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Approximations of the usual GLS transformation matrices are proposed for estimation with AR error that remove boundary discontinuities. The proposed method avoids constrained optimization or rules of thumb that unnecessarily enforce estimated parameters to be in the interior.

Nonlinear least squares (NLS) and quasi maximum likelihood (QML) estimation of models with autoregressive (AR) error requires implementing restrictions via (numerically expensive) constrained optimization. For stationary AR(1) error with coefficient ρ, |ρ| < 1, a starting error with variance proportional to (1ρ 2 ) -1 is assumed. This introduces the [START_REF] Prais | Trend Estimators and Serial Correlation[END_REF] transformation, see also [START_REF] Gurland | An Example of Autocorrelated Disturbances in Linear Regression[END_REF] and [START_REF] Kadiyala | A Transformation Used to Circumvent the Problem of Autocorrelation[END_REF]. The restriction |ρ| < 1 must be implemented to avoid numerical problems, see Hamilton (1994, pp. 118-119), and |ρ| ≥ 1 is prohibited. Hence, unit root inference is prevented in this context. This paper suitably modifies the usual GLS transformation matrix and removes the discontinuity at |ρ| ≥ 1, avoiding restrictions and allowing for unit root inference. Note that the approach of Andrews (1999) may not be as successful as the proposed approach. The paper also applies a similar approach for estimation with AR(2) error. The paper is organized as follows:

Section 2 presents the new GLS transformations and resulting NLS and QML estimation methods for a regression with AR(1) or AR(2) error, also exemplifying LR (unit root) testing. Finally, Section 3 concludes.

A c c e p t e d m a n u s c r i p t 2 Transformations and NLS and QML Estimation

Focusing on the linear regression (generating model)

y = Xβ + u, ( 1 ) 
where y and

u are T × 1, X is T × k (k < T ) and β is k × 1 parameter vector.
The error u is AR(1), generated via

P u = ε, ( 2 ) 
where ε ∼ N(0, σ 2 I T ) (I T is the T × T identity matrix). The GLS transformation matrix P is defined by P [1, 1] = κ, P [j, j] = 1 and P [j, j -1] = -ρ for j = 2, 3, ..., T and 0 elsewhere. A specific value for κ implies a corresponding assumption for u 1 , see Dufour (1990, p. 475) and Dufour and King (1991, p. 116). Setting κ = 0 ignores the first observation, while κ = 1 is the assumption of [START_REF] Berenblut | A New Test for Autocorrelated Errors in the Linear Regression Model[END_REF].

In general, u 1 ∼ N(0, σ 2 κ -2 ) and independent from ε 2 ,...,ε T . Under stationarity, |ρ| < 1, and for identification, it is assumed that κ = (1ρ 2 ) 1/2 . In this case, u ∼ N(0, σ 2 Σ(ρ)) with Σ(ρ) = (P 0 P ) -1 . Still under stationarity, NLS minimizes

S(β, ρ) = u 0 P 0 P u, ( 3 ) 
while QML maximizes the (concentrated, with a constant ignored) log-likelihood 4), l(β, ρ) is not defined for |ρ| ≥ 1. Constrained maximization is required, that is imposing |ρ| < 1. Also, NLS and QML estimators differ in general.

l(β, ρ) = - T 2 ln S(β, ρ) + 1 2 ln(1 -ρ 2 ), ( 4 ) 
To avoid constrained optimization and incorporate stationarity asymptotically, one defines and employs κ as a function of T and ρ,

κ ≡ κ(T, ρ) := { T -1 X s=0 ρ 2s } -1/2 ≡ { 1 -ρ 2T 1 -ρ 2 } -1/2 > 0, ∀ρ, ( 5 ) 
in line with Gurland (1954, p. 221).

For |ρ| < 1 as T → ∞, κ(T, ρ) → p 1 -ρ 2 .
Define P * equal to P for all elements except P * [1, 1] = κ(T, ρ). It is assumed that

P * u = ε and u ∼ N(0, σ 2 Σ(ρ) * ) with Σ(ρ) * = (P * 0 P * ) -1 . The proposed NLS now minimizes S * (β, ρ) = ε 0 P * 0 P * ε, ( 6 ) 
while the new QML maximizes

l * (β, ρ) = - T 2 ln S * (β, ρ) + 1 2 ln κ(T, ρ) 2 . ( 7 
)
Note that any value for ρ is allowed, including |ρ| ≥ 1. For |ρ| < 1 as T → ∞, 

u 1 d → N(0, σ 2 /(1 -ρ 2 )) (the
LR NLS = T ln(S * ( β, ρ)/S * ( β, ρ)) ≈ T (S * ( β, ρ) -S * ( β, ρ))/S * ( β, ρ), (8) 
and

LR QM L = 2(l * ( β, ρ) -l * ( β, ρ)). ( 9 ) 
Estimation of Eq. ( 1) with AR(2) error follows similar lines. In this case, u t is generated by

u t = ρ 1 u t-1 + ρ 2 u t-2 + ε t or Qu = ε. ( 1 0 ) 
The first two autocorrelations, θ 1 and θ 2 , are

θ 1 = ρ 1 /(1 -ρ 2 ) and θ 2 = ρ 2 + ρ 1 θ 1 ,
respectively. Under stationarity |ρ 2 | < 1 and |θ 1 | < 1; the last part comes from

ρ 1 < 1 -ρ 2 and ρ 2 < 1. The transformation matrix Q is defined as Q[1, 1] = p 1 -ρ 2 2 p 1 -θ 2 1 (derived from Judge et al. (1985, p. 294)), Q[2, 1] = -θ 1 p 1 -ρ 2 2 , Q[2, 2] = p 1 -ρ 2 2 , Q[j, j] = 1, Q[j, j -1] = -ρ 1 , Q[j, j -2] = -ρ 2 for j = 3, ..., T
and 0 elsewhere. Beach and MacKinnon (1978 b) provide a specific algorithm for QML estimation with AR(2) error. Similarly to the analysis above, one defines

κ 1 ≡ κ 1 (T, θ 1 ) := { T -1 X s=0 θ 2s 1 } -1/2 ≡ { 1 -θ 2T 1 1 -θ 2 1 } -1/2 > 0, ∀ρ 1 ,ρ 2 , (11) 
A c c e p t e d m a n u s c r i p t and

κ 2 ≡ κ 2 (T, ρ 2 ) := { T -1 X s=0 ρ 2s 2 } -1/2 ≡ { 1 -ρ 2T 2 1 -ρ 2 2 } -1/2 > 0, ∀ρ 1 ,ρ 2 . ( 12 
)
Under stationarity as

T → ∞, κ 1 (T, θ 1 ) → p 1 -θ 2 1 while κ 2 (T, ρ 2 ) → p 1 -ρ 2 2 .
The employed approximate transformation matrix Q * is equal to Q for all elements except

Q * [1, 1] = κ 1 κ 2 , Q * [2, 1] = -θ 1 κ 2 and Q * [2, 2] = κ 2 . The proposed NLS estimation minimizes S * 2 (β, ρ 1 , ρ 2 ) = ε 0 Q * 0 Q * ε, ( 1 3 ) 
while the new QML estimation maximizes 

l * 2 (β, ρ 1 , ρ 2 ) = - T 2 ln S * 2 (β, ρ 1 , ρ 2 ) + 1 2 ln κ 1 (T, θ 1 ) 2 + ln κ 2 (T, ρ 2 ) 2 . ( 14 
) It is assumed that Q * u = ε and u ∼ N(0, σ 2 Σ(ρ 1 , ρ 2 ) * ) with Σ(ρ 1 , ρ 2 ) * = (Q * 0 Q * ) -1 .
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