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Brief Title: Estimation with Autoregressive Error
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Abstract

Approximations of the usual GLS transformation matrices are proposed for esti-

mation with AR error that remove boundary discontinuities. The proposed method

avoids constrained optimization or rules of thumb that unnecessarily enforce esti-

mated parameters to be in the interior.

JEL Classification Numbers: C12, C13, C22.

Key Words and Phrases: Gaussian AR Model; GLS Transformation; NLS and QML Esti-

mation; LR Test.
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1 Introduction

Nonlinear least squares (NLS) and quasi maximum likelihood (QML) estimation of

models with autoregressive (AR) error requires implementing restrictions via (numeri-

cally expensive) constrained optimization. For stationary AR(1) error with coefficient

ρ, |ρ| < 1, a starting error with variance proportional to (1− ρ2)−1 is assumed. This

introduces the Prais and Winsten (1954) transformation, see also Gurland (1954) and

Kadiyala (1968). The restriction |ρ| < 1 must be implemented to avoid numerical

problems, see Hamilton (1994, pp. 118-119), and |ρ| ≥ 1 is prohibited. Hence, unit

root inference is prevented in this context. This paper suitably modifies the usual

GLS transformation matrix and removes the discontinuity at |ρ| ≥ 1, avoiding re-

strictions and allowing for unit root inference. Note that the approach of Andrews

(1999) may not be as successful as the proposed approach. The paper also applies a

similar approach for estimation with AR(2) error. The paper is organized as follows:

Section 2 presents the new GLS transformations and resulting NLS and QML esti-

mation methods for a regression with AR(1) or AR(2) error, also exemplifying LR

(unit root) testing. Finally, Section 3 concludes.
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2 Transformations and NLS and QML Estimation

Focusing on the linear regression (generating model)

y = Xβ + u, (1)

where y and u are T × 1, X is T × k (k < T ) and β is k × 1 parameter vector. The

error u is AR(1), generated via

Pu = ε, (2)

where ε ∼ N(0,σ2IT ) (IT is the T × T identity matrix). The GLS transformation

matrix P is defined by P [1, 1] = κ, P [j, j] = 1 and P [j, j − 1] = −ρ for j = 2, 3, ..., T

and 0 elsewhere. A specific value for κ implies a corresponding assumption for u1,

see Dufour (1990, p. 475) and Dufour and King (1991, p. 116). Setting κ = 0 ignores

the first observation, while κ = 1 is the assumption of Berenblut and Webb (1973).

In general, u1 ∼ N(0,σ2κ−2) and independent from ε2,...,εT . Under stationarity,

|ρ| < 1, and for identification, it is assumed that κ = (1 − ρ2)1/2. In this case,

u ∼ N(0,σ2Σ(ρ)) with Σ(ρ) = (P 0P )−1. Still under stationarity, NLS minimizes

S(β, ρ) = u0P 0Pu, (3)

while QML maximizes the (concentrated, with a constant ignored) log-likelihood

l(β, ρ) = −T
2
lnS(β, ρ) +

1

2
ln(1− ρ2), (4)
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see Judge et al. (1985, Chapter 8). Beach and MacKinnon (1978 a) introduce an it-

erative algorithm to derive the QML estimators. From Eq. (4), l(β, ρ) is not defined

for |ρ| ≥ 1. Constrained maximization is required, that is imposing |ρ| < 1. Also,

NLS and QML estimators differ in general.

To avoid constrained optimization and incorporate stationarity asymptotically, one

defines and employs κ as a function of T and ρ,

κ ≡ κ(T, ρ) := {
T−1X
s=0

ρ2s}−1/2 ≡ {1− ρ2T

1− ρ2
}−1/2 > 0, ∀ρ, (5)

in line with Gurland (1954, p. 221). For |ρ| < 1 as T → ∞, κ(T, ρ) → p
1− ρ2.

Define P ∗ equal to P for all elements except P ∗[1, 1] = κ(T, ρ). It is assumed that

P ∗u = ε and u ∼ N(0,σ2Σ(ρ)∗) with Σ(ρ)∗ = (P ∗0P ∗)−1. The proposed NLS now

minimizes

S∗(β, ρ) = ε0P ∗0P ∗ε, (6)

while the new QML maximizes

l∗(β, ρ) = −T
2
lnS∗(β, ρ) +

1

2
lnκ(T, ρ)2. (7)

Note that any value for ρ is allowed, including |ρ| ≥ 1. For |ρ| < 1 as T → ∞,

u1
d→ N(0,σ2/(1− ρ2)) (the original assumption under stationarity). For |ρ| = 1, it

holds κ(T, ρ) = T−1/2. Resulting NLS and QML estimators also differ. Equivalence

of S∗ and l∗ does not apply and LR tests based on S∗ differ from LR tests based
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on l∗. Let β̌, ρ̌ and β̄, ρ̄ denote restricted (under a null) and unrestricted estimates,

respectively, from NLS estimation, while β̂, ρ̂ and β̃, ρ̃ denote restricted (under a null)

and unrestricted estimates, respectively, from QML estimation. The corresponding

LR tests are

LRNLS = T ln(S
∗(β̌, ρ̌)/S∗(β̄, ρ̄)) ≈ T (S∗(β̌, ρ̌)− S∗(β̄, ρ̄))/S∗(β̄, ρ̄), (8)

and

LRQML = 2(l
∗(β̃, ρ̃)− l∗(β̂, ρ̂)). (9)

Estimation of Eq. (1) with AR(2) error follows similar lines. In this case, ut is

generated by

ut = ρ1ut−1 + ρ2ut−2 + εt or Qu = ε. (10)

The first two autocorrelations, θ1 and θ2, are θ1 = ρ1/(1 − ρ2) and θ2 = ρ2 + ρ1θ1,

respectively. Under stationarity |ρ2| < 1 and |θ1| < 1; the last part comes from

ρ1 < 1 − ρ2 and ρ2 < 1. The transformation matrix Q is defined as Q[1, 1] =p
1− ρ22

p
1− θ21 (derived from Judge et al. (1985, p. 294)), Q[2, 1] = −θ1

p
1− ρ22,

Q[2, 2] =
p
1− ρ22, Q[j, j] = 1, Q[j, j − 1] = −ρ1, Q[j, j − 2] = −ρ2 for j = 3, ..., T

and 0 elsewhere. Beach and MacKinnon (1978 b) provide a specific algorithm for

QML estimation with AR(2) error. Similarly to the analysis above, one defines

κ1 ≡ κ1(T, θ1) := {
T−1X
s=0

θ2s1 }−1/2 ≡ {
1− θ2T1
1− θ21

}−1/2 > 0, ∀ρ1,ρ2, (11)
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and

κ2 ≡ κ2(T, ρ2) := {
T−1X
s=0

ρ2s2 }−1/2 ≡ {
1− ρ2T2
1− ρ22

}−1/2 > 0, ∀ρ1,ρ2. (12)

Under stationarity as T →∞, κ1(T, θ1)→
p
1− θ21 while κ2(T, ρ2)→

p
1− ρ22. The

employed approximate transformation matrix Q∗ is equal to Q for all elements except

Q∗[1, 1] = κ1κ2, Q∗[2, 1] = −θ1κ2 and Q∗[2, 2] = κ2. The proposed NLS estimation

minimizes

S∗2(β, ρ1, ρ2) = ε0Q∗0Q∗ε, (13)

while the new QML estimation maximizes

l∗2(β, ρ1, ρ2) = −
T

2
lnS∗2(β, ρ1, ρ2) +

1

2
lnκ1(T, θ1)

2 + lnκ2(T, ρ2)
2. (14)

It is assumed that Q∗u = ε and u ∼ N(0,σ2Σ(ρ1, ρ2)∗) with Σ(ρ1, ρ2)∗ = (Q∗0Q∗)−1.

Constrained optimization is not required. Note that no equivalence between S∗2 and

l∗2 holds, and LR tests based on S
∗
2 differ from LR tests based on l∗2.

3 Conclusions

This paper proposes NLS and QML estimation of a linear regression with AR(1)

or AR(2) error, which is based on modification of the usual GLS transformation

matrices. Unconstrained optimization is only required. Generalization to any AR

order is intractable and unnecessary, since the methods for models with AR(1) or

AR(2) error can handle a number of interesting empirical applications. Extension to

8



Acc
ep

te
d m

an
usc

rip
t 

nonlinear models is straightforward. Future research of interest includes simulation

of the proposed estimators and LR (especially unit root) testing.
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