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Abstract

We study the relationship between the multivariate dispersive orders based on the
standard construction. In particular those given by Shaked and Shanthikumar (1998)
and Fernández-Ponce and Suárez-Llorens (2003). In order to reach our objective we
define a new weaker multivariate dispersive notion. Random vectors with a common
copula and positive dependence properties are analyzed.

AMS Subject Classification: 60E15, 60E05, 60K10.

Key words and phrases: univariate and multivariate dispersive orders, st:icx
order, convolutions, models of ordered random variables.

1 Introduction

In the context of stochastic orders, several orders have been defined to compare two uni-
variate random quantities in terms of their variability or dispersion. In particular, one
of the most widely used in the literature is the dispersive order introduced by Lewis and
Thompson (1981), see Shaked and Shantikumar (1994) as an excellent handbook to study
all its properties.

Based on the properties and characterizations of the univariate dispersive order several
authors have proposed different multivariate extensions, namely Shaked and Shanthikumar
(1998) and Fernández-Ponce and Suárez-Llorens (2003) propose multivariate dispersive or-
ders based on the standard construction.

In this paper we analyzed the relationship between these multivariate dispersion no-
tions. The organization is the following. First in section 2 we present some well known
characterizations of the univariate dispersion order and discuss how they have been used to
define several multivariate dispersion orderings under the standard construction. Second in
Section 3 we propose a new multivariate dispersion order which will be used later in Section
3 to relate the multivariate dispersion orders defined in Section 2. Third in Section 4 we
show the relationship among the multivariate dispersion concepts introduced in the previ-
ous sections. In particular some interesting results are obtained for random vectors with a

∗Corresponding author: Tel: (+34) 956015481, fax: (+34) 956015378 <alfonso.suarez@uca.es>
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common copula and positive dependence properties. Finally, in Section 5 we present how
those relationships can be applied and used to simplify some known results in the literature.

In this paper for any random variable X and an event A, we let {X|A} denote any
random variable whose distribution is the conditional distribution of X given A. Expected
values are assumed to exist whenever they are mentioned. By =st we denote equality in
law.

2 The univariate dispersion order: characterizations and gen-

eralizations

A formal definition of the univariate dispersive order is based on the notion of quantile.
Given a random variable X with distribution function F , we define the univariate quantile
as QX(u) ≡ F−1

X (u) = inf{x : FX(x) ≥ u}, for all real value u ∈ (0, 1) (for definition
and characterizations of the dispersive order see Section 2.B.2 in Shaked and Shanthikumar
(1994)). Given two random variables X and Y , we say that X is less in the dispersive order
than Y , denoted by X ≤disp Y , if

QX(v) − QX(u) ≤ QY (v) − QY (u) for all 0 < u ≤ v < 1. (1)

Clearly this is a dispersive order notion because it requires the distance between any
two quantiles of X to be less separated than the corresponding quantiles of Y .

An interesting characterization is given in terms of expansion functions. A real valued
function φ is said to be an expansion function if φ(x′) − φ(x) ≥ x′ − x whenever x′ ≥ x. If
φ is differentiable then φ is an expansion function if dφ(x)/dx ≥ 1 for all x. We have that
X ≤disp Y if, and only if,

Y =st φ(X) for some expansion function φ. (2)

Also, from the definition, it is easy to see that X ≤disp Y if, and only if,

φ(x) = QY (FX(x)) is an expansion function. (3)

In addition, if the distribution functions of X and Y are strictly increasing, then the function
φ defined in (3), is the only one that satisfies (2). To finalize we present another charac-
terization which we will use later. Given two random variables X and Y , with absolutely
continuous distribution functions, and density functions fX and fY , then X ≤disp Y if, and
only if,

fX(QX(u)) ≥ fY (QY (u)), for all u ∈ (0, 1). (4)

Based on these characterizations several authors have proposed different extensions to
the multivariate case. Important contributions in this case have been made by Oja (1983)
and Giovagnoly and Wynn (1995). Clearly inspired in (2), those authors define multivariate
dispersion orders through the existence of a multivariate function k which maps stochas-
tically a random vector X to another one Y, that is Y =st k(X). It is well known that
there are different transformations that map a multivariate random vector to another one.
For this reason Shaked and Shanthikumar (1998) and Fernández-Ponce and Suárez-Llorens
(2003) consider a particular one based on the standard construction. First we need some
definitions. From now on, we will assume that the multivariate distribution function is an
absolutely continuous function.
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Let X be a random vector and let u = (u1, . . . , un) in [0, 1]n. The standard construction
for X, denoted by

x̂(u) = (x̂1(u1), x̂2(u1, u2), . . . , x̂n(u1, . . . , un)),

is defined as follows

x̂1(u1) = QX1(u1)

x̂i(u1, . . . , ui) = Q
{Xi|

i−1T
j=1

Xj=x̂j(uj)}
(ui), for i = 2, . . . , n.

This known construction is widely used in simulation theory and plays the role of the
quantile in the multivariate case. The following result, it is well known (see Li, Scarsini and
Shaked (1996))

x̂(U) =st X, (5)

where U is a random vector with n independent uniform distributed components on [0, 1].

By “inverting” the standard construction, we can express the independent uniform ran-
dom variables Ui’s as functions of the Xi’s. Let us denote

⋆
x (x) = (

⋆
x1(x1), . . . ,

⋆
xn(x1, . . . , xn))

as the vector given by

⋆
x1(x1) = FX1(x1),
⋆
xi(x1, . . . , xi) = F

{Xi|
i−1T
j=1

Xj=xj}
(xi), for i = 2, . . . , n.

It is also well known, see for instance Shaked and Shantikumar (1998) that

⋆
x (X) =st U. (6)

Let us consider the n-dimensional function φ(x) = (φ1(x1), . . . , φn(x1, . . . , xn)) defined
as

φ1(x1) = (ŷ1 ◦
⋆
x1)(x1) = QY1(FX1(x1)) (7)

φi(x1, . . . , xi) = (ŷi ◦
⋆
xi)(x1, . . . , xi) = Q

{Yi|
i−1T
j=1

Yj=φj(x1,...,xj)}
(F

{Xi|
i−1T
j=1

Xj=xj}
(xi)),(8)

for i = 2, . . . , n.
It is clear from (5) and (6) that φ maps stochastically X to Y, that is φ(X) =st Y.

It is also apparent that the standard construction can be seen as a generalization of the
univariate quantile function.

Let X and Y be two random vectors on R
n and let x̂(·), ŷ(·) the corresponding standard

constructions. Shaked and Shantikumar (1998) considered the following condition

ŷ(u) − x̂(u) is increasing in u ∈ (0, 1)n, (9)

as a multivariate generalization of (1). To maintain a coherent notation, we will say that
X is less than Y in variability if (9) holds, and we will denote it as X ≤var Y. Note that
(9) can be rewritten in terms of the function φ defined in (7) and (8) as

φ(x̂(u)) − x̂(u) is increasing in u ∈ (0, 1)n.
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Another multivariate generalization based on the standard construction was given re-
cently by Fernández-Ponce and Suárez-Llorens (2003). Given two n-dimensional random
vectors X and Y, we say that X is less in the multivariate dispersive order than Y, denoted
by X ≤disp Y, if, and only, if

‖ x̂(v) − x̂(u) ‖2≤‖ ŷ(v) − ŷ(u) ‖2

for all u,v ∈ [0, 1]n, where ‖ · ‖2 means the Euclidean distance. Note that the last inequality
can be considered as a multivariate extension of (1). Also Fernández-Ponce and Suárez-
Llorens (2003) proved that the ≤disp order is equivalent to check if the function φ defined
in (7) and (8) is a multivariate expansion function, where multivariate expansion means
that ||φ(x) − φ(x′)||2 ≥ ||x − x′||2 for all x,x′ in R

n, and therefore can be also seen as a
multivariate generalization of (3).

3 The Conditional Dispersive Order

In this section we present a new multivariate dispersion order as a generalization of (3) for
the univariate case. The purpose of this order is to relate the ≤disp and ≤var orders as we
will see later on in Section 4. On the other hand it will also give a meaningful interpretation
in terms of dispersion to both orders.

Definition 1. Let X and Y be two n-dimensional random vectors. We consider the function
φ defined in (7) and (8) which maps X onto Y. We say that X is less in the conditional
dispersive order than Y, denoted by X ≤c−disp Y, if φi(x1, . . . , xi) is an expansion function
in xi in the univariate sense, for all i = 1 . . . , n.

Roughly speaking, the conditional dispersive order is defined through a function which
maps stochastically a vector to another one and satisfies that i-th component is an expansion
function in xi when x1, . . . , xi−1 remains fixed. We observe that from (7), (8) and (3) we
have that φ1(x1) is an expansion function in x1 if, and only if,

X1 ≤disp Y1 (10)

and for fixed (x1, . . . , xi−1) ∈ R
i−1, φi(x1, . . . , xi) is an expansion function in xi, if, and

only if,



Xi

∣∣∣∣∣∣

i−1⋂

j=1

Xj = x̂j(u1, . . . , uj)



 ≤disp



Yi

∣∣∣∣∣∣

i−1⋂

j=1

Yj = ŷj(u1, . . . , uj)



 , (11)

for i = 2, . . . , n and for all ui such that 0 < ui < 1, i = 1, . . . , n.
Therefore the conditional dispersive order can be checked by the univariate dispersive

order. The conditions (10) and (11) provide a geometrical interpretation for the ≤c−disp

order which we present in the bivariate case.
Fernández-Ponce and Suárez-Llorens (2003) provided the notion of corrected orthant

associated with the standard construction and studied the accumulated probability in all
of them. Let X = (X1,X2) be a bivariate random vector and let (u1, u2) in [0, 1]2. The
intersection between the curve x2 = x̂2(·, u2), where u2 is fixed, and the line x1 = x̂1(u1)
is achieved at the point x̂(u1, u2) = (x̂1(u1), x̂2(u1, u2)) and this intersection provides four
corrected orthants (2n on R

n) which we represent in Figure 1.
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In order to clarify the understanding of the corrected orthant concept, we show the
definition of the left lower corrected orthant one

{(x1, x2) : x1 ≤ x̂1(u1), x2 ≤ x̂2(FX1(x1), u2)}.

The result states that the accumulated probability in all corrected orthants depend on
u1 and u2 (see Figure 1). Note that the conditional function x2 = x̂2(·, u2) represents the
extreme behavior of the dependent variable X2 conditional on the explanatory variable X1.

Pr=u1(1 − u2) Pr=(1 − u1)(1 − u2)

Pr=(1 − u1)u2Pr=u1u2

x2 = x̂2( · , u2)
x̂(u1, u2)

x1 = x̂1(u1)

Figure 1: The four corrected orthants and accumulated probabilities.

Let us consider now (u1, u2) and (v1, v2) ∈ [0, 1]2 where ui < vi, i = 1, 2. According
to the previous discussion is easy to see that Figure 2 represents a bivariate central region
for the random vector X given by the conditional function. Let consider now Y = (Y1, Y2)
such that X ≤c−disp Y. Then it holds by (10) and (11) that

x̂1(v1) − x̂1(u1) ≤ ŷ1(v1) − ŷ1(v1)

x̂2(u, v2) − x̂2(u, u2) ≤ ŷ2(u, v2) − ŷ2(u, u2),

for all 0 ≤ ui ≤ vi ≤ 1, i = 1, 2, u ∈ [0, 1]. Then is easy to note that the central region for
X represented in Figure 2 is less widely separated than the corresponding for Y. Therefore
the interpretation of ≤c−disp in terms of dispersion is clear: we have found a wider region
that accumulates the same probability.

x̂(u1, v2) x̂(v1, v2)

x̂(u1, u2)
x̂(v1, u2)x1 = x̂1(u1) x1 = x̂1(v1)

x2 = x̂2( · , u2)

x2 = x̂2( · , v2)

Pr=(v2 − u2)(v1 − u1)

Figure 2: Central Region for X

To continue with the interpretation we observe that given an n-dimensional random
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vector X with density function fX then

fX(x̂(u)) = f1(x̂(u1))

n∏

i=2

fi|1,...,i−1(x̂i(u1, . . . , ui−1)),

for all u ∈ [0, 1]n, where f1 is the density function of X1 and fi|1,...,i−1 is the density

function of

(
Xi

∣∣∣∣∣
i−1⋂
j=1

Xj = x̂j(u1, . . . , uj)

)
. Therefore from (10), (11) and (4), it is clear

that if X ≤c−disp Y then

fX(x̂(u)) ≥ fY(ŷ(u)),∀u ∈ [0, 1]n.

Hence the multivariate density functions evaluated at standard constructions are ordered
as a clear generalization of (4).

We observe that ≤c−disp is not invariant under the permutation of the marginal dis-
tributions because the standard construction depends on the choice of the ordering of the
marginal distributions. This is also the case of the ≤disp and ≤var orders. On the other
hand is easily to prove that ≤c−disp is location invariant.

The ≤c−disp order can be also interpreted in terms of local volume elements. Let X and
Y two n-dimensional random vectors. Oja (1983) defined that Y is more scattered than X,
denoted by X ≤∆ Y, if there is a function k : R

n 7−→ R
n such that Y =st k(X) and for all

{x1, . . . ,xn+1} ⊂ R
n it holds that

∆(k(x1), . . . , k(xn+1)) ≥ ∆(x1, . . . ,xn+1), (12)

where ∆(x1, . . . ,xn+1) is the volume of the “simplex” with vertices at
x1, . . . ,xn+1.

Note that although condition (12) seems to be a strict one, in practice it is only necessary
to check if the absolute value of the determinant of the Jacobian matrix of k is bigger than
1 (see Giovagnoly and Wynn (1995)), i.e.

abs(Det(Jk(x))) ≥ 1, for all x ∈ R
n. (13)

Let us consider two n-dimensional random vectors X and Y such that X ≤c−disp

Y. From the characterization of the univariate expansion functions it easily holds that
∂φi/∂xi ≥ 1 for i = 1, . . . , n. Due to the fact that φ has a lower triangular Jacobian matrix
it is apparent that Det(Jφ) ≥ 1. Hence from (13) it holds that ≤c−disp⇒≤∆.

Fernández-Ponce and Suárez-Llorens (2003) proved in Theorem 3.1 that if we take a
function k such that Y =st k(X) and k has a lower triangular matrix with diagonal elements
strictly positive then k has the form of the function φ. From this result there are many
possible distributions which can be compared in the ≤c−disp ordering. If we consider a
random vector X = (X1, . . . ,Xn) and a transformation Y = φ(X), such that Yi = fi(Xi) +
gi(X1, . . . ,Xi−1), where fi is an strictly increasing differentiable expansion function and gi

is any differentiable function for all i = 1, . . . , n, then it is apparent that X ≤c−disp Y. As
a particular case, this result holds for fi(x) = aix where ai > 1, for i = 1, . . . , n.

To finish this section we present a result for the preservation of the conditional dispersive
order under conjuction of independent random vectors ordered in the conditional dispersive
order.
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Theorem 1. Let X1,X2, . . . ,Xm be a set of independent random vectors where the di-
mension of Xi is ni, i = 1, 2, . . . ,m and let Y1,Y2, . . . ,Ym be another set of independent
random vectors where the dimension of Yi is ni, i = 1, 2, . . . ,m. If Xi ≤c−disp Yi for
i = 1, 2, . . . ,m then

(Y1,Y2, . . . ,Ym) ≤c−disp (Y1,Y2, . . . ,Ym).

4 The relationships among ≤disp, ≤var and ≤c−disp orders

In this section we study the relationships among the ≤disp, ≤var and ≤c−disp orders. The
relationship among the ≤disp and conditions (10) and (11) was given by Fernández-Ponce
and Suárez-Llorens (2003) (see Corollary 3.1), and therefore the following result holds.

Theorem 2. Let X and Y be two n-dimensional random vectors. If X ≤disp Y then
X ≤c−disp Y.

We want to emphasize that Fernández-Ponce and Suárez-Llorens (2003) did not consider
(10) and (11) as a multivariate dispersive order and they just studied the relationship among
these conditions and the ≤disp order.

Next we show that the variability order is stronger than the conditional dispersive order.

Theorem 3. Let X and Y be two n-dimensional random vectors. If X ≤var Y then
X ≤c−disp Y.

Proof. Let X and Y be two n-dimensional random vectors and let x̂(·), ŷ(·) the correspond-
ing standard constructions. In particular, condition (9) implies that

ŷi(u1, u2, . . . , ui) − x̂i(u1, u2, . . . , ui) is increasing in ui ∈ (0, 1), for i = 1, 2, . . . , n.

Note that if we fix u1, . . . , ui−1 then ŷi(u1, . . . , ui) and x̂n(u1, . . . , ui) are the univariate

quantile functions of (Xi |
i−1⋂
j=1

Xj = x̂j(u1, . . . , uj)) and (Yi |
i−1⋂
j=1

Yj = ŷj(u1, . . . , uj)) respec-

tively. Hence the proof follows from (10) and (11).

Next we show that previous implications are strict and also we show the the ≤disp and
≤var orders, in general, are not related.

Example 1. Let X ∼ N((0, 0),ΣX) and Y ∼ N((0, 0),ΣY) be two bivariate normal distri-
butions where

ΣX =




σ1X σ12X

σ12X σ2X


 and ΣY =




σ1Y σ12Y

σ12Y σ2Y


 .

Note that without lack of generality the mean vectors can be considered with components
equal to zero. It is well known that the conditional distributions for multivariate normal
distribution are also normal distributions. Then, the distribution of X2 conditioned to X1

is given by

(X2 |X1=x1) ∼ N

(
x1

σ12X

σ2
1X

, σ2X

√
(1 − ρ2

X
)

)
,

7
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where ρX represents the correlation coefficient of X1 and X2. Analogously for Y2 conditioned
to Y1.

First, we consider the ≤c−disp ordering. It is a well known result that two univariate
normal distributions are ordered in the univariate dispersion sense if, and only if their
variances are ordered. Hence using (10) and (11) it easily holds that X ≤c−disp Y if, and
only if

σ1Y ≥ σ1X

σ2Y

√
1 − ρ2

Y
≥ σ2X

√
1 − ρ2

X
. (14)

Now we consider the ≤disp order. Fernández-Ponce and Suárez-Llorens (2003) stud-
ied the Jacobian matrix of the function φ given in (7) and (8) for the bivariate normal
distribution and they obtained a 2 × 2 lower triangular matrix of the form

Jφ =




σ1Y
σ1X

0

σ2Y
σ1X

(
ρY − ρX

√
(1−ρ2

Y
)√

(1−ρ2
X

)

)
σ2Y

√
(1−ρ2

Y
)

σ2X

√
(1−ρ2

X
)
.




Giovagnoli and Wynn (1995) characterized a multivariate expansion function in terms of
its Jacobian matrix. Let k(·) be a continuously differentiable function. Then k(·) is a
multivariate expansion function if, and only if the matrix Jk(x)tJk(x) − In is nonnegative
definite ∀x ∈ R

n, where Jk =
{

∂ki

∂xj

}
is the Jacobian matrix of k(·) and In is the identity

matrix of order n. Under a straightforward computation of the eigenvalues of the matrix
Jφ(x)tJφ(x)−I2 we obtain that this one is nonnegative definite if, and only if the inequalities
given by (14) hold and

σ2
2Y

(
ρY

√
1 − ρ2

X
− ρX

√
1 − ρ2

Y

)2

≤ (σ2
1Y − σ2

1X)(σ2
2Y(1 − ρ2

Y
) − σ2

2X(1 − ρ2
X

)). (15)

Let us consider now the ≤var order. Given that we deal with conditional normal dis-
tributions the standard construction for X is easily given by x̂1(u1) = QZ(u1)σ1X and

x̂2(u1, u2) = QZ(u1)ρXσ2X + QZ(u2)σ2X

√
(1 − ρ2

X
) where Z is distributed as N(0, 1) and

analogously for Y. Then X ≤var Y holds if, and only if the inequalities given by (14) hold
and

σ2YρY ≥ σ2XρX. (16)

Note that from (16) the ≤var ordering depends on the signs of the correlation coefficients.
Now we present some detailed cases in order to study the strict implications among the

different dispersion orders. If we take σiX = σiY, for i = 1, 2, then (14) holds if, and only
if |ρX| ≥ |ρY|. If we take ρX = −0, 7 and ρY = 0, 4, then X ≤c−disp Y holds and from
(16) X ≤var Y also holds. However from (15) X ≤disp Y does not hold. Under the same
assumption for the marginal variances and taking ρX = 0, 7 and ρY = 0, 4, X ≤c−disp Y

holds. However from (15) and (16) neither X ≤disp Y nor X ≤var Y hold respectively. On
the other hand if we take ρX = ρY and σiX < σiY, for i = 1, 2. Then from (14) and (15),
both X ≤c−disp Y and X ≤disp Y hold respectively. However the ≤var ordering depends on
the signs of the correlation coefficients. In particular if we consider ρX = ρY < 0 does not
hold.
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To summarize we have the following chains of strict implications:

≤disp ⇒ ≤c−disp ⇒ ≤∆

⇑
≤var

Following Müller and Scarsini (2001), Khakedi and Kochar (2005) and Arias-Nicolás,
Fernández-Ponce, Luque-Clavo and Suarez-Llorens (2005), a natural question arises: Whether
the ≤c−disp order holds under the dispersive order of the marginals, for random vectors with
the same copula?

A copula C is a cumulative distribution function with uniform margins on [0, 1]. Further-
more, it has been shown that if H is a n-dimensional distribution function, with marginal dis-
tribution functions F1, . . . , Fn then there exists a n-copula C such that for all (x1, . . . , xn) ∈
R

n, it holds that H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). Moreover, if F1, · · · , Fn are con-
tinuous then C is unique (for details about copulas see Nelsen (1999)). It follows that if
X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) are two n-dimensional random variables, then they
have the same copula if, and only if (X1, . . . ,Xn) =st (QX1(FY1(Y1)), . . . , QXn

(FYn
(Yn))).

To summarize the copula allows us to separate the effect of the dependence from effects of
the marginal distributions. With this settings, we can formulate the following theorem.

Theorem 4. Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) be two n-dimensional random
vectors such that they have the same copula. Then X ≤c−disp Y if and only if Xi ≤disp Yi

for all i = 1, . . . , n.

Proof. Arias-Nicolás, Fernández-Ponce, Luque-Calvo and Suárez–Llorens (2005) showed
that, for two random vectors with the same copula, the function φ can be expressed as

φi(x1, . . . , xi) = QYi
(FXi

(xi)). (17)

for i = 1, . . . , n. Hence in light of (3) the result holds.

Therefore given two n-dimensional random vectors X and Y, with the same copula,
then

X ≤disp Y ⇔ X ≤c−disp Y ⇔ Xi ≤disp Yi ∀i = 1, 2, . . . , n.

⇑
X ≤var Y (18)

Looking at the last discussion of the Example 1 and from the well known fact that two
bivariate normal distributions have a common copula if, and only if they have the same
correlation coefficient then it is apparent a strict implication for ≤var holds. As a special
case of distribution functions having the same structure dependence are two random vectors
X and Y having independent components.

The strict implication in (18) for the ≤var ordering it is not surprising if we take in ac-
count that the ≤var ordering seems to be associated with the positive dependence structure
of the random vectors. Those considerations lead us to assume some dependence proper-
ties for the random vectors. To simplify the notation we will say that the random vector
(X1, . . . ,Xn) is conditionally increasing in quantile, denoted by CIQ in order to simplify, if
the standard construction x̂(u) is increasing in u ∈ (0, 1)n.
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The CIQ notion is related to the following property. The random vector (X1, . . . ,Xn) is
said to be conditionally increasing in sequence (CIS) if (see Barlow and Proschan (1975)),
Xi ↑st (X1, . . . ,Xi−1), i = 2, . . . , n, that is, if

[Xi|X1 = x1, . . . ,Xi−1 = xi−1] ≤st [Xi|X1 = x′
1, . . . ,Xi−1 = x′

i−1]

whenever xj ≤ x′
j , j = 1, 2, . . . , i − 1.

Rubinstein, Samorodnitsky and Shaked (1985) proved that the CIS property implies the
CIQ property. Also the CIQ property is preserved by strictly increasing transformations of
each component.

Theorem 5. Let X and Y be two n-dimensional random vectors with the same copula. If
X is CIQ then X ≤var Y if, and only if Xi ≤disp Yi for all i = 1, . . . , n.

Proof. Note that from (18) it is only necessary to show the sufficient condition. Under the
expression of φ for random vectors with the same copula given by equation (17) and the
fact that φ maps the standard construction of X to the corresponding of Y it easily holds
that QYi

(FXi
(x̂i(u1, . . . , ui)) = ŷi(u1, . . . , ui) for all i = 1, . . . , n. Hence

FXi
(x̂i(u1, . . . , ui)) = FYi

(ŷi(u1, . . . , ui)) for all i = 1, . . . , n. (19)

From (19) if X is CIQ is apparent that Y is also CIQ. If we take (v1, . . . , vi) ≥ (u1, . . . , ui)
then

ŷi(v1, . . . , vi) ≥ ŷi(u1, . . . , ui)

x̂i(v1, . . . , vi) ≥ x̂i(u1, . . . , ui)

for i = 1, . . . , n. On the other hand, from (19) it holds that x̂i(u1, . . . , ui) and ŷi(u1, . . . , ui)
provide the same univariate quantile for the marginal variables Xi and Yi respectively. By
hypothesis assumption the marginal distributions are ordered in dispersion. Then

ŷi(v1, . . . , vi) − ŷi(u1, . . . , ui) ≥ x̂i(v1, . . . , vi) − x̂i(u1, . . . , ui)

for all (v1, . . . , vi) ≥ (u1, . . . , ui). Then we obtain condition (9). Hence X ≤var Y.

Therefore from (18) and Theorem 5, given two random vectors X and Y, with the same
copula and with the CIQ property, then we have the following chain of equivalences:

X ≤disp Y ⇔ X ≤c−disp Y ⇔ X ≤var Y ⇔ Xi ≤disp Yi ∀i = 1, . . . , n. (20)

We would like to emphasize that the equivalences given by (20) simplify the conditions
where the ≤var ordering can be verified which, from a practical viewpoint, can be very
complicated to compute. Specifically, we can take advantage of (20) in the applications of
the ≤var ordering.

5 Applications

5.1 Models of ordered random variables

An interesting application of the implications given by (20) can be given for several models
of ordered random variables with applications in statistics and reliability. For instance,
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the order statistics from a sample of i.i.d. random variables, the random vector of the
first n epoch times of a nonhomogeneous Poisson process, k records and order statistics
under multivariate imperfect repair. A general concept where the previous models are
included is the concept of generalized order statistics see Kamps (1995). Formally, let
n ∈ N, k ≥ 1, m1, . . . ,mn−1 ∈ R, Mr =

∑n−1
j=r mj, 1 ≤ r ≤ n − 1, be parameters such that

γr = k + n − r + Mr ≥ 1 for all r ∈ 1, . . . , n − 1, and let m̃ = (m1, . . . ,mn−1), if n ≥ 2
(m̃ ∈ R arbitrary, if n = 1). We call uniform generalized order statistics to the random
vector (U(1,n,m̃,k), . . . , U(n,n,m̃,k)) with joint density function

h(u1, . . . , un) = k




n−1∏

j=1

γj






n−1∏

j=1

(1 − uj)
mj


 (1 − un)k−1

on the cone 0 ≤ u1 ≤ . . . ≤ un ≤ 1. Now given a distribution function F we call generalized
order statistics (GOS) based on F to the random vector

(X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) ≡
(
F−1(U(1,n,m̃,k)), . . . , F

−1(U(n,n,m̃,k))
)
. (21)

Note that if F is an absolutely continuous distribution then F−1 is strictly increasing.
Therefore is apparent from (21) that two random vectors of generalized order statistics, with
the same parameters, and possibly, based on different absolutely continuous distributions
F and G, have the same copula. In addition a random vector of generalized order statistics
have the CIS property (this follows from the Markovian property of GOS and the transition
probabilities) , so it also has the CIQ property.

Under the previous arguments and using (20) it holds that two random vectors of gen-
eralized order statistics (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) and (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)), based on
absolutely continuous distribution functions F and G, respectively, are ordered in the ≤disp,
≤c−disp and ≤var multivariate dispersive orderings if, and only if the marginals are ordered
in the univariate dispersive order, that is if X(r,n, em,k) ≤disp Y(r,n, em,k), for all r : 1, ..., n.
The last condition holds under the assumption F ≤disp G (see Theorem 3.12 in Belzunce,
Mercader and Ruiz (2005)). With a simpler argument, this result simplifies Theorem 3.11
by Belzunce, Mercader and Ruiz (2005), Theorem 2.3 by Belzunce, Ruiz and Ruiz (2003)
and Theorem 3.1 by Belzunce and Ruiz (2002).

5.2 Variability ordering of convolutions

Convolutions appear naturally in several context such as risk theory, reliability and statis-
tics. For example consider an insurance company with a number n of clients, with individual
risks X1, . . . ,Xn then the company bears the risk S =

∑n
i=1 Xi. In reliability theory convo-

lutions appear when a failed unit is replaced by a new one and the total life is obtained by
the addition of the two lifelength. Also several statistics are linear combinations of random
variables. In the literature one can find several results on variability comparisons of convo-
lutions. Most of these results are given for some parametric models (uniform and gamma
distributions) of independent random variables see for example Kochar and Ma (1999a) and
(1999b), Korwar (2002), Khaledi and Kochar (2002) and (2004) in the case of the disper-
sive order. For dependent components a simple but elegant result is provided by Bäuerle
(1997), Bäuerle and Rieder (1997) and Müller (1997), which prove that the convolution of
the components of two random vectors, ordered in the supermodular order, are ordered in
the increasing convex order.
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One of the most interesting properties of the ≤var ordering is given by the study of
conditions for the variability ordering of increasing directionally transformations of the
random vectors. Recall from Rüschendorff (1983) that a real function ϕ on R

n is said to be
directionally convex if for any xi ∈ R

n, i = 1, 2, 3, 4, such that x1 ≤ x2 ≤ x4, x1 ≤ x3 ≤ x4

and x1 + x4 = x2 + x3, one has

ϕ(x2) + ϕ(x3) ≤ ϕ(x1) + ϕ(x4). (22)

Shaked and Shanthikumar (1998) in Theorem 4.2 proved that given two nonnegative n-
dimensional random vectors X and Y, with the CIS property, if X ≤var Y then ϕ(X) ≤st:icx

ϕ(Y), for all increasing directionally convex functions ϕ. Where the ≤st:icx ordering means
that E[h(ϕ(X))] ≤ E[h(ϕ(Y))] for all increasing functions h for which the expectations
exists (that is, if ϕ(X) ≤st ϕ(Y)) and Var[h(ϕ(X))] ≤ Var[h(ϕ(Y))] for all increasing
convex functions h for which the variances exist. The ≤st:icx ordering is of interest because
it lets you to compare the variances.

Note that Shaked and Shantikumar (1998) assume the ≤var ordering between two non-
negative random vectors and the CIS property. If we consider random vectors with a
common copula, using Theorem 5 and the mentioned fact that CIS implies CIQ, in this
case the ≤var ordering can be easily checked just comparing in dispersion the marginal dis-
tributions. Hence from the fact that the function ϕ(x) =

∑n
i=1 xi is increasing directionally

convex we can state the following general result.

Corollary 1. Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) be two n dimensional nonnega-
tive CIS random vectors with a common copula. If Xi ≤disp Yi for every i = 1, . . . , n , then∑n

i=1 Xi ≤st:icx
∑n

i=1 Yi.

In particular we have that V ar[h(
∑n

i=1 Xi)] ≤ V ar[h(
∑n

i=1 Yi)], for every increasing
convex function h, provided the previous variances exist, and therefore we can compare the
variability of convolutions of random variables not necessarily independent.
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