫ. Indeed as discussed in Section 1, stationary mea-
sures are in particular exponential forms (1.2). In order to introduce the proofs
corresponding to the theorems of Section 1, we present a general asymptotic
estimation which shall play an important role in the sequel.
As we have already seen, the sequence of invariant measures is assumed to sat-
isfy a weak condition on the moments, namely the family {µ2n(ǫ), ǫ > 0} is
bounded. Such a condition implies (see Proposition 3.3 and Theorem 3.6 in
[7]) the existence of both a sequence (ǫk)k≥0 tending towards 0 and a regular
function W0 such that:
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• W
(j)
ǫk converges uniformly on each compact subset of R to W

(j)
0 , for any

j ∈ N,

• the sequence (uǫk)k≥1 converges weakly towards a discrete probability
measure given by u0 :=

∑r
i=1 pi δAi

with pi > 0 and A1, . . . , Ar are
locations of the global minimum of W0 defined by (1.3). Since F is an
even function, we have W0(x) = V (x) +

∑r
j=1 pj(F (x−Aj)− F (Aj)).

Attention ! In the following we shall drop the index ǫk just replaced by ǫ
for notational simplicity but the reader has to keep in mind that both previous
properties (uniform convergence of the pseudo-potential and weak convergence
of the measures) are satisfied.
We define A := {Aj ; 1 ≤ j ≤ r} the support of the limit measure u0 and B the
set of all locations for W0’s global minimum which do not belong to A. We
introduce s := #B.
Let us consider the set of intervals (Ii)1≤i≤r+s which correspond to the Voronoï
cells centered in the elements of D := A ∪ B. If W ′′

0 (D) > 0 for all D ∈ D,
Wǫ reaches its global minimum at a unique location in Ii denoted by Dǫ

i (also
denoted by Aǫ

· or Bǫ
· ), 1 ≤ i ≤ r + s, which converges to Di ∈ D (Lemma A.5).

In order to begin this asymptotic description, we need to estimate the behavior
of Wǫ(A

ǫ
j) for any j as ǫ → 0.

Proposition 2.1. We assume that W ′′
ǫ (D) > 0 for all D ∈ D := A⋃B. If

Aj and Ak are two elements of A with the corresponding asymptotic weight:
u0(Aj) = pj and u0(Ak) = pk, we denote by Aǫ

j and Aǫ
k the corresponding arg

min defined just before. Then the following asymptotic development holds

lim
ǫ→0

Wǫ(A
ǫ
j)−Wǫ(A

ǫ
k)

ǫ
= −1

4
log

(

W ′′
0 (Aj)

W ′′
0 (Ak)

)

− 1

2
log

(

pj
pk

)

. (2.1)

Moreover, for any B ∈ B 6= ∅ we denote Bǫ the corresponding arg min presented
previously and obtain

lim
ǫ→0

Wǫ(B
ǫ)−Wǫ(A

ǫ
j)

ǫ
= +∞, for all 1 ≤ j ≤ r . (2.2)

Proof. By Theorem 3.6 in [7], the limit measure u0 is a discrete measure con-
structed as follows u0 =

∑r
j=1 pjδAj

+
∑s

l=1 qlδBl
where the weights are defined

by

pj = lim
ǫ→0

∫ Aj+δ

Aj−δ

uǫ(x)dx and ql = lim
ǫ→0

∫ Bl+δ

Bl−δ

uǫ(x)dx, 1 ≤ j ≤ r, 1 ≤ l ≤ s .

The only assumption on δ is that all the intervals [A·−δ, A·+δ] and [B·−δ, B·+δ]
are disjoint. By definition of the set A, pi 6= 0 for all 1 ≤ i ≤ r. As an immediate
consequence, we obtain for 1 ≤ j, k ≤ r and 1 ≤ l ≤ s:

pj
pk

= lim
ǫ→0

∫ Aj+δ

Aj−δ
e−

2
ǫ
Wǫ(x)dx

∫ Ak+δ

Ak−δ e−
2
ǫ
Wǫ(x)dx

and
ql
pj

= lim
ǫ→0

∫ Bl+δ

Bl−δ e−
2
ǫ
Wǫ(x)dx

∫ Aj+δ

Aj−δ e−
2
ǫ
Wǫ(x)dx

.
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By definition of the set B, the weights (ql)l≥1 vanish. An adaptation of Lemma
A.3 to the constant function f ≡ 1 yields

lim
ǫ→0

√

πǫ
W ′′

ǫ (Aǫ
j)

e−
2Uǫ(A

ǫ
j)

ǫ

√

πǫ
W ′′

ǫ (Aǫ
k
) e−

2Uǫ(A
ǫ
k
)

ǫ

=
pj
pk

and lim
ǫ→0

√

πǫ
W ′′

ǫ (Bǫ
l
) e−

2Uǫ(B
ǫ
l
)

ǫ

√

πǫ
W ′′

ǫ (Aǫ
j)

e−
2Uǫ(A

ǫ
j
)

ǫ

= 0 .

Applying the function x → − 1
2 log x to the previous equalities permits to prove

the asymptotic estimates (2.1) and (2.2).

Remark 2.2. Let us first note that the pseudo-potential Wǫ does not generally
reach its global minimum at each location Aǫ

j respectively Bǫ
l , defined in the

statement of Lemma A.5, even if each of these points converges to one location
of the global minimum of W0. The equation (2.1) emphasizes that the speed of
convergence of Wǫ(A

ǫ
j) towards W0(Aj) is directly related to the weight pj. Even

if the elements of B do not have any impact on the limit measure u0, they can
influence the convergence’s speed of the sequence of invariant measures uǫ for
the self-stabilizing diffusion towards u0.

Let us introduce some assumptions in order to avoid the parasitism of B in the
computation of the rate of convergence of any subsequence of invariant measures
towards a limit measure u0. In the following, these conditions are assumed to
be satisfied.
Let us recall the definition of D: if w0 := inf

x∈R

W0(x) then D = W−1
0 ({w0}).

Assumption 2.1. For each D ∈ D = A ∪ B, W ′′
0 (D) > 0. Moreover, for

any element Aǫ
j associated with Aj ∈ A, 1 ≤ j ≤ r, (see Lemma A.5 for the

definition of Aǫ
· ) and Bǫ

l associated with Bl, 1 ≤ l ≤ s, we set

lim inf
ǫ→0

Wǫ(B
ǫ
l )−Wǫ(A

ǫ
j)

−ǫ log(ǫ)
> 1 . (2.3)

This condition is quite natural: it is related to the asymptotic estimate (A.2).
In that development appear either terms induced from elements of A either from
elements of B. The condition expressed in (2.3) is interpreted as follows: the
terms associated to B are negligible with respect to those of A of order ǫ3/2. In
other words, we assume that, for any 1 ≤ j ≤ r and 1 ≤ l ≤ s,

√

πǫ

W ′′
ǫ (B

ǫ
l )

e−
2Wǫ(B

ǫ
l
)

ǫ =

√

πǫ

W ′′
ǫ (A

ǫ
j)

e−
2Wǫ(A

ǫ
j)

ǫ o(ǫ) ,

which is equivalent to (2.3).
Example: Let us just introduce an example which satisfies Assumption 2.1.
This example was already pointed out in [7]. The context is as follows: the

environment function of the self-stabilizing process satisfies V (x) := x6

6 − 3
2x

4−
17
32x

2 while the interaction function equals F (x) := x4

4 + x2

2 . Two essential results
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were already proven (see [7]): first, any family of symmetric invariant measures
{uǫ, ǫ > 0} satisfies the following weak convergence result:

lim
ǫ→0

uǫ = u0 :=
26

45
δ0 +

19

90

(

δ√
15
2

+ δ−
√

15
2

)

. (2.4)

We deduce, by the way, the expression of the limit pseudo-potential

W0(x) = V (x) +
26

45
F (x) +

19

90

{

F (x− x0) + F (x+ x0)− 2F (x0)
}

,

where x0 =
√
15
2 .

Secondly, due to some convexity property of W
(4)
0 , the global minimum of W0

can only be reached at three locations, namely A1 = −x0, A2 = 0 and A3 = x0.

• Therefore B = ∅ which implies that it suffices to obtain W ′′
0 (Ai) > 0, for

1 ≤ i ≤ 3, in order to verify Assumption 2.1. After straightforward com-

putations, we effectively obtain: W ′′
0

(√
15
2

)

= W ′′
0

(

−
√
15
2

)

= 4W ′′
0 (0) =

75
4 > 0.

• In this example, Proposition 2.1 leads to some explicit computation of
the first order development of Wǫ(A

ǫ
1) where (Aǫ

1)ǫ>0 is a sequence of
local minimum locations for the potential Wǫ which converges towards

A1 = −x0 = −
√
15
2 (see Lemma A.5). Let us note that the pseudo-

potential Wǫ associated to the symmetric invariant measure introduced in
(2.4) admits exactly three local minima as ǫ is small. Indeed D admits
three elements, which implies that Wǫ admits at least three local minima
in the small ǫ limit as it was proven in Lemma A.5. Furthermore if Wǫ

admits more than 4 local minima, then W ′
ǫ vanishes at least seven times.

By Rolle’s theorem this implies that W
(4)
ǫ , which is a polynomial function

of order 2, admits 3 zeros: this is of course a nonsense. Finally we obtain
the existence of exactly three local minima of Wǫ: Aǫ

1 < Aǫ
2 < Aǫ

3. The
symmetry of uǫ and consequently of Wǫ, permits to know that Aǫ

1 = −Aǫ
3

and Aǫ
2 = 0. Finally Proposition 2.1 and Wǫ(0) = 0 provide

Wǫ(A
ǫ
1) ≈

ǫ

2
log

(

1 +
7

19

)

as ǫ → 0 .

The next part of this paper concerns the proofs of the different convergence
rates of sequences of invariant measures for the self-stabilizing process.

3 Rate of convergence: the proofs

This section is devoted to the proofs of Theorem 1.2, 1.3, 1.4 and 1.5. We will
in fact provide more than the announced results in Section 1 by relaxing some
of the hypotheses, particularly Assumption (UC).
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3.1 Proof of Theorem 1.2

By Lemma A.5, the hypotheses of Theorem 1.2 imply that 0 is the unique
location of the global minimum of Wǫ and of W0 which is given by W0(x) =
V (x)+F (x) according to (1.1). Instead of assuming that V ′′ and F ′′ are convex,
we will suppose that W0 and V ′′ are convex (which is immediate consequence
of the convexity of V ′′ and F ′′).

Let us recall that this situation (V ′′(0) + F ′′(0) > 0) corresponds to the lower-
bound W ′′

0 (0) > 0. Since we assume that W0 is convex, B is empty and finally
Assumption 2.1 is satisfied. Applying a Laplace type asymptotic result, we ob-
tain easily the convergence rate of the sequence of symmetric invariant measures
{uǫ, ǫ > 0} towards the limit measure u0 = δ0 as ǫ → 0.

We recall that uǫ is characterized by the exponential structure (1.2). Moreover
due to the convexity of W0, B = ∅ and 0 is the unique location of the global
minimum of Wǫ. Therefore, applying the third item of Lemma A.5 with Aǫ

1 = 0
and Wǫ(A

ǫ
1) = 0, we have

∫

R

f(x)e−
2
ǫ
Wǫ(x)dx =

√

πǫ

W ′′
ǫ (0)

{

f(0) + γ0(f)ǫ+ o(ǫ)
}

,

where γ0(f) is defined by (A.3). Since W
(3)
0 (0) = V (3)(0) = 0 and W ′′

0 (0) =
α+ V ′′(0) > 0, γ0(f) converges towards

γ(f) := − W
(4)
0 (0)

16W ′′
0 (0)

2
f(0) +

f ′′(0)

4W ′′
0 (0)

. (3.1)

Hence
∫

R

f(x) exp

[

−2

ǫ
Wǫ(x)

]

dx =

√

πǫ

W ′′
ǫ (0)

{

f(0) + γ(f)ǫ+ o(ǫ)
}

. (3.2)

First we apply (3.2) to the constant function f ≡ 1 and obtain

∫

R

exp

[

−2

ǫ
Wǫ(x)

]

dx =

√

πǫ

W ′′
ǫ (0)

{

1 + γ(1)ǫ+ o(ǫ)
}

. (3.3)

Here γ(1) = − W
(4)
0 (0)

16W ′′
0 (0)2 . Let f ∈ C4 (R,R) with polynomial growth. We divide

(3.2) by (3.3), the following estimate yields

∫

R

f(x)uǫ(x)dx =
f(0) + γ(f)ǫ+ o(ǫ)

1 + γ(1)ǫ+ o(ǫ)
= f(0) +

(

γ(f)− f(0)γ(1)
)

ǫ+ o(ǫ) ,

where γ(f) is defined by (3.1). Finally the following estimate holds:

〈f, uǫ〉 − 〈f, u0〉
ǫ

= γ(f)− f(0)γ(1) + o(1) =
f ′′(0)

4W ′′
0 (0)

+ o(1) .

In order to complete the proof, it suffices to note that W ′′
0 (0) = α+ V ′′(0).

11



3.2 Proof of Theorem 1.3

Now, we focus our attention to the case: V ′′(0)+F ′′(0) < 0. In [7], the authors
describe, in the self-stabilization framework and under suitable conditions (the
convexity of both F ′′ and V ′′), the whole set of limit measures for sequences of
symmetric invariant measures. In the previous paragraph, we focus our atten-
tion to the convergence rate when u0 = δ0 and V ′′(0)+F ′′(0) > 0. Here, we are
interested by other functions V and F which permit to deal with the following
discrete limit measure: u0 = 1

2δx0 +
1
2δ−x0 .

According to Proposition 5.3 in [7], any limit measure associated to symmet-
ric invariant measures and which support is reduced to the set {−x0, x0} with
x0 > 0, satisfies the following properties:

{

V ′(x0) +
1
2F

′(2x0) = 0,

V ′′(x0) +
α
2 + 1

2F
′′(2x0) ≥ 0 .

(3.4)

Furthermore the support satisfies x0 ≤ a, where a was introduced in (V-3).
The material is organized as previously: starting with the convergence of the
pseudo-potential Wǫ, defined by (1.1), towards W0, given by

W0(x) := V (x) +
1

2
F (x− x0) +

1

2
F (x+ x0)− F (x0) ,

we analyze the asymptotic behavior of the minimum locations and deduce the
expected rate.

Let us stress that in (3.4), nothing ensures that the inequality is strict. Nev-
ertheless, in the following, we need to assume W ′′

0 (x0) > 0 that is to say
V ′′(x0) +

1
2F

′′(0) + 1
2F

′′(2x0) > 0. Such hypothesis is less restrictive than
(UC). Let us prove this statement.

Lemma 3.1. Under (UC), the global minimum of W0 is reached exactly at two
points: x0 and −x0. Besides, W ′′

0 (x0) > 0.

Proof. Since V ′′ and F ′′ are convex functions, Theorem 5.4 of [7] ensures the

uniqueness of x0. If we assume that W ′′
0 (x0) = 0 then W

(3)
0 (x0) = 0, W0

reaching a local minimum for x = x0. However, the convexity property of W ′′
0

implies that W
(3)
0 is non-decreasing. Since W

(3)
0 (0) = 0 due to the symmetry of

W0, we deduce that W
(3)
0 (x) = 0, for all x ∈ [0, x0]. Hence W ′′

0 (0) = W ′′
0 (x0)

which is of course a nonsense since W ′′
0 (x0) = 0 and W ′′

0 (0) = α−ϑ < 0. Indeed,
ϑ := supx∈R

−V ′′(x) = −V ′′(0) since V ′′ is a convex function.

As a consequence, we obtain that the set B defined in Section 2 is empty.
From now on, we shall just assume that W ′′

0 (x0) > 0 and allow B not to be
empty. Lemma A.5 permits to obtain directly the following asymptotic behavior:
for ǫ small enough, there exists a unique xǫ

0 in the neighborhood V of x0 such
that Wǫ defined by (1.1) reaches its global minimum on V for x = xǫ

0. Moreover

12



we have the following convergence: since W ′′
0 (x0) > 0, xǫ

0 converges towards x0

and

xǫ
0 = x0 −

W ′
ǫ(x0)

W ′′
0 (x0)

+ o {W ′
ǫ(x0)} . (3.5)

This convergence can even be more precise.

Theorem 3.2. If W ′′
0 (x0) > 0, under the condition (2.3), we get

lim
ǫ→0

xǫ
0 − x0

ǫ
=

W
(3)
0 (x0) (F

′′(2x0)− α)− F (3)(2x0)W
′′
0 (x0)

8W ′′
0 (x0)2 (V ′′(x0) + F ′′(2x0))

.

The proof of Theorem 3.2 is essentially based on two lemmas: Lemma 3.3
and Lemma 3.4. The first one deals with an integral estimate in the spirit
of (A.2) and permits to prove the second one which describes the asymptotic
behavior of the following expression W ′

ǫ(x0)/ǫ. It suffices then to consider (3.5)
in order to finish the proof. The details are left to the reader.

Lemma 3.3. Let us assume (2.3). For any function f ∈ C4 (R,R) with poly-
nomial growth, the following estimate holds:

∫

R

f(x)e−
2
ǫ
Wǫ(x)dx = 2

√

πǫ

W ′′
ǫ (x

ǫ
0)

e−
2Wǫ(x

ǫ
0)

ǫ

{

f+(x
ǫ
0) + γ(f)ǫ+ o(ǫ)

}

(3.6)

where

γ(f) :=

(

5 W2
3

48 W3
2

− W4

16 W2
2

)

f+(x0)−
W3

4 W2
2

f ′
+(x0) +

f ′′
+(x0)

4 W2
.

Here Wk := W
(k)
0 (x0) and f+(x) := (f(x) + f(−x))/2.

Proof. We recall that Lemma A.5 provides directly the existence of ±xǫ
0. More-

over (A.2) combined with Assumption 2.1 permits to obtain (see the comments
following Assumption 2.1):

∫

R

f(t)e
−2Wǫ(t)

ǫ dt = 2

√

πǫ

W ′′
ǫ (x

ǫ
0)

e−
2Wǫ(x

ǫ
0)

ǫ

{

f+(x
ǫ
0) +

γ+(f) + γ−(f)

2
ǫ+ o(ǫ)

}

with γ±(f) := f(±x0)

(

5 W2
3,ǫ

48 W3
2,ǫ

− W4,ǫ

16 W2
2,ǫ

)

− f ′(±x0)
±W3,ǫ

4 W2
2,ǫ

+
f ′′(±x0)

4 W2,ǫ
and

Wk,ǫ := W
(k)
ǫ (xǫ

0). In order to prove (3.6), it suffices to note that xǫ
0 converges

towards x0 and that W
(k)
ǫ converges uniformly towards W

(k)
0 (see Section 2) as

ǫ → 0.

Lemma 3.4. Let W ′′
0 (x0) > 0. Under the condition (2.3), we have:

lim
ǫ→0

W ′
ǫ(x0)

ǫ
=

F (3)(2x0)W
′′
0 (x0)−W

(3)
0 (x0) (F

′′(2x0)− α)

8W ′′
0 (x0) (V ′′(x0) + F ′′(2x0))

. (3.7)
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Proof. Since x0 is the location of a local extremum for W0, W
′
0(x0) = 0. Hence,

defining ξ(z) := F ′(x0 − z), we get

W ′
ǫ(x0) = W ′

ǫ(x0)−W ′
0(x0) =

∫

R

ξ(z)uǫ(z)dz −
1

2

(

ξ(x0) + ξ(−x0)
)

=

∫

R
ξ(z) exp

[

− 2
ǫWǫ(z)

]

dz
∫

R
exp

[

− 2
ǫWǫ(z)

]

dz
− ξ+(x0) .

By Lemma 3.3 the following estimates hold:
∫

R

ξ(x)e−
2
ǫ
Wǫ(x)dx = 2

√

πǫ

W ′′
ǫ (x

ǫ
0)

e−
2Wǫ(x

ǫ
0)

ǫ

{

ξ+(x
ǫ
0) + γ(ξ)ǫ+ o(ǫ)

}

(3.8)

∫

R

e−
2
ǫ
Wǫ(x)dx = 2

√

πǫ

W ′′
ǫ (x

ǫ
0)

e−
2Wǫ(x

ǫ
0)

ǫ

{

1 + γ(1)ǫ+ o(ǫ)
}

. (3.9)

Let us divide (3.8) by (3.9). Therefore
∫

R

ξ(x)uǫ(x)dx = ξ+(x
ǫ
0) +

(

γ(ξ)− ξ+(x
ǫ
0)γ(1)

)

ǫ+ o(ǫ) .

The definition of γ leads to:
∫

R

ξ(x)uǫ(x)dx = ξ+(x
ǫ
0) +

(

− W3

4 W2
2

ξ′+(x0) +
ξ′′+(x0)

4 W2

)

ǫ+ o(ǫ) . (3.10)

Therefore, we have

lim
ǫ→0

W ′
ǫ(x0)

ǫ

{

1− ξ+(x
ǫ
0)− ξ+(x0)

xǫ
0 − x0

xǫ
0 − x0

W ′
ǫ(x0)

}

= − W3

4 W2
2

ξ′+(x0) +
ξ′′+(x0)

4 W2
.

By (3.5), we get

lim
ǫ→0

W ′
ǫ(x0)

ǫ

{

1 +
ξ′+(x0)

W ′′
0 (x0)

}

= − W3

4 W2
2

ξ′+(x0) +
ξ′′+(x0)

4 W2
. (3.11)

Since W3 = W
(3)
0 (x0) = V (3)(x0) + F (3)(x0)/2 and W2 = W ′′

0 (x0) = V ′′(x0) +
α
2 + F ′′(2x0)

2 , the announced limit (3.7) is proved.

Finally we can obtain the desired result concerning the convergence rate that
is to say Theorem 1.3.

Proof. Since u0 =
1
2δx0 +

1
2δ−x0 , the difference 〈f, uǫ〉 − 〈f, u0〉 equals

∫

R

f(x)uǫ(x)dx − f+(x0) where f+(x) =
1

2

(

f(x) + f(−x)
)

.

Applying Lemma 3.3 to the functions f and 1, we obtain the estimate of the
ratio. Hence

∫

R

f(x)uǫ(x)dx = f+(x
ǫ
0) +

(

− W3

4 W2
2

f ′
+(x0) +

f ′′
+(x0)

4 W2

)

ǫ+ o(ǫ) .
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Therefore, defining

T := lim
ǫ→0

{ 〈f, uǫ〉 − 〈f, u0〉
ǫ

− f+(x
ǫ
0)− f+(x0)

xǫ
0 − x0

xǫ
0 − x0

W ′
ǫ(x0)

W ′
ǫ(x0)

ǫ

}

,

we get T =
f ′′
+(x0)

4W ′′
0 (x0)

− W3f
′
+(x0)

4 W2
2

. Obviously lim
ǫ→0

f+(x
ǫ
0)− f+(x0)

xǫ
0 − x0

= f ′
+(x0),

(3.5) implies limǫ→0(x
ǫ
0 − x0)/W

′
ǫ(x0) = −1/W ′′

0 (x0) and limǫ→0 W
′
ǫ(x0)/ǫ is

determined by Lemma 3.4. Hence

lim
ǫ→0

〈f, uǫ〉 − 〈f, u0〉
ǫ

=
f ′′
+(x0)

4W ′′
0 (x0)

+ f ′
+(x0)∆(x0) ,

with

∆(x0) :=
W

(3)
0 (x0) (F

′′(2x0)− α)− F (3)(2x0)W
′′
0 (x0)

8W ′′
0 (x0)2 (V ′′(x0) + F ′′(2x0))

− W3

4 W2
2

= − 2W
(3)
0 (x0) + F (3)(2x0)

8W ′′
0 (x0) (V ′′(x0) + F ′′(2x0))

.

The proof is achieved since W
(3)
0 (x0) = V (3)(x0) +

1
2F

(3)(2x0).

3.3 Proof of Theorem 1.4

We come back to the case where the limit value is u0 = δ0. But, we assume
V ′′(0) + F ′′(0) = 0 instead of V ′′(0) + F ′′(0) > 0. Since W0 = V + F and
F ′′ are convex, 0 is the unique location of the global minimum of W0. But,
in this situation, we have W ′′

0 (0) = 0. In other words, Assumption 2.1 is not
satisfied. The aim of this paragraph is to emphasize that the convergence rate
is not always equal to ǫ. This rate was effectively presented in Paragraphs 3.1
and 3.2 and concerns most of the situations. The condition W ′′

0 (0) = 0 changes
drastically the asymptotic behavior of the self-stabilizing invariant measure. The
asymptotic results shall be proved under weaker conditions than those presented
in Theorem 1.4. Indeed, instead of assuming (UC), we start with the convexity
of both functions W0 and F ′′. The computation of convergence rate will be

based on successive derivations of the pseudo-potential: W
(2k)
ǫ (0). We therefore

recall and introduce:

k0 := min
{

k ≥ 2 | W
(2k)
0 (0) > 0

}

,

Ωǫ := max
1≤j≤k0

{

∣

∣

∣
W (2j)

ǫ (0)
∣

∣

∣

1
2j

ǫ−
1
2j

}

(3.12)

and M2r(ǫ) :=

∫

R

x2r exp

[

−2

ǫ
Wǫ(x)

]

dx . (3.13)

The expression Ωǫ corresponds in fact to the suitable change of variable asso-
ciated with the computation of M2r(ǫ). This result is detailed in the following
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proposition. Let us just note that M2r(ǫ) is well-defined. Indeed since uǫ is
a symmetric invariant measure, Lemma 4.2 in [6] implies the following lower
bound:

∫ x

0

(F ′ ∗ uǫ)(y)dy ≥ 0 .

It suffices then to use (1.1) and the growth property of V in order to prove the
boundedness of the integrals M2r(ǫ), for ǫ > 0 and r ∈ N.

Proposition 3.5. If W0 and F ′′ are convex, for all r ∈ N, the following in-
equalities hold:

0 < lim inf
ǫ→0

Ω2r+1
ǫ M2r(ǫ) < lim sup

ǫ→0
Ω2r+1

ǫ M2r(ǫ) < +∞ . (3.14)

Proof. Step 1. Preliminaries. Since {uǫ, ǫ > 0} is a sequence of symmetric

invariant measures with uniformly bounded 2n-th moments, W
(2r)
ǫ converges

uniformly on each compact set to W
(2r)
0 (see the discussion before Lemma A.5

and the statement of Proposition 3.3 in [7]). The definition of k0 implies there-

fore: |W (2k0)
ǫ (0)| 1

2k0 ǫ−
1

2k0 → +∞ as ǫ → 0. Consequently, Ωǫ → +∞.

Let Cj(ǫ) :=
W (2j)

ǫ (0)

ǫΩ2j
ǫ

. By construction, the families {Cj(ǫ)}ǫ>0 are bounded.

Let us select a decreasing subsequence (ǫk)k∈N
converging towards 0 such that,

for any 1 ≤ j ≤ k0, we observe Cj(ǫk) → Cj ∈ R.
In order to simplify the notations, we drop the index.
We define

J :=
{

j
∣

∣

∣
1 ≤ j ≤ k0 , Cj 6= 0

}

=
{

j1, . . . , jl

}

(3.15)

with 1 ≤ j1 < j2 < · · · < jl ≤ k0.
Let us now focus our attention to the computation of the integral term M2r(ǫ)
which can be split into two principal terms as follows:

M2r(ǫ)

2
= I2r(ǫ)+J2r(ǫ) :=

∫ η(ǫ)

0

x2re−
2Wǫ(x)

ǫ dx+

∫ +∞

η(ǫ)

x2re−
2Wǫ(x)

ǫ dx , (3.16)

η(ǫ) shall be specified in the following.
Step 2. Asymptotic analysis of I2r(ǫ). The mean value theorem applied
to the function Wǫ on [0; η(ǫ)] leads to:

Wǫ(x)

ǫ
=

1

ǫ

k0
∑

j=1

1

(2j)!
W (2j)

ǫ (0)x2j +
W

(2k0+2)
ǫ (yx)

(2k0 + 2)! ǫ
x2k0+2 ,

with yx ∈ [0; η(ǫ)]. Using the definition and the convergence result related to
Cj(ǫ), we get:

Wǫ(x)

ǫ
=

l
∑

k=1

Cjk

(2jk)!
Ω2jk

ǫ x2jk +
W

(2k0+2)
ǫ (yx)

(2k0 + 2)! ǫ
x2k0+2

+

k0
∑

j=1

1

(2j)!
sgn (Cj(ǫ)− Cj)

(

|Cj(ǫ)− Cj |
1
2j

)2j

Ω2j
ǫ x2j . (3.17)
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We shall find a suitable sequence {η(ǫ), ǫ > 0} (subsequence since the index
was dropped), decreasing toward 0 and such that the first sum in the rhs of the
previous expression is the principal term, all the others being negligible. For ǫ
small enough and for all x ∈ [0; η (ǫ)], the second term is upper bounded by:

1

ǫ

∣

∣

∣
W (2k0+2)

ǫ (yx)
∣

∣

∣
x2k0+2 ≤ sup

z∈[0;1]

∣

∣

∣
W (2k0+2)

ǫ (z)
∣

∣

∣
η (ǫ)

2k0+2
ǫ−1 .

Let us now introduce the parameter Ωǫ which tends to 0 in the small ǫ limit
and which is defined by:

Ωǫ := max

{

sup
1≤j≤k0

|Cj(ǫ)− Cj |
1
2j ;

1

Ωǫ
; ǫ

1
2k0(2k0+2)

}

.

Ωǫ is a good candidate for the construction of η(ǫ); we set

η (ǫ) := Ω−1
ǫ

(

Ωǫ

)− 1
2 . (3.18)

Some straightforward considerations permit to observe that:

• Firstly, η (ǫ) tends to 0 as ǫ becomes small.

• Secondly, there exists ρ(ǫ) > 0, satisfying limǫ→0 ρ(ǫ) = 0, such that, for
all x ∈ [0; η(ǫ)],

∣

∣

∣
W

(2k0+2)
ǫ (yx)

∣

∣

∣

ǫ (2k0 + 2)!
x2k0+2 +

k0
∑

j=1

(

|Cj(ǫ)− Cj |
1
2j

)2j

(2j)!
Ω2j

ǫ x2j < ρ(ǫ) . (3.19)

Due to the suitable choice of the parameter η(ǫ), see (3.18), the integral I2r(ǫ)
defined by (3.16) is equivalent to the simpler integral

∫ η(ǫ)

0

x2r exp

[

−2

(

l
∑

k=1

Cjk

(2jk)!
Ω2jk

ǫ x2jk

)]

dx ,

in the small ǫ limit. The change of variable x := Ω−1
ǫ y provides

I2r(ǫ) ≈ Ω−2r−1
ǫ

∫ ϕ(ǫ)

0

y2r exp

[

−2

l
∑

k=1

Cjk

(2jk)!
y2jk

]

dy, as ǫ → 0 , (3.20)

where ϕ(ǫ) := η (ǫ)Ωǫ =
(

Ωǫ

)− 1
2 → +∞ as ǫ → 0. By definition Cjl 6= 0, see

(3.15). If Cjl > 0, then Γr :=
∫

R+ x2r exp
[

−2
∑l

k=1
1

(2jk)!
Cjkx

2jk
]

dx < ∞ and

therefore, in the small ǫ limit, (3.20) leads to

I2r(ǫ) ≈ Ω−2r−1
ǫ Γr .
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To conclude the asymptotic analysis of I2r(ǫ), it remains to prove that Cjl > 0.
We shall prove it by reductio ad absurdum. Let us then assume that Cjl < 0

which implies limy→+∞
∑l

k=1

Cjk

(2jk)!
y2jk = −∞. Hence there exists y0 > 0

such that
∑l

k=1

Cjk

(2jk)!
y2jk0 ≤ −1. Due to the convergence of

Wǫ(Ω−1
ǫ y)
ǫ towards

∑l
k=1

Cjk

(2jk)!
y2jk for any y ∈ R, we deduce that Wǫ

(

Ω−1
ǫ y0

)

< 0 for ǫ small

enough. This contradicts the fact that 0 is the global minimum of Wǫ in a
neighborhood of 0, for ǫ small enough (see Lemma A.5).
Step 3. Asymptotic analysis of J2r(ǫ). It is now sufficient to prove
that J2r(ǫ) defined in (3.16) satisfies J2r(ǫ) = o(I2r(ǫ)) = o

{

Ω−2r−1
ǫ

}

. We
split this integral into three different parts depending on the support: J⋆

2r(ǫ) for
the support [η(ǫ), ǫλ[, J◦

2r(ǫ) for [ǫλ, ǫ−µ[ and finally J∆
2r(ǫ) for [ǫ−µ,+∞[ where

λ, µ > 0 shall be specified in the following.
3.1. Let us first estimate J∆

2r(ǫ). Due to the assumptions (F-2) and (V-4), we

get the lower bound Wǫ(x) ≥ W0(x) ≥ C4x
4 −C2x

2 ≥ x2

2 for large x. The first
inequality in the previous formula is also related to the second item in the proof
of Lemma A.5. We apply the change of variable x :=

√
ǫy, Lemma A.1 leads to:

J∆
2r(ǫ) ≤ ǫr+

1
2

∫ ∞

ǫ−µ− 1
2

y2re−y2

dy ≤ 2ǫ1+(1−2r)µ exp
[

−ǫ−2µ−1
]

,

for ǫ small enough. It remains to prove that the rhs is negligible with respect
to Ω−2r−1

ǫ . It suffices in fact to note that, by definition of Ωǫ, the following
convergence result holds: ǫΩǫ → 0 as ǫ → 0. Consequently, since µ > 0,

Ω2r+1
ǫ ǫ1+(1−2r)µ exp

[

−ǫ−2µ−1
]

→ 0 .

3.2. Secondly we estimate J◦
2r(ǫ). We obtain:

J◦
2r(ǫ) =

∫ ǫ−µ

ǫλ
x2r exp

[

−2

ǫ
Wǫ(x)

]

dx ≤ ǫ−µ(2r+1) exp

[

−2

ǫ
inf

z∈[ǫλ;+∞[
Wǫ(z)

]

.

We note that 0 is the unique location of the global minimum for the pseudo-
potential W0 which implies that infz∈[ǫλ;+∞[Wǫ(z) = Wǫ

(

ǫλ
)

≥ W0

(

ǫλ
)

, for

ǫ small enough. The mean value theorem provides W0

(

ǫλ
)

≈ W
(2k0)
0 (0)

(2k0)!
ǫ2k0λ.

Taking λ = 1
2k0+1 and µ > 0, J◦

2r(ǫ) is exponentially small in ǫ. By definition,√
ǫ = o

{

Ω−1
ǫ

}

. Hence J◦
2r(ǫ) is negligible.

3.3. We focus now our attention on the integral J⋆
2r(ǫ) related to the support

[η(ǫ), ǫλ[ where η(ǫ) defined by (3.18) tends to 0 as ǫ becomes small. The change
of variable x := Ω−1

ǫ y yields

J⋆
2r(ǫ) = Ω−2r−1

ǫ

∫ b(ǫ)

a(ǫ)

y2r exp
[

− 2

ǫ
Wǫ(Ω

−1
ǫ y)

]

dy , (3.21)

where a(ǫ) := η(ǫ)Ωǫ → +∞ and b(ǫ) := ǫλΩǫ. Let us just prove that the
integral introduced in (3.21) is negligible, that is tends to 0 in the small ǫ limit.
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An integration by parts permits to obtain:

J⋆
2r(ǫ)Ω

2r+1
ǫ =

a(ǫ)2r exp
[

− 2
ǫWǫ(Ω

−1
ǫ a(ǫ))

]

2
ǫΩǫ

W ′
ǫ(Ω

−1
ǫ a(ǫ))− 2r

a(ǫ)

− b(ǫ)2r exp
[

− 2
ǫWǫ(Ω

−1
ǫ b(ǫ))

]

2
ǫΩǫ

W ′
ǫ(Ω

−1
ǫ b(ǫ))− 2r

b(ǫ)

−
∫ b(ǫ)

a(ǫ)

y2r
2

ǫΩ2
ǫ
W ′′

ǫ (Ω
−1
ǫ y) + 2r

y2

(

2
ǫΩǫ

W ′
ǫ(Ω

−1
ǫ y)− 2r

y

)2 exp

[

−2

ǫ
Wǫ(Ω

−1
ǫ y)

]

dy .

Since F ′′ is a convex function, we obtain

W ′′
ǫ (x)−W ′′

0 (x) =

∫

R+

(

F ′′(x+ z) +F ′′(x− z)− 2F ′′(x)
)

uǫ(z)dz ≥ 0 . (3.22)

The main assumption in this section is W ′′
0 (0) = 0. Moreover, since 0 is the

unique global minimum location of the limit pseudo-potential W0, there exists
a constant η > 0 such that W ′′

0 (x) ≥ 0 on the interval ] − η, η[ and so, due to
(3.22), W ′′

ǫ (Ω
−1
ǫ y) ≥ 0 for y ∈ [a(ǫ), b(ǫ)]. Hence

J⋆
2r(ǫ)Ω

2r+1
ǫ ≤ a(ǫ)2re−

2
ǫ
Wǫ(Ω

−1
ǫ a(ǫ))

2
ǫΩǫ

W ′
ǫ(Ω

−1
ǫ a(ǫ))− 2r

a(ǫ)

− b(ǫ)2re−
2
ǫ
Wǫ(Ω

−1
ǫ b(ǫ))

2
ǫΩǫ

W ′
ǫ(Ω

−1
ǫ b(ǫ))− 2r

b(ǫ)

. (3.23)

Moreover since the application y → W ′
ǫ(Ω

−1
ǫ y) is non decreasing on the interval

[a(ǫ), b(ǫ)], we get

2

ǫΩǫ
W ′

ǫ

(

Ω−1
ǫ b(ǫ)

)

− 2r

b(ǫ)
≥ 2

ǫΩǫ
W ′

ǫ

(

Ω−1
ǫ a(ǫ)

)

− 2r

a(ǫ)
. (3.24)

Let us prove now that the r.h.s. is positive for ǫ small enough. The mean value
theorem leads to a similar development as (3.17) namely

W ′
ǫ(x)

ǫΩǫ
=

l
∑

k=1

Cjk

(2jk − 1)!
Ω2jk−1

ǫ x2jk−1 +
W

(2k0+2)
ǫ (yx)

(2k0 + 1)! ǫΩǫ
x2k0+1

+

k0
∑

j=1

1

(2j − 1)!
sgn (Cj(ǫ)− Cj)

(

|Cj(ǫ)− Cj |
1
2j

)2j

Ω2j−1
ǫ x2j−1 ,

with yx ∈ [0, x]. In particular, for x = Ω−1
ǫ a(ǫ) = ηǫ, similar arguments as those

used in (3.19) permit the existence of a function ρ(ǫ) > 0 satisfying limǫ→0 ρ(ǫ) =
0, such that
∣

∣

∣
W

(2k0+2)
ǫ (yx)

∣

∣

∣

ǫΩǫ (2k0 + 1)!
η(ǫ)2k0+1 +

k0
∑

j=1

(

|Cj(ǫ)− Cj |
1
2j

)2j

(2j − 1)!
Ω2j−1

ǫ η(ǫ)2j−1 < ρ(ǫ) .

We deduce that
W ′

ǫ(Ω
−1
ǫ a(ǫ))
ǫΩǫ

is close to P (ǫ) :=
∑l

k=1

Cjk

(2jk−1)! a(ǫ)
2jk−1: for any

δ > 0 small enough, there exists ǫ0 > 0, such that
∣

∣

∣

∣

W ′
ǫ(Ω

−1
ǫ a(ǫ))

ǫΩǫ
− P (ǫ)

∣

∣

∣

∣

≤ δ, ∀ǫ ≤ ǫ0 .
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Let us recall that a(ǫ) → ∞ as ǫ → 0. Furthermore, in Step 2 we have proved

that Cjl > 0. Therefore, as ǫ → 0, P (ǫ) → ∞ and so do
W ′

ǫ(Ω
−1
ǫ a(ǫ))
ǫΩǫ

. Finally
we deduce that the rhs of (3.24) is lower-bounded: for any δ > 0 there exists ǫ0
such that

2

ǫΩǫ
W ′

ǫ(Ω
−1
ǫ a(ǫ))− 2r

a(ǫ)
≥ 1

δ
, ∀ǫ ≤ ǫ0 . (3.25)

By (3.25), (3.24) and (3.23), there exists δ > 0 such that the following upper
bound yields in the small ǫ limit:

J⋆
2r(ǫ)Ω

2r+1
ǫ ≤ a(ǫ)2re−

2
ǫ
Wǫ(Ω

−1
ǫ a(ǫ))

2
ǫΩǫ

W ′
ǫ(Ω

−1
ǫ a(ǫ))− 2r

a(ǫ)

≤ δa(ǫ)2re−
2
ǫ
Wǫ(Ω

−1
ǫ a(ǫ)) . (3.26)

Let us prove now that the previous upper-bound becomes small as ǫ → 0
which implies immediately the required asymptotic result: J⋆

2r(ǫ) = o(Ω−2r−1
ǫ ).

It suffices in fact to get an estimate of Wǫ(Ω
−1
ǫ a(ǫ))/ǫ. The procedure re-

quires the arguments just used for the asymptotic estimation of the expression
W ′

ǫ(Ω
−1
ǫ a(ǫ))ǫ−1Ω−1

ǫ . Indeed for any δ > 0 there exists ǫ0 > 0 such that

∣

∣

∣

∣

1

ǫ
Wǫ(Ω

−1
ǫ a(ǫ))−Q(ǫ)

∣

∣

∣

∣

≤ δ, ǫ ≤ ǫ0 , (3.27)

with Q(ǫ) :=
∑l

k=1

Cjk

(2jk)!
a(ǫ)2jk . Since Cjl > 0, the following limit holds

limǫ→0 Q(ǫ) = +∞ and therefore (3.27) leads to 1
ǫWǫ(Ω

−1
ǫ a(ǫ)) ≥ Cjl

2(2jl)!
a(ǫ)2jl

for ǫ small enough. By (3.26), we finally get

0 ≤ J⋆
2r(ǫ)Ω

2r+1
ǫ ≤ δa(ǫ)2r exp

[

− Cjl

(2jl)!
a(ǫ)2jl

]

.

Since a(ǫ) → ∞ as ǫ → 0, the rhs in the preceding inequality tends to 0 and
J⋆
2r(ǫ) = o(Ω−2r−1

ǫ ).
Step 4. Conclusion. In the first step, we have decomposed the moment
M2r(ǫ) (for a subsequence (ǫk)k∈N

) into two parts: I2r(ǫ) studied in the second
step and J2r(ǫ) studied in the third step. We have proved that J2r(ǫ) is negligible
with respect to I2r(ǫ). Hence the following asymptotic estimate holds

M2r(ǫ) = Ω−2r−1
ǫ

∫

R

x2r exp

[

−2

l
∑

k=1

1

(2jk)!
Cjkx

2jk

]

dx+ o
{

Ω−2r−1
ǫ

}

(3.28)

where the coefficients Cj depend on the sequence ǫ = (ǫk)k∈N
.

In order to achieve the proof, we analyze, not only for one subsequence, the fol-
lowing expressions: lim infǫ→0 Ω2r+1

ǫ M2r(ǫ) and lim supǫ→0 Ω2r+1
ǫ M2r(ǫ) and

prove (3.14) by reductio ad absurdum. If we assume that the lim sup is un-
bounded, then there exists a sequence (ǫk)k≥0 which tends to 0 and such that

lim
k→∞

Ω2r+1
ǫk M2r(ǫk) = +∞ .
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Applying Step 1, we extract a subsequence (ǫ′k)k≥0 such that Cj(ǫ
′
k) → Cj as

k → ∞ for all 1 ≤ j ≤ k0. For this subsequence we have already proved, see
(3.28), that Ω2r+1

ǫ′
k

M2r(ǫ
′
k) is bounded. We obtain the announced contradiction

and therefore lim supǫ→0 Ω2r+1
ǫ M2r(ǫ) < ∞. The same argument is used to

obtain the lower-bound.

According to Proposition 3.5, we observe that Ωǫ defined by (3.12) is essential
in the description of the asymptotic estimation of M2r(ǫ), defined by

M2r(ǫ) =

∫

R

x2r exp

[

−2

ǫ
Wǫ(x)

]

dx .

In particular M0(ǫ), corresponding to the normalization term for the invariant
measure uǫ, see (1.2), converges towards 0 with the rate Ω−1

ǫ .
We recall the expression of the limit pseudo-potential introduced by (1.1):
W0(x) = V (x) + F (x) and the related parameter

k0 = min
{

k ≥ 2 | W
(2k)
0 (0) > 0

}

.

The aim is now to prove that the convergence rate of sequences {M2r(ǫk), k ≥ 0}
is related to ǫ

(2r+1)/(2m0)
k . First of all, we present the following asymptotic result:

Proposition 3.6. If F ′′ and W0 are both convex functions, the following in-
equalities yield:

0 < lim inf
ǫ→0

Ωǫǫ
1

2m0 < lim sup
ǫ→0

Ωǫǫ
1

2m0 < +∞ . (3.29)

Proof. By definition of the parameter k0, we have

W (2j)
ǫ (0) =

∫

R

(

F (2j)(x) − F (2j)(0)
)

uǫ(x)dx, 1 ≤ j ≤ k0 − 1 .

Since F is a polynomial function of degree 2n,

W (2j)
ǫ (0) =

n−j
∑

r=1

F (2r+2j)(0)

(2r)!

M2r(ǫ)

M0(ǫ)
.

For any 1 ≤ j ≤ n − 1, we define s(j) := inf
{

r ≥ 1 | F (2j+2r)(0) 6= 0
}

. Ap-
plying Proposition 3.5 with 1 ≤ r ≤ k0 − 1, there exists a decreasing sequence

(ǫk)k≥0 such that Cj(ǫk) =
W (2j)

ǫk
(0)

ǫkΩ
2j
ǫk

converges towards a limit denoted by Cj ,

as k → ∞, for all 1 ≤ j ≤ k0. Moreover, by (3.28), we obtain

W (2j)
ǫk

(0) =
F (2j+2s(j))(0)

(2s(j))!
αs(j) Ω

−2s(j)
ǫk

(1 + o(1)) as k → ∞ (3.30)

with αr =

∫

R+ x2r exp
[

−2
∑l

p=1

Cjp

(2jp)!
x2jp

]

dx

∫

R+ exp
[

−2
∑l

p=1

Cjp

(2jp)!
x2jp

]

dx
. (3.31)
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The set of indexes J = {jk, 1 ≤ k ≤ l} is defined by (3.15).
We distinguish two different cases:
First case: p0 > k0. By definition of the coefficient Cj(ǫk) and using (3.30),
we obtain the following asymptotic result:

Cj(ǫk) =
W

(2j)
ǫk (0)

ǫkΩ
2j
ǫk

=
F (2j+2s(j))(0)

(2s(j))!

αs(j)

ǫkΩ
2(j+s(j))
ǫk

+ o
(

ǫ−1
k Ω−2(j+s(j))

ǫk

)

.

Since j ≥ 1 and s(j) ≥ 1, we get j + s(j) ≥ 2. Using the definition of s(j), we
obtain F (2j+2s(j))(0) 6= 0 which implies j+s(j) ≥ p0. Furthermore (3.12) yields

Ωǫk ≥ W
(2k0)
ǫk (0)

1
2k0 ǫ

− 1
2k0

k . Therefore the following lower-bound holds

ǫkΩ
2(j+s(j))
ǫk ≥

(

W (2k0)
ǫk (0)

1
2k0

)2(j+s(j))

ǫ
1− p0

k0

k .

The rhs of the preceding inequality becomes infinite as k → ∞. This is due
to the definition of k0, see (1.4), and the inequality p0 > k0. Hence, for any
1 ≤ j ≤ k0 − 1, the sequence Cj(ǫk) tends to 0 as k → ∞. In other words the
set J is a singleton: J = {k0}. Finally for k large enough, we get

Ωǫk = W (2k0)
ǫk

(0)
1

2k0 ǫ
− 1

2k0

k = W (2k0)
ǫk

(0)
1

2k0 ǫ
− 1

2m0

k .

Second case: p0 ≤ k0. For all j ≤ k0 − 1, (3.30) implies the following
asymptotic estimation:

Ωǫk ≥
∣

∣

∣
W (2j)

ǫk
(0)
∣

∣

∣

1
2j

ǫ
− 1

2j

k ≈
∣

∣

∣

∣

F (2j+2s(j))(0)

(2s(j))!
αs(j)

∣

∣

∣

∣

1
2j

Ω
− s(j)

j
ǫk ǫ

− 1
2j

k = KjΩ
− s(j)

j
ǫk ǫ

− 1
2j

k ,

where Kj is a constant. Hence, for k large enough, Ωǫkǫ
1

2(j+s(j))

k ≥ K ′
j . In

particular, for j = p0 − 1, we have

Ωǫk ≥ Cǫ
− 1

2p0

k . (3.32)

Hence there exists a constant C′ > 0 such that, for any 1 ≤ j ≤ k0 − 1,

Ω
− s(j)

j
ǫk ǫ

− 1
2j

k ≤ C′ǫ
− p0−s(j)

2jp0

k ≤ C′ǫ
− 1

2p0

k .

Therefore, for all 1 ≤ j ≤ k0 − 1, there exists a constant C′′ > 0 such that

∣

∣

∣
W (2j)

ǫk
(0)
∣

∣

∣

1
2j

ǫ
− 1

2j

k ≤ C′′ǫ
− 1

2p0

k , for k large enough.

In order to conclude it suffices to use the definition of Ωǫk , see (3.12). The term

of highest degree in the construction of Ωǫk is |W (2k0)
ǫk (0)| 1

2k0 ǫ
− 1

2k0

k which is of

order ǫ
− 1

2k0

k = O(ǫ
− 1

2p0

k ), since p0 ≤ k0. The others components satisfy

sup
1≤j≤k0−1

{

∣

∣

∣
W (2j)

ǫk (0)
∣

∣

∣

1
2j

ǫ
− 1

2j

k

}

≤ C′ǫ
− 1

2p0

k .
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These upper-bounds combined with (3.32) permit to prove the boundedness of

the sequence {Ωǫk/ǫ
1

2p0

k , k ≥ 1} = {Ωǫk/ǫ
1

2m0

k , k ≥ 1}.
The result announced in (3.29) is a straightforward consequence of the conver-
gence rates proved on subsequences. Indeed it suffices to adopt similar argu-
ments as those developed in the proof of Proposition 3.5 (Step 4).

Remark 3.7. In the proof of Proposition 3.5, the boundedness of the fam-

ily
(

Cj(ǫ) =
W (2j)

ǫ (0)

ǫ(Ωǫ)
2j , ǫ > 0

)

for all 1 ≤ j ≤ k0 and the asymptotic result

lim infǫ→0 sup1≤j≤k0
|Cj(ǫ)| > 0 were the main starting arguments. Further-

more the inequalities presented in (3.29) imply that C′
j(ǫ) := W

(2j)
ǫ (0)ǫ

j
m0

−1

satisfies these properties too. Therefore, in the following, we shall consider
C′

j(ǫ) and its possible limit C′
j instead of Cj(ǫ) and Cj . In order to simplify the

notations, we shall continue to write Cj(ǫ) and Cj.

Using the preceding results concerning the asymptotic behavior of the mo-
ments M2r(ǫ) as ǫ → 0, we shall now focus our attention to the convergence
rate of the expression 〈f, uǫ〉 towards 〈f, u0〉 for general functions f and we will
obtain Theorem 1.4.

Proof of Theorem 1.4.
Let us introduce the function f+(x) :=

1
2 (f(x) + f(−x)). Therefore we obtain

〈f, uǫk〉 − 〈f, u0〉 = 2
∫

R+ (f+(x) − f+(0)) uǫk(x)dx. Applying the mean value
theorem to f+, there exists a function x → yx ∈ [0, x], such that

∫

R+

(

f+(x) − f(0)
)

uǫk(x)dx =
f ′′(0)M2(ǫk)

4M0(ǫk)
+

1

24

∫

R+

f
(4)
+ (yx)x

4uǫk(x)dx .

The integral term in the rhs can be upper-bounded by a finite combination of

moments M2r(ǫk)
M0(ǫk)

, with r ≥ 2, since yx ∈ [0;x] and since f+ is of polynomial

growth. Taking into account Remark 3.7, we adapt Proposition 3.5 to our

particular situation. Therefore
∫

R+
f
(4)
+ (yx)x

4uǫk(x)dx = o(ǫ
1

m0

k ). Proposition

3.5 and especially the asymptotic equivalence (3.29) yields (1.6). �

Let us now precise the limit just pointed out. The following study consists in
describing the whole family of coefficients (Cj , 1 ≤ j ≤ k0).

Corollary 3.8. We assume that both F ′′ and W0 are convex functions. Let
f ∈ C4 (R,R) be a function with polynomial growth. Let us recall that k0, p0
and m0 are defined respectively by (1.4) and (1.5).
1. First case: k0 < p0. We have:

lim
ǫ→0

ǫ−
1

m0

(

〈f, uǫ〉 − 〈f, u0〉
)

=
1

2

(

(2k0)!

2W
(2k0)
0 (0)

)
1
k0 Γ

(

3
2k0

)

Γ
(

1
2k0

) f ′′(0) . (3.33)

We note that this convergence concerns the whole family {uǫ, ǫ > 0}.
2. Second case: p0 ≤ k0. Let us consider a decreasing sequence (ǫk)k≥1 which
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tends to 0 and satisfies: Cj(ǫk) = W
(2j)
ǫk (0)ǫ

j/m0−1
k converges to Cj for all

1 ≤ j ≤ k0. Then

• Cj > 0 for 1 ≤ j ≤ p0 − 1,

• Cj = 0 for p0 ≤ j ≤ k0 − 1,

• Ck0 = W
(2k0)
0 (0)1{p0=k0}.

Proof. Set s(j) = min
{

r ≥ 1 | F (2j+2r)(0) 6= 0
}

for all 1 ≤ j < k0. Let us

consider a decreasing sequence (ǫk)k≥1 such that Cj(ǫk) = W
(2j)
ǫk (0)ǫ

j/m0−1
k

converges as k → ∞. Using similar results as (3.30) and (3.31), we obtain

W (2j)
ǫk

(0) =
F (2j+2s(j))(0)

(2s(j))!
αs(j) ǫ

s(j)
m0

k (1 + o(1)) as k → ∞ (3.34)

with αr :=

∫

R+ x2r exp
[

−2
∑k0

j=1
Cj

(2j)! x
2j
]

dx

∫

R+ exp
[

−2
∑k0

j=1
Cj

(2j)! x
2j
]

dx
.

1. If k0 < p0 then Cj(ǫk) → 0 as k → ∞ for all 1 ≤ j < k0. Indeed due to the
inequality j + s(j) ≥ p0 > k0, (3.34) leads to the asymptotic estimate:

Cj(ǫk) = W (2j)
ǫk (0)ǫ

j
k0

−1

k ≈ F (2j+2s(j))(0)

(2s(j))!
αs(j)ǫ

j+s(j)
k0

−1

k → 0, as k → ∞ .

Hence Cj = 0 for 1 ≤ j < k0. Moreover Ck0 = W
(2k0)
ǫk (0). The rhs of (1.6) can

be easily computed using a change of variable. We obtain (3.33) and the limit
does not depend on the choice of the subsequence.
2. Let us consider now the case: p0 ≤ k0. By similar arguments as above

we obtain that Cj = 0 for p0 ≤ j < k0 and Cj = F (2p0)(0)
(2s(j))! αs(j) > 0 for all

1 ≤ j < p0, since j + s(j) = p0.

Let us note that, in the case p0 ≤ k0, the coefficients Cj corresponding to
the limit values of special subsequences are linked together by the relation

Cj =
F (2p0)(0)

(2(p0 − j))!

∫

R+ x2(p0−j) exp
[

−2
∑p0

l=1
Cl

(2l)!x
2l
]

dx

∫

R+ exp
[

−2
∑p0

l=1
Cl

(2l)!x
2l
]

dx
, for 1 ≤ j < p0 .

If we can prove that these relations admit a unique solution (Cj , 1 ≤ j < p0)
then the result of Corollary 3.8 is sharpened. Indeed the limit value does not
depend on the choice of the subsequence. The prefactor in the convergence
estimate is then uniquely determined. This is for instance the case for p0 = 2
but, in general, this question is open. Let us finally observe that the rate of
convergence in the particular case p0 = 2 is ǫ1/2 which is actually different
from the rate (namely ǫ) described in Paragraphs 3.1 and 3.2. In other words
the comparison between the interaction function and the potential landscape
respectively represented by the growth coefficient α and −V ′′(0) is essential
for the study of the invariant measure convergence rate associated to the limit
measure u0 = δ0.
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3.4 Proof of Theorem 1.5

We deal with the convergence rate associated of outlying stationary measures
for diffusion (II) associated with the limit measures δ±a. Let us denote by
W±

ǫ the pseudo-potential associated with these outlying measures (see (1.1) for
the definition of the pseudo-potential). (W±

ǫ )(j) converges uniformly towards
(W±

0 )(j) as ǫ → 0. The limit pseudo-potential is given by

W±
0 := V + F (.− (±a))− F (a) . (3.35)

Let us also assume (UC) that is to say the convexity of both functions V ′′ and
F ′′. In particular, Condition (2.3) is satisfied since ±a is the unique location
of the global minimum of W±

0 . In order to present the convergence rate of u±
ǫ

towards u±
0 , we shall essentially apply the procedure presented in Paragraph

3.2. By symmetry, it suffices to study u+
ǫ , so in the following we delete the

exponent symbol.
First of all, in order to apply Lemma A.5, we just observe that W ′′

0 (a) = α +
V ′′(a) > 0 and deduce the following result: for ǫ small enough, Wǫ reaches its
global minimum only at the point aǫ which satisfies moreover:

aǫ = a− W ′
ǫ(a)

α+ V ′′(a)
+ o {W ′

ǫ(a)} . (3.36)

This convergence can even be more precise.

Theorem 3.9. The distance between a and aǫ satisfies:

lim
ǫ→0

aǫ − a

ǫ
= − αV (3)(a)

4V ′′(a) (α+ V ′′(a))2
.

The proof of this theorem is based on the decomposition: limǫ→0
aǫ−a
W ′

ǫ(a)
W ′

ǫ(a)
ǫ .

The limit value of the first ratio is determined by (3.36). It suffices to study the
second ratio.

Proposition 3.10. The following convergence result holds:

lim
ǫ→0

W ′
ǫ(a)

ǫ
=

αV (3)(a)

4V ′′(a) (α+ V ′′(a))
.

Proof. Since a is the location of a local minimum of V , W ′
0(a) = 0 and so

W ′
ǫ(a) = W ′

ǫ(a)−W ′
0(a) =

∫

R

F ′(a− z)uǫ(z)dz .

We define ξ(z) := F ′(a − z) and proceed similarly to the proof of Lemma 3.4.
Applying twice Lemma A.5 to the functions f(t) := ξ(t) and f(t) := 1 and
computing the ratio permits to obtain

∫

R

ξ(x)uǫ(x)dx = ξ(aǫ) + γ1(ξ)ǫ − ξ(aǫ)γ1(1)ǫ + o(ǫ) ,
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where γ1 is defined by (A.3) with A1 = a. In other words,

∫

R

ξ(x)uǫ(x)dx = ξ(aǫ) +

(

− W3

4 W2
2

ξ′(a) +
ξ′′(a)

4 W2

)

ǫ+ o(ǫ) .

Therefore, we have

lim
ǫ→0

W ′
ǫ(a)

ǫ

{

1− ξ(aǫ)− ξ(a)

aǫ − a

aǫ − a

W ′
ǫ(a)

}

= − W3

4 W2
2

ξ′(a) +
ξ′′(a)

4 W2
.

It suffices in fact to replace in (3.10) ξ+ by ξ, x0 by a and xǫ
0 by aǫ. The

asymptotic result (3.11) is then satisfied. In order to finish the proof, let us
note that W3 = W (3)(a) = V (3)(a), W2 = V ′′(a) +α = W ′′

0 (a), ξ
′(a) = −α and

ξ′′(a) = 0.

Finally we are able to establish the wished convergence rate of Theorem 1.5.

Proof. Let us recall that u0 = δa. Hence 〈f, uǫ〉 − 〈f, u0〉 =
∫

R
f(x)uǫ(x)dx −

f(a). Obviously the proof is similar to the one of Theorem 1.3. It suffices to
replace f+ by f , x0 by a and xǫ

0 by aǫ. So we obtain directly

lim
ǫ→0

1

ǫ

{

∫

R

f(x)uǫ(x)dx − f(a)
}

=
f ′′(a)

4W ′′
0 (a)

+ f ′(a)∆(a) , (3.37)

where

∆(a) :=
−αV (3)(a)

4V ′′(a) (α+ V ′′(a))2
− V (3)(a)

4 (α+ V ′′(a))2
= − V (3)(a)

4V ′′(a) (α+ V ′′(a))
.

The combination of both the definition of ∆(a) and (3.37) leads to (1.8).

Remark 3.11. Theorem 4.8 in [6] can be presented as a consequence of The-
orem 1.5 applied to the particular polynomial function f(x) := xk. However
the statement of the theorem is much more accurate. Indeed, on one hand, the
authors proved in [6] that there exists an outlying stationary measure whose first

k-th moments are closed to ak −kak−1 aV (3)(a)−(k−1)V ′′(a)
4aV ′′(a)(α+V ′′(a)) ǫ. On the other hand,

we prove in Theorem 1.5 that any outlying stationary measure around a has
such moments.

Remark 3.12. In this section we consider general invariant measures converg-
ing towards a discrete limit measure with trivial support δa. In fact in the proof
of Theorem 1.5 the value a does not play a crucial role: it suffices that it charac-
terizes the limit measure. We deduce therefore that Theorem 1.5 can be applied
to δ0, it suffices to replace a by 0 in the statement. In other words, Theorem
1.2 which concerns only symmetric invariant measures can be extended to the
whole set of invariant measures converging towards δ0.
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4 Local uniqueness: the proofs

In this section, we prove Theorem 1.6. We split into three different cases (which
correspond to the three cases studied in Theorem 1.2, Theorem 1.3 and The-
orem 1.5). We assume from now on that the functions F and V satisfy (1.7)
which ensures the existence of the so-called outlying stationary measures: in-
variant measures converging towards δ±a. Moreover V ′′ and F ′′ shall be convex
functions.

Let uǫ be an invariant measure for the self-stabilizing process and µ1(ǫ),...,
µ2n−1(ǫ) its first 2n − 1 moments. Let us assume that uǫ converges towards
u0 ∈

{

δa; δ−a;
1
2δx0 +

1
2δ−x0

}

where x0 is the non-negative solution of

2V ′(x0) + F ′(2x0) = 0 and 2V ′′(x0) + F ′′(2x0) + α ≥ 0 .

In [7] we proved that the condition α ≥ −V ′′(0) is equivalent to x0 = 0 and
so 1

2δx0 +
1
2δ−x0 = δ0. We denote by Wǫ the pseudo-potential associated with

uǫ and defined by (1.1), W0 the limit pseudo-potential associated with u0, and
mk(0) the k-th moment of u0.
For any measure u whose first 2n moments are bounded (we denoted these
moments by (mp, 1 ≤ p ≤ 2n− 1)), we have:

Wm(x) := V (x) + F ∗ u(x)− F ∗ u(0) = W0(x) + Zm(x)− Zm(0) , (4.1)

with Zm(x) :=
∑2n−1

p=1
(−1)p

p! (mp −mp(0))F
(p)(x). For all k ≥ 1, we define the

application ϕǫ
k and the probability measure νm by

ϕǫ
k(m1, · · · ,m2n−1) :=

∫

R
xk exp

[

− 2
ǫWm(x)

]

dx
∫

R
exp

[

− 2
ǫWm(x)

]

dx
=:

∫

R

xkνm(dx) . (4.2)

Moreover, if the two measures u and u0 are symmetric, then Zm and conse-
quently Wm does not depend on the odd trivial moments. In this case, we
consider the function ξ defined by

ξǫ2k(m2, · · · ,m2n−2) = ϕǫ
2k(0,m2, 0, · · · ,m2n−2, 0) .

Finally we introduce Φ(ǫ) : R2n−1 → R2n−1 and Φ
(ǫ)
0 : Rn−1 → Rn−1 given by

Φ(ǫ) = (ϕǫ
1, . . . , ϕ

ǫ
k, . . . , ϕ

ǫ
2n−1)

T and Φ
(ǫ)
0 = (ξǫ2, . . . , ξ

ǫ
2k, . . . , ξ

ǫ
2n−2)

T . (4.3)

Key property: The measure uǫ is invariant if and only if the following vector
(µ1(ǫ), µ2(ǫ), · · · , µ2n−1(ǫ)) is a fixed point of Φ(ǫ). It is invariant and symmet-
ric if and only if µ2k+1(ǫ) = 0 for all 0 ≤ k ≤ n − 1 and if the even moments

compose a vector (µ2(ǫ), · · · , µ2n−2(ǫ)) which is a fixed point of Φ
(ǫ)
0 .

Procedure: In order to obtain local uniqueness for asymmetric stationary
measures, we shall use the uniform convergence on a compact set of Φ(ǫ) (and
its derivatives) towards an application Φ(0) (and its derivatives). Secondly,
we shall prove that the differential of Id − Φ(0) is invertible on a small neigh-
borhood of the limit point (m1(0), · · · ,m2n−1(0)) associated with u0. Finally
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we shall conclude by using the convergence rate which assures that the vector
(µ1(ǫ), · · · , µ2n−1(ǫ)) belongs to the observed compact set. We shall proceed in

a similar way for the uniqueness of symmetric stationary measures with Φ
(ǫ)
0 .

We begin with a preliminary result:

Proposition 4.1. Let (µ1, · · · , µ2n−1) ∈ R2n−1 and (ν2, · · · , ν2n−2) ∈ Rn−1.
We set µ0 := 1 =: ν0 . For C > 0, we define two compact sets namely Pǫ :=
∏2n−1

p=1 [µp − Cǫ;µp + Cǫ] and Qǫ :=
∏n−1

p=1 [ν2p − Cǫ; ν2p + Cǫ].

1. If the function U0(x) := V (x) +
∑2n−1

p=0
(−1)p

p! µp

(

F (p)(x)− F (p)(0)
)

reaches

its global minimum at a unique location a0 with U ′′
0 (a0) > 0 then for all m ∈ Pǫ,

k ≥ 1 and p ∈ [1; 2n− 1], we have

∂ϕǫ
k

∂mp
(m) =

k ak−1
0

U ′′
0 (a0)

(−1)p−1

p!
F (p+1)(a0) + oPǫ

(1) . (4.4)

2. If the function T0(x) := V (x) +
∑n−1

p=0
1

(2p)!ν2p
(

F (2p)(x) − F (2p)(0)
)

admits

two global minima ±b0 with T ′′
0 (b0) > 0 then for all m̃ ∈ Qǫ, k ≥ 1 and

p ∈ [1;n− 1], we have:

∂ξ2k
∂m2p

(m̃) = −2k b2k−1
0

T ′′
0 (b0)

1

(2p)!
F (2p+1)(b0) + oQǫ

(1) . (4.5)

Proof. Step 1. ϕǫ
k is directly related to Wm. By (4.1) and since F is an even

polynomial function of degree 2n, we get

Wm(x) = W0(x) +
2n−1
∑

p=1

(−1)p

p!
(mp −mp(0))

n
∑

j≥ 1+p
2

F (2j)(0)

(2j − p)!
x2j−p .

Then, the derivative of (4.2) in the variable mp satisfies

∂ϕǫ
k

∂mp
(m) = −2

ǫ

(−1)p

p!

n
∑

j≥ 1+p
2

F (2j)(0)

(2j − p)!

(

ϕǫ
2j+k−p(m)− ϕǫ

2j−p(m)ϕǫ
k(m)

)

. (4.6)

The derivative of ξǫ2k is computed in a similar way.
Step 2. Let m ∈ Pǫ. For all 1 ≤ i ≤ 2n − 1, there exists Ci ∈ [−C,C] such
that mi = µi + Ciǫ. Then, for all l ≥ 1:

ϕǫ
l (m) =

∫

R
xl exp

[

− 2
ǫU0(x) − 2Rm(x)

]

dx
∫

R
exp

[

− 2
ǫU0(x)− 2Rm(x)

]

dx
(4.7)

where Rm(x) :=
∑2n−1

p=1
(−1)p

p!
(mp−µp)

ǫ F (p)(x) =
∑2n−1

p=1
(−1)p

p! CpF
(p)(x). Ac-

cording to Lemma A.5 in [6], we have the following asymptotic result which is
uniform with respect to m ∈ Pǫ:

ϕǫ
l (m) = al0 − l

al−2
0

4W ′′
0 (a0)

(

a0
U

(3)
0 (a0)

U ′′
0 (a0)

− (l − 1) + 4a0R
′
m(a0)

)

ǫ+ oPǫ
(ǫ) .
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We obtain an equivalence of the following expression directly linked to the
derivative of ϕǫ

k:

ϕǫ
2j+k−p(m)− ϕǫ

2j−p(m)ϕǫ
k(m) =

k(2j − p)

2U ′′
0 (a0)

a2j+k−p−2
0 ǫ+ oPǫ

(ǫ) .

Therefore, (4.6) becomes

∂ϕk

∂mp
(m) =

2

ǫ

(−1)p−1

p!

n
∑

j≥ 1+p
2

F (2j)(0)

(2j − p)!

{

k(2j − p)

2U ′′
0 (a0)

a2j+k−p−2
0 ǫ+ oPǫ

(ǫ)

}

=
k ak−1

0 (−1)p−1

U ′′
0 (a0)p!

n
∑

j≥ 1+p
2

F (2j)(0)

(2j − p− 1)!
a2j−p−1
0 + oPǫ

(1) ,

which provides (4.4) as announced.
Step 3. The proof of (4.5) is similar to the previous one. Let m̃ ∈ Qǫ. For
all 1 ≤ i ≤ n − 1, there exists C2i ∈ [−C;C] such that m̃2i = ν2i + C2iǫ.
Then, for all l ≥ 1, ξǫ2l satisfies the same expression that ϕǫ

2l in (4.7) with the
support of the integral reduced to R+, U0 replaced by T0 and Rm by Rm̃ =
∑n−1

p=1
1

(2p)!C2pF
(2p)(x). We can not apply directly Lemma A.5 in [6] since the

support is reduced to R+ instead of R. However the result can be adapted when
b0 – the unique minimum of T0 on R+ – is positive. Therefore

ξǫ2j+2k−2p(m̃)− ξǫ2j−2p(m̃)ξǫ2k(m̃) =
2k(2j − 2p)

2T ′′
0 (b0)

b2j+2k−2p−2
0 ǫ+ oQǫ

(ǫ) .

Finally (4.5) is proved as follow:

∂ξ2k
∂m2p

(m̃) =
2

ǫ

1

(2p)!

n
∑

j≥p+1

F (2j)(0)

(2j − 2p)!

{

2k(2j − 2p)

2T ′′
0 (b0)

b2j+2k−2p−2
0 ǫ+ oQǫ

(ǫ)

}

=− 2k b2k−1
0

T ′′
0 (b0)(2p)!

n
∑

j≥p+1

F (2j)(0)

(2j − 2p− 1)!
b2j−2p−1
0 + oQǫ

(1) .

This preliminary result permits to estimate the differential and by the way
answer some questions concerning the uniqueness problem.

4.1 Local uniqueness for outlying measures

We recall that we assume that the condition (1.7) is satisfied. We are going to
prove that there exist exactly two extremal outlying measures for ǫ sufficiently
small.

Proposition 4.2. Let F ′′ and V ′′ be two convex functions. Let (uǫ)ǫ>0 and
(vǫ)ǫ>0 two families of stationary measures converging to δa. Then there exists
ǫ0 > 0 such that for all ǫ < ǫ0, uǫ = vǫ.
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By symmetry, the same result of local uniqueness holds for δ−a.

Proof. Step 1. For all 1 ≤ k ≤ 2n − 1, we apply Theorem 1.5 to the func-
tion f(x) := xk and so get the existence of a constant C > 0 such that
(µ1(ǫ), · · · , µ2n−1(ǫ)) and (ν1(ǫ), · · · , ν2n−1(ǫ)) belong to Pǫ for ǫ small enough.
Here µk(ǫ) (resp. νk(ǫ)) is the k-th moment of uǫ (resp. vǫ) and Pǫ :=
∏2n−1

i=1 [ai − Cǫ; ai + Cǫ].
Step 2. Since uǫ and vǫ are invariant measures, each vector composed with the
first 2n− 1 moments is solution of the equation: µ = Φǫ(µ) where Φǫ is defined
by (4.3). Therefore let us prove that this equation admits a unique solution
in Pǫ, it suffices to point out that Id − JacΦǫ is invertible. Here JacΦǫ repre-
sents the Jacobian matrix of the 2n− 1 dimensional function Φǫ. According to
Proposition 4.1 applied to µp = ap, U0 = W+

0 defined by (3.35) and satisfying
(W+

0 )′′(a) = V ′′(a) + F ′′(0) = V ′′(a) + α > 0 (see condition (V-3) and (IV)),
we get

∂ϕ
(ǫ)
k

∂mp
(m) =

kak−1

(W+
0 )′′(a)

(−1)p−1

p!
F (p+1)(a) + oPǫ

(1) .

The Jacobian matrix then takes a simple expression. Indeed it suffices to
prove that (W+

0 )′′(a)Id + V1V
T
2 is invertible, with V1(i) := iai−1 and V2(j) :=

(−1)j

j! F (j+1)(a), 1 ≤ i, j ≤ 2n − 1. The proof of Lemma 4.7 in [6] solves this

question: if (W+
0 )′′(a) + 〈V1, V2〉 6= 0 then the matrix considered is invertible.

Let us note that 〈V1, V2〉 =
∑2n−1

i=1
iai−1(−1)i

i! F (i+1)(a) = −F ′′(0) = −α. Hence

(W+
0 )′′(a) + 〈V1, V2〉 = V ′′(a) > 0 because of the hypothesis (V-3). By these

arguments we have obtained that µ = Φǫ(µ) admits a unique solution in Pǫ.
In order to conclude it suffices to note that the first 2n − 1 moments charac-
terize the stationary measure: F is a polynomial function of degree 2n and the
invariant measures are defined by (1.2).

4.2 Local uniqueness for symmetric measures

We shall divide the study into two parts. The first one concerns the limit
measure u0 = δ0 and the second one concerns u0 = 1

2δ−x0 +
1
2δx0 .

Let us now consider the limit measure δ0. This discrete measure is effectively a
limit measure when α > ϑ (these parameters are defined by (IV) and (III)). In
this case, we get also the following property B = ∅.

Proposition 4.3. Let V ′′ and F ′′ be two convex functions. Let α > ϑ. There
exists a unique symmetric invariant measure for ǫ small enough.

Proof. Step 1. According to Theorem 4.5 of [6], we know that there exists at
least one symmetric invariant measure uǫ. We know by Theorem 5.4 in [7] that
any such symmetric stationary converges weakly to δ0 since α > ϑ.
Step 2. Let us consider now two symmetric invariant measures uǫ and vǫ
converging towards δ0.
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By Theorem 1.2, there exists C > 0 such that the vectors (µ2(ǫ), · · · , µ2n−2(ǫ))
and (ν2(ǫ), · · · , ν2n−2(ǫ)) belong to Qǫ for ǫ small enough. Here µ2k(ǫ) (resp.
ν2k(ǫ)) is the 2k-th moment of uǫ (resp. vǫ) and Qǫ := [−Cǫ,Cǫ]n−1.
As in the preceding proof, it suffices to prove that Id−JacΦǫ

0 is locally invertible,
where JacΦǫ

0 denotes the Jacobian matrix. Applying Proposition 4.1 with ν2p =
0 for all 1 ≤ p ≤ n−1 and so T0 = W0 which admits one unique global minimum
location: 0, we get for m̃ ∈ Qǫ,

∂ξ2k
∂m2p

(m̃) = oQǫ
(1). This implies directly that

Id − JacΦǫ
0 is invertible. Moreover since F is a polynomial function of degree

2n, these moments characterize the measure, see (1.1).

Let us finally consider the case u0 = 1
2 δ−x0 + 1

2 δx0 , x0 > 0, associated
with the study developed in Paragraph 3.2. The discrete measure u0 is a limit
measure for families of symmetric invariant measures provided that α < ϑ (these
parameters are defined by (IV) and (III)).

Proposition 4.4. Let F ′′ and V ′′ be two convex functions and α < ϑ. For ǫ
small enough, the self-stabilizing process (II) admits a unique symmetric invari-
ant measure.

Proof. We shall assume that deg(F ) ≥ 6. Indeed, we have already proved
(Theorem 3.2 in [6]) that, in the linear case (F ′ is linear), there exists a unique
symmetric invariant measure for (II). Moreover, Example 4.2 in [6] points out
that there exists a unique symmetric invariant measure for deg(F ) = 4.
According to Theorem 5.4 of [7], since V ′′ and F ′′ are convex functions, each
sequence of symmetric stationary measures converges to the discrete measure
1
2δx0 +

1
2δ−x0 . Let (uǫ)ǫ>0 be such a sequence then it defines a fixed point of

the application Φ
(ǫ)
0 defined by (4.3). Moreover, by Theorem 1.3, we know that

there exists C > 0 such that the first n − 1 even moments of uǫ represented
by (m̃2(ǫ), · · · , m̃2n−2(ǫ)) belongs to the set Qǫ :=

∏n−1
p=1 [x

2p
0 − Cǫ, x2p

0 + Cǫ].
In order to prove the statement of the theorem, it suffices to prove that the

equation µ = Φ
(ǫ)
0 (µ) admits a unique symmetric solution in Qǫ. As explained

in the two preceding proofs, the work just consists in verifying that Id−JacΦ
(ǫ)
0

is invertible where JacΦ
(ǫ)
0 denotes the Jacobian matrix. Applying Proposition

4.1 with ν2p = x2p
0 for all 1 ≤ p ≤ n − 1 and so T0 = W0 = V + 1

2F (. − x0) +
1
2F (.+x0)−F (x0) which reaches its global minimum for two locations −x0 and
x0 (see (3.4)), we get for m̃ ∈ Qǫ

∂ξǫ2k
∂m2p

(m̃) = − 2k x2k−1
0

(2p)!W ′′
0 (x0)

F (2p+1)(x0) + o(1) .

By similar arguments as those used in Proposition 4.3, we have just to verify
that W ′′

0 (x0) + 〈V1, V2〉 6= 0 where 〈V1, V2〉 = 1
2 (F

′′(2x0)− F ′′(0)). On one
hand, the definition of x0 (3.4) leads to W ′′

0 (x0) ≥ 0, on the other hand the
convexity of F ′′ which is a polynomial function of degree larger than 6 permits
to obtain 〈V1, V2〉 > 0.

Combining Proposition 4.2, Proposition 4.3 and Proposition 4.4 leads to the
statement of Theorem 1.5.

31



Remark 4.5. 1) Using the convergence rate from uǫ towards u0, we prove that
there exists a unique symmetric invariant measure for the self-stabilizing process
(II) under the convexity property of V ′′ and F ′′ and when α > ϑ or α < ϑ. The
case α = ϑ is more difficult since the convergence rate is not of order ǫ. It needs
then some other kind of tools.
2) Let us note that the uniqueness of symmetric invariant measure was already
studied in [1] where the authors considered the constant potential case V (x) := 0.
They obtained uniqueness results for α large enough but ǫ fixed which is to relate
to our situation where α > ϑ but the noise intensity ǫ should be small. Their
proof is essentially based on a contraction map which of course leads to local
uniqueness. Our study handles directly with local uniqueness.

A Annex

Let us finally present some useful asymptotic results which are closed to the
classical Laplace’s method. Let us first recall a preliminary asymptotic result
(see [6]):

Lemma A.1. Let M > 0. Let us assume that U is C2([M,∞[)-continuous,

U(x) 6= 0 and U ′′(x) > 0 for all x ∈ [M,∞[ and limx→∞
U ′′(x)

(U ′(x))2 = 0. If

x → e−U(x) is integrable on R then:

∫ +∞

x

e−U(t)dt ≈ e−U(x)

U ′(x)
and

∫ x

M

eU(t)dt ≈ eU(x)

U ′(x)
as x → ∞ .

Lemma A.2. Set ǫ > 0. Let U and G two C∞(R)-continuous functions. We
define Uµ := U + µG for µ belonging to a compact interval I of R. Let us
introduce an interval [a, b] satisfying: U ′

µ(a) 6= 0, U ′
µ(b) 6= 0 and Uµ(x) reaches

its global minimum on the interval [a, b] in a unique point xµ ∈]a, b[ for all
µ ∈ I. We assume that there exists an exponent k0 independent of µ ∈ I such

that 2k0 = minr∈N∗

{

U
(r)
µ (xµ) 6= 0

}

. Let f a C4(R)-continuous function. Then

letting the parameter ǫ tend to 0, we get

∫ b

a

f(t)e−
Uµ(t)

ǫ dt =
f(xµ)

k0

(

ǫ(2k0)!

U2k0
µ (xµ)

)
1

2k0

Γ

(

1

2k0

)

e−
Uµ(xµ)

ǫ (1 + oI(1)) ,

where Γ represents the Euler function and oI(1) converges towards 0 uniformly
with respect to µ ∈ I.

Proof. The arguments are similar to those used in Lemma A.2 [6].

Lemma A.3. Let Uǫ and U ∈ C∞ ([a; b],R) such that for all i ∈ N, U
(i)
ǫ

converges to U (i) uniformly on [a; b] as ǫ → 0. If the global minimum of U
is reached at a unique point x0 on [a; b] with x0 ∈]a; b[, then, for ǫ small enough,
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1. Uǫ has a unique global minimum location xǫ on [a; b] with xǫ ∈]a; b[.
2. U ′′(x0) > 0 implies U ′′

ǫ (xǫ) > 0 and

xǫ = x0 −
U ′
ǫ(x0)

U ′′(x0)
+ o {U ′

ǫ(x0)} .

3. Furthermore, if U ′′(x0) > 0, by taking the limit ǫ → 0, for all the function
f ∈ C4 ([a; b];R), we get

∫ b

a

f(t)e
−2Uǫ(t)

ǫ dt =

√

πǫ

U2
e−

2Uǫ(xǫ)
ǫ

{

f(xǫ) + γx0(f)ǫ+ o(ǫ)
}

with

γx0(f) := f(x0)

(

5 U2
3

48 U3
2

− U4

16 U2
2

)

− f ′(x0)
U3

4 U2
2

+
f ′′(x0)

4 U2
.

Here Uk := U
(k)
ǫ (xǫ).

Proof. 1. We shall proceed using reductio ad absurdum. Let us assume that
there exists a sequence (ǫk)k≥1 such that Uǫk admits two different locations for

the global minimum: x
(1)
k and x

(2)
k for all k ≥ 1. Due to the uniform conver-

gence of Uǫ on [a; b], both x
(1)
k and x

(2)
k tend to x0 as k → ∞. Hence, for any

δ > 0, there exists k0 large enough, such that both x
(1)
k and x

(2)
k belong to

]x0 − δ;x0 + δ[ for k ≥ k0. Moreover U ′′(x0) > 0 by assumption and U ′′
ǫ con-

verges uniformly on [a; b]; so there exist ρ > 0 and δ0 > 0 such that U ′′
ǫk
(x) ≥ ρ

for all x ∈ [x0 − δ0;x0 + δ0] and for k large enough. Consequently, the equation
U ′(x) = 0 does not admit several solutions on this interval. Taking δ = δ0,
we obtain the uniqueness of the global minimum location for Uǫ and ǫ small
enough.
2. The uniform convergence and the assumption U ′′(x0) > 0 imply that
U ′′
ǫ (xǫ) > 0 for ǫ small enough. Moreover we get the following convergence

U ′
ǫ(x0) → 0 as ǫ → 0. Using the mean value theorem, we obtain as ǫ → 0:

U ′
ǫ(x0) = U ′

ǫ(xǫ) + U ′′
ǫ (xǫ) (x0 − xǫ) (1 + o(1))

= U ′
ǫ(xǫ) + U ′′(x0) (x0 − xǫ) (1 + o(1)) .

Since U ′
ǫ(xǫ) = 0, we obtain

xǫ = x0 −
U ′
ǫ(x0)

U ′′(x0)
+ o {U ′

ǫ(x0)} .

3. It suffices to adapt the proof of Lemma A.3 in [6]. The arguments are namely
the same.

We can extend the previous statement to integrals with unbounded supports.

Lemma A.4. Let Uǫ and U ∈ C∞ (R,R) such that for all i ∈ N, U
(i)
ǫ converges

uniformly on all compact subset. If U has r global minimum locations A1 <
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· · · < Ar and if there exist R > 0 and ǫc such that Uǫ(x) > x2 for all |x| > R
and ǫ < ǫc, then, for ǫ small enough, we get:
1. Uǫ has exactly one global minimum location Aǫ

i on each interval Ii, where Ii
represent the Voronoï cells corresponding to the central points Ai, with 1 ≤ i ≤ r.
2. U ′′(Ai) > 0 implies U ′′

ǫ (A
ǫ
i) > 0 and

Aǫ
i = Ai −

U ′
ǫ(Ai)

U ′′(Ai)
+ o {U ′

ǫ(Ai)} .

3. Furthermore, if U ′′(Ai) > 0 for all 1 ≤ i ≤ r, then for any function f ∈
C4 (R,R) with polynomial growth, the following asymptotic development holds
as ǫ → 0:

∫

R

f(t)e−
2Uǫ(t)

ǫ dt =

r
∑

j=1

√

πǫ

U ′′
ǫ (A

ǫ
j)

e−
2Uǫ(A

ǫ
j)

ǫ

{

f(Aǫ
j) + γj(f)ǫ+ o(ǫ)

}

with

γj(f) := f(Aj)

(

5 U2
3,j

48 U3
2,j

− U4,j

16 U2
2,j

)

− f ′(Aj)
U3,j

4 U2
2,j

+
f ′′(Aj)

4 U2,j
,

and Uk,j := U
(k)
ǫ (Aǫ

j).

Proof. For all 2 ≤ j ≤ r − 1, we apply Lemma A.3 on the interval Ij defined
in the statement. We also apply Lemma A.3 on [−R;R] ∩ I1 and [−R;R] ∩ Ir.
Hence the result is proved on the integral [−R;R]. To conclude it suffices to
note that the integral on [−R;R]c is negligible due to the polynomial growth of
f and the Gaussian behavior of exp

[

− 2
ǫUǫ

]

.

Finally we present some special Laplace method applied to the pseudo-
potential defined by (1.1).

Lemma A.5. Let (uǫ)ǫ>0 a sequence of stationary measures which converges
weakly to u0. We assume moreover that {µ2n(ǫ), ǫ > 0} is bounded with 2n :=
deg(F ). Let Wǫ and W0 defined by (1.1) resp. (1.3). We denote by A1 < · · · <
Ar (respectively B1 < · · · < Bs if s > 0) the elements of A, the support of the
limit measure u0 (resp. B the set of all locations for W0’s global minimum which
do not belong to A).
1. Let us consider the set of intervals (Ii)1≤i≤r+s which correspond to the
Voronoï cells centered in the elements of D := A ∪ B. If W ′′

0 (D) > 0 for all
D ∈ D, Wǫ reaches its global minimum at a unique location in Ii denoted by Dǫ

i

(also denoted by Aǫ
· or Bǫ

· ), 1 ≤ i ≤ r + s, which converges to Di ∈ D. Then,
Dǫ

i satisfies the following asymptotic development:

Dǫ
i = Di −

W ′
ǫ(Di)

W ′′
0 (Di)

+ o {W ′
ǫ(Di)} , 1 ≤ i ≤ r + s . (A.1)

2. If uǫ is symmetric, if u0 = δ0, and if both W0 and F ′′ are convex functions,
then 0 is the unique location of the global minimum of Wǫ. Furthermore, if F ′
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is not a linear function, we get W ′′
ǫ (0) > 0.

3. If W ′′
0 (D) > 0 for all D ∈ D, then for any function f ∈ C4 (R,R) with

polynomial growth, we have as ǫ → 0:

∫

R

f(t)e−
2Wǫ(t)

ǫ dt =

r
∑

j=1

√

πǫ

W ′′
ǫ (A

ǫ
j)

e−
2Wǫ(A

ǫ
j)

ǫ

{

f(Aǫ
j) + γj(f)ǫ+ o(ǫ)

}

(A.2)

+

s
∑

l=1

√

πǫ

W ′′
ǫ (B

ǫ
l )

e−
2Wǫ(B

ǫ
l
)

ǫ

{

f(Bl) + o(1)
}

with

γj(f) := f(Aj)

(

5 W2
3,j

48 W3
2,j

− W4,j

16 W2
2,j

)

− f ′(Aj)
W3,j

4 W2
2,j

+
f ′′(Aj)

4 W2,j
. (A.3)

Here Wk,j := W
(k)
ǫ (Aǫ

j).

Proof. 1. (Wǫ)ǫ>0 satisfies the assumptions of Lemma A.4. Indeed, W
(j)
ǫ con-

verges uniformly towards W
(j)
0 , for j ∈ N, on all compact subsets of R, see

Proposition 3.3 in [7]. Besides, since F is a even polynomial function of de-
gree 2n and since the moments are bounded, F ∗ uǫ(x) − F ∗ uǫ(0) ≥ P (x)
where P is a polynomial function independent of ǫ whose principal term is pos-
itive. Therefore, using (V-4), we obtain the following lower bound: Wǫ(x) ≥
C4x

4−C2x
2+P (x). The application of Lemma A.4 provides the existence of Aǫ

j

and Bǫ
l . Let D be a location for the global minimum of W0. If W ′′

0 (D) > 0, the
uniform convergence of Dǫ towards D and the convergence of Wǫ towards W0,
on each compact set, imply W ′′

ǫ (D
ǫ) > 0 for ǫ small enough. The asymptotic

development (A.1) comes directly from Lemma A.4.
2. If u0 = δ0 then Theorem 3.6 in [7] implies that 0 is one global minimum of
W0 and by the way W0(x) ≥ W0(0) = 0 for all x ∈ R. Furthermore, since F ′′ is
a convex function and uǫ is symmetric and absolutely continuous with respect
to the Lebesgue measure, see [6], we obtain the following lower bound

W ′′
ǫ (x) −W ′′

0 (x) =

∫

R+

(

F ′′(x− z) + F ′′(x + z)− 2F ′′(x)
)

uǫ(z)dz ≥ 0 .

Due to the convexity of W0, we obtain the convexity of Wǫ: W ′′
ǫ (x) ≥ 0 for all

x ∈ R. Let us note that Wǫ(0) = 0 and W ′
ǫ(0) = W ′

0(0) = 0. We deduce that
Wǫ(x) ≥ W0(x) ≥ 0 for all x ∈ R.
Let us prove that the global minimum of Wǫ is only reached at 0. If there exists
m > 0 such that Wǫ(m) = 0, then due to the convexity Wǫ(x) = W0(x) = 0 for
any x ∈ [0,m]. By definition, since u0 = δ0, we get W0 = V + F . By (V-6), we
know that V is an “analytic function” on [−a, a] and F is polynomial. Therefore
W0(x) = V (x)+F (x) = 0 and W ′′

0 (x) = V ′′(x)+F ′′(x) = 0 for any x ∈ [−a, a].
This contradicts the hypotheses (V-3) and (F-2) which imply that W ′′(a) > 0.
Finally we conclude that 0 is the unique location of the global minimum of Wǫ.
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Besides, if F ′ is not a linear function then F ′′(z) > F ′′(0) for all z 6= 0. Con-
sequently, W ′′

ǫ (0)−W ′′
0 (0) =

∫

R
(F ′′(z)− F ′′(0))uǫ(z)dz > 0 because F ′ is odd

and convex on R+. Therefore, W ′′
ǫ (0) > W ′′

0 (0) ≥ 0 and so 0 is the unique
location of the global minimum.
3. As Bǫ

l tends to Bl, we have f(Bǫ
l ) = f(Bl) + o(1) so that (A.2) is a direct

consequence of Lemma A.4.
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