Antonin Guilloux 
  
Décrire l'évolution d'un nuage de points

page web) 'OBJET de cet article est de décrire précisément (on pourrait dire mathématiquement) ce qu'on peut voir dans la série d'images ci-dessous (cliquer sur les onglets pour voir l'évolution) :

Commençons par décrire simplement ce qu'on voit. D'abord, on regarde une zone bien précise du plan : les points d'abscisse et d'ordonnée comprises entre -5 et 5. Dans cette zone, on voit de plus en plus de points à chaque nouvelle image, et on semble discerner une forme d'organisation de ces nuages de points. Je dirais (mais je triche en connaissant le résultat) qu'on voit d'abord qu'il y a des zones dans lesquelles il n'y a aucun point. Ensuite, si on fait abstraction de ces zones, les points semblent s'accumuler près de l'origine, puis se répartir assez harmonieusement avec la règle que plus on s'éloigne de l'origine, moins il y a de points. Et cette répartition semble se confirmer quand le nombre de points augmentent.

Pour reprendre ces considérations avec un vocabulaire plus précis, nous avons un nuage de points qui évolue avec le temps et qui semble avoir une répartition asymptotique, c'est-à-dire que plus le temps passe, plus ce nuage semble s'organiser selon une loi précise.

Le but de cet article est d'abord d'expliquer quel est ce nuage de points, comment il évolue avec le temps. Ensuite de décrire cette loi selon laquelle il se répartit, et enfin de décrire ces zones interdites et leur évolution avec le temps.

Que voit-on ?

Le nuage de points est obtenu de la façon suivante : on choisit d'abord un point de départ (dans la série ci-dessus, le point de départ est le point de coordonnées

).

D'autre part on dispose d'un ensemble particulier de transformations du plan, affublées du nom barbare de transformations spéciales linéaires à coefficients entiers. Nous décrivons ces transformations ci-dessous. Les nuages sont alors constitués d'images du point de départ sous certaines de ces transformations, ce choix étant l'endroit où se cache le temps, donc l'évolution.

Mais commençons par décrire les transformations.

Les transformations linéaires du plan

Considérons quatre nombres entiers relatifs , , et . (1, π)

a b c d (x, y) (ax + by, cx + dy) (a, b, c, d) (0, 0) (1, 0, 0, 1) (x, y) (x, y) (-1, 0, 0, -1) (x, y) (-x, -y)
La symétrie centrale prenons-en une dernière :

. La transformation associée envoie le point de coordonnées sur le point de coordonnées : Ca y est, nous avons nos transformations ! Les transformations spéciales linéaires à coefficients entiers sont les transformations associées à quatre entiers relatifs de déterminant 1. Cet ensemble de transformations est un objet bien connu en mathématiques ; on le note .

Taille d'une transformation

Nous avons dit que le nuage de points à un instant donné est l'image du point de départ par certaines des transformations que nous venons de définir. Pour choisir quelles transformations on doit considérer, on va définir la taille de ces transformations. Et à l'instant (mesuré en secondes), le nuage de points sera l'image du point de départ sous toutes les transformations de taille plus petite que le nombre .

(2, 1, 1, 1)

(2, 1, 1, 1) (x, y) (X, Y) = (2x + y, x + y) (1, -1, -1, 2) (X, Y) (X -Y, 2Y -X) = (x, y) ad -bc = 1 ad -bc ad -bc 1 (d, -b, -c, a) (a, b, c, d) (a, b, c, d) SL(2, Z) t t
Comment définir la taille d'une transformation, ou encore la taille d'un quadruplet d'entiers relatifs ? On utilise la norme euclidienne : la taille du quadruplet est donnée par la formule . Ce choix est un peu arbitraire, on pourrait choisir d'autres formules. Il est intéressant de noter que la valeur absolue de chacun des entiers , , ou est plus petite que la taille du quadruplet. Donc, il n'y a qu'un nombre fini de quadruplets de taille plus petite qu'un nombre fixé.

Cette dernière remarque indique que le nuage de points à l'instant est composé d'un nombre fini de points. C'est heureux, notamment c'est grâce à ça que nous avons pu en faire des dessins. On peut estimer le nombre de transformations spéciales linéaires à coefficients entiers de taille plus petite que : c'est de l'ordre de , c'est à dire que la croissance est quadratique.

Choix d'un point de départ

Après avoir passé tant de temps à expliquer la procédure de construction du nuage, il est temps de se poser la question du point de départ. Dans ce paragraphe, on mentionnera deux notions un peu avancées : les couples d'entiers premiers entre eux et les nombres irrationnels. Mais on peut sans problème sauter ce paragraphe pour lire la suite en pensant au point de départ .

Peut-on choisir le point de départ qu'on veut ? Essayons de regarder le nuage obtenu au temps 1000 avec comme point de départ :

Ce nuage de points ne ressemble pas aux premiers.

Le point de départ est et le temps 1000

Manifestement, il ne se passe pas du tout les mêmes phénomènes. L'explication est très simple : les

(a, b, c, d) T(a, b, c, d) (a, b, c, d) T(a, b, c, d) = + + + a 2 b 2 c 2 d 2 - - ------------ √ a b c d T t t t 2
(1, π)

(1, 0)

(1, 0)

images possibles du point par une transformation spéciale linéaire à coefficients entiers sont des points à coordonnées entières. En effet, sous l'action de la transformation associée au quadruplet , l'image du point est le point . On peut même décrire toutes les images possibles : c'est exactement l'ensemble des points à coordonnées entières premières entre elles. Donc il est hors de question que le nuage de points construit à partir de se répartisse harmonieusement dans le plan. Il est contraint à rester dans les points à coordonnées entières.

Il se passera le même genre de phénomènes dès qu'on partira d'un point de coordonnées vérifiant soit que est nul soit que le nombre est un nombre rationnel. Pour le dire plus géométriquement, dès que la pente de la droite joignant ce point à l'origine est rationnelle (ou infinie). Prenons l'exemple du point : les coordonnées sont irrationnelles, mais la pente est .

Ce nuage non plus ne ressemble pas aux premiers.

Le point de départ est et le temps 1000

Mais concentrons-nous plutôt sur des points permettant de retrouver les propriétés de la première série. Ce sont les points de coordonnées telles que la pente est irrationnelle. C'est le cas du point que nous avions considéré. C'est aussi le cas du point , qui donne la série :

(1, 0) Continuons à tourner autour de cette proposition. Elle dit que si je laisse évoluer mon nuage de points, je vais finir par remplir tout le plan, car je peux me rapprocher de n'importe quel point. Et ce qu'on essaye de décrire est de quelle manière a lieu ce remplissage. Par exemple, on constate sur les illustrations qu'on remplit plus vite près de l'origine que loin.

(a, b, c, d) (1, 0) (a, c) (1, 0) (x, y) x y x ( , ) 1 2 -- √ 1 2 -- √ 1 ( , ) 1 2 -- √ 1 2 -- √ (x, y) y x (1, π) ( 1 

Répartition asymptotique des points

(1, π) (1, π) p p p e (1, π)
p e J'explique dans ce paragraphe comment décrire la répartition asymptotique des points. Le résultat est étonnamment récent pour un problème si concret : il date de 1999, et a été prouvé indépendamment par François Ledrappier et Arnaldo Nogueira. Ils font appel à des techniques différentes, mais profondes. C'est un bel exemple de théories mathématiques difficiles et abstraites qui ont des conséquences que l'on peut toucher du doigt sans être spécialiste.

On va maintenant regarder ce qui se passe dans un anneau limité par deux cercles de centre l'origine et de rayon et . Sur l'illustration suivante, j'ai repris la dernière illustration de la première série, en ne dessinant que les points qui tombent dans l'anneau de rayons et :

Première information que nous donne le résultat de F. Ledrappier et A. Nogueira : la croissance du nombre de points dans l'anneau est linéaire au cours du temps. C'est-à-dire qu'à l'instant , il y a de l'ordre de points dans l'anneau. Rappelons ici qu'il y a de l'ordre de transformations spéciales linéaires à coefficients entiers de taille inférieure à , donc notre nuage de points complet contient de l'ordre de points. Mais comme on ne regarde que dans un domaine bien défini (l'anneau qu'on considère), on en rate beaucoup ; et même l'immense majorité.

Le théorème est beaucoup plus précis. Il dit que la densité du nuage près d'un point quelconque de l'anneau ne dépend que de la distance de ce point à l'origine : et même que la densité est directement proportionnelle à l'inverse de cette distance. Essayons d'expliciter cette phrase. Je choisis un point dans l'anneau, à distance de l'origine. Et à chaque instant , je considère le rapport entre le nombre de points du nuage qui sont à moins de, disons, 1 millimètre de et le nombre de points du nuage dans l'anneau. Ce rapport me donne la densité du nuage près du point . Et il existe une r 1 r 2 0, 3 5

t t t 2 t t 2 p r t r(t) p p
constante de proportionnalité positive telle que ce rapport se rapproche de plus en plus de quand le temps s'écoule : le rapport est proportionnel à l'inverse de la distance .

Insistons sur le fait que cela ne dépend que de la distance du point à l'origine, et pas de la direction dans laquelle on regarde.

Diverticule dans la piste bleu : on peut prendre un mur rouge, si on connait un peu le changement de coordonnées polaires.

Nous venons de dire que, à une constante multiplicative près, la densité du nuage près d'un point à distance de l'origine est . Le fait que ça ne dépende que de la distance à l'origine suggère de passer en coordonnées polaires. C'est-à-dire de repérer un point du plan non pas par ses deux coordonnées cartésiennes , mais les deux paramètres suivants : la distance à l'origine et l'angle entre l'axe et la demi-droite .

Les coordonnées polaires

Par cette opération, la représentation du nuage de points change. La série précédente des points à l'intérieur de l'anneau donne : 

c r(t) c × 1 r r r 1 r (x, y) r θ (Ox) [O, p)

On constate que, mises à part les zones vides, les points semblent raisonnablement équirépartis, ou bien uniformément répartis : la densité du nuage est grosso modo partout identique. Et cette constation est (heureusement) justifiée par les mathématiques !

En effet, cela est dû au fait que le changement de coordonnées polaires ne conserve pas l'aire des ensembles du plan. L'aire d'un disque infinitésimal situé à distance de l'origine dans le plan est divisée par en coordonnées polaires. C'est la signification de la formule qu'on utilise régulièrement en classes préparatoires :

Ainsi, fixons un instant et regardons ce qui se passe le long du cercle de rayon . On peut le recouvrir par petits disques de rayons millimètre comme au-dessus. Chacun de ces disques contient, à une constante multiplicative près, environ points du nuages. Donc au total, dans tous ces petits disques, on a Les chiffres exacts n'ont ici pas d'importance, seul compte le fait que le résultat ne dépend plus de la distance ! Ainsi, une fois passé en coordonnées polaires, le cercle de rayon devient le segment des points de coordonnées , pour entre et :

r r dx. dy = r. dr. dθ t r (2000π)r 1 C 1 r (2000π)r × = 2000π × C points. C r r r (r, θ) θ -π π

Image d'un cercle par le changement de coordonnées

Et les points du nuages proches de ce segment sont ceux qui étaient dans les petits disques : ils sont toujours , et ça ne dépend toujours pas de ! Ainsi, nous avons montré que la densité du nuage de points dans les bandes verticales ne dépend pas de la distance à l'origine. Comme la répartition asymptotique en coordonnées cartésiennes n'a pas de directions priviligiées, les lecteurs courageux montreront que la répartition asymptotique en coordonnées polaires ne dépend pas du paramètre .

Et les trous ?

On vient de voir dans le paragraphe précédent que la répartition asymptotique ne dépend que de la distance à l'origine, pas de la direction dans laquelle on regarde. Bien, mais les zones sans points ? Expérimentalement, c'est-à-dire en regardant les illustrations, il semble par exemple clair que l'axe des abscisses est une direction particulière pour l'organisation du nuage de points. Comment réconcilier l'expérience et le théorème ?

Tout simplement en constatant qu'il ny a pas de contradictions entre les deux phénomènes. Tout réside dans les échelles de temps auxquelles on regarde. La répartition asymptotique décrit le comportement du nuage pour les temps qui deviennent infiniment grand. Sur les illustrations, on regarde l'évolution sur des temps forcément finis (ici jusqu'à 1000). En pratique, on commence à voir le nuage de points se conformer à la loi asymptotique, mais certaines zones sont plus difficiles à remplir, comme par exemple autour de l'axe des abscisses. 

2000π × C r θ (1, 0) (a, b, c, d) 1 T = + + + a 2 b 2 c 2 d 2 - - ------------ √ (x, y) (s, t) l l ′ (ax + by, cx + dy) (as + bt, cs + dt) l T T × l
Autrement dit, ces transformations peuvent contracter ou dilater les distances, mais dans un rapport borné par la taille de la transformation. On peut voir ces possibilités de contraction ou dilatation sur les deux illustrations suivantes pour la transformation associée à qui est de taille :

Une distance contractée

Le segment bleu est envoyé sur le segment rouge par la transformation associée à .

≤ ≤ T × l l T l ′ (2, 1, 1, 1) 7 √ (2, 1, 1, 1)

Une distance dilatée

Le segment bleu est envoyé sur le segment rouge par la transformation associée à . (2, 1, 1, 1) On peut faire ce raisonnement pour tout point de l'axe des abscisses , ce qui donne une zone de sécurité autour de cet axe. Dans l'illustration suivante, la zone de sécurité est au milieux des ceux courbes rouges. Ici on a zoomé dans le nuage de points de la première série à 100 secondes (attention aux échelles !) :

(1, π) (1, 0) (a, b, c, d) T l (a + bπ, c + dπ) (1, π) (1, 0) (a, b, c, d) (d, -b, -c, d) (a + bπ, c + dπ) (1, π) (1, 0) (d, -c)
La zone de sécurité autour de l'axe des abscisses, au temps 100. 

Notes

  Une question naturelle est de savoir si on peut inverser une telle transformation. C'est-à-dire s'il y a une autre de ces transformations qui fait l'inverse, qui ramène un point sur celui dont il venait. Un bon exemple vaut mieux qu'un long discours : considérons à nouveau la transformation associée aux entiers qui envoie le point de coordonnées sur le point de coordonnées . Un rapide calcul permet de trouver son inverse : c'est la transformation associée à . En effet, cette dernière transformation envoie le point de coordonnées sur le point de coordonnées . On est bien revenu au point de départ ! La propriété cachée dans l'exemple ci-dessus est le fait que . La quantité s'appelle le déterminant. Et vous pouvez vérifier le fait que si le déterminant vaut , alors les transformations associées à et sont inverses l'une de l'autre [1].

  Pourquoi un tel point est intéressant dans ce contexte ? Parce que si on regarde l'ensemble ses images par toutes les transformations spéciales linéaires à coefficents entiers, alors on peut en trouver aussi proches que l'on veut de n'importe quel point du plan. Cette propriété s'appelle la densité. Je vais essayer de l'énoncer autrement, en choisissant le point de départ pour fixer les idées. Disons que j'essaye, comme aux fléchettes, d'envoyer le point sur un point fixé du plan. Peut-être que je ne peux pas y arriver exactement. Par contre, si je me fixe une erreur admissible, aussi petite soit-elle, je vais arriver à une distance de plus petite que cette erreur :Proposition : Pour tout point du plan et toute marge d'erreur , il existe une transformation spéciale linéaire à coefficients entiers qui envoie le point presque sur le point , avec une erreur au plus .

Forts

  de cette information, nous allons trouver la zone de sécurité. On cherche à envoyer le point le plus près possible de avec une transformation de taille au plus . Notons la distance entre l'image de et le point . Rappelons nous que la transformation a un inverse et que c'est le quadruplet . Par définition, cet inverse envoie le point sur le point . De plus, elle envoie le point sur le point :

  π) (d, -c) Tl π -3 π -3 ≤ Tl ou encore :La voilà notre zone de sécurité : un point du nuage à l'instant est l'image du point par une transformation de taille inférieure à . Sa distance au point est donc au moins .

[ 1 ]

 1 Les transformations de déterminant -1 sont aussi inversibles, d'inverse . En revanche, si le déterminant n'est ni ni , il n'y a pas d'inverse dans les transformations considérées. Pour citer cet article : Antonin Guilloux, « Décrire l'évolution d'un nuage de points » -Images des Mathématiques, CNRS, 2009. En ligne, URL : http://images.math.cnrs.fr/Decrire-

  

  

  

  

  

  

  

  

  

  

  Je définis une transformation du plan par la méthode suivante : à un point de départ de coordonnées , j'associe le point de coordonnées . (Attention, ce n'est pas forcément inversible.)

	Quelques exemples pour s'habituer aux formules :	
	si les nombres	sont tous nuls, la transformation est très simple : on envoie tout
	point sur l'origine	!	
	si ce sont les nombres	, alors l'image du point de coordonnées	est le point
	de coordonnées...		

. En bref, on ne fait rien. Cette transformation s'appelle donc l'identité. pour les nombres , le point de coordonnées est envoyé sur le point de coordonnées . La transformation est là encore reconnaissable, c'est la symétrie centrale de centre l'origine :

  Pour comprendre cela, nous allons montrer qu'il y a à chaque instant une zone de sécurité autour du point dans laquelle le nuage ne peut pas rentrer et que cette zone s'amenuise au cours du temps. D'abord nous avons besoin de comprendre comment les transformations spéciales linéaires à coefficients entiers transforment les longueurs. Le résultat suivant nous suffira :

	Lemme : Soit	un quadruplet d'entiers relatifs de déterminant -qui représente une
	trasformation du plan -et de taille	. Considérons	et
	deux points du plan à distance l'un de l'autre.		
	Alors la distance	entre leurs deux images	et	est
	comprise entre et	:		

Action de l'inverse

  

	Le point rouge représente	et le point bleu	.	
							pour
	voir que la distance entre le point	et le point	est plus petite que	:
	D'autre part,	est un point à coordonnées entières. Or le point à coordonnées entières le plus
	près de	est le point	. Donc la distance entre	et	est au moins	:
	Ainsi la distance entre	et	est d'une part au plus , et d'autre part au moins	.
	Cela mène à l'inégalité :				

Quelle est la taille de la transformation ? C'est le nombre qui est égal à . C'est-à-dire qu'une transformation et son inverse ont la même taille ! On en déduit que la transformation est de taille au plus , comme . Donc on peut utiliser le lemme

l-evolution-d-un-nuage-de.html