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. In order to reach our objective we define a new weaker multivariate dispersive notion. Random vectors with a common copula and positive dependence properties are analyzed.

Introduction

In the context of stochastic orders, several orders have been defined to compare two univariate random quantities in terms of their variability or dispersion. In particular, one of the most widely used in the literature is the dispersive order introduced by Lewis and Thompson (1981), see Shaked and Shantikumar (1994) as an excellent handbook to study all its properties.

Based on the properties and characterizations of the univariate dispersive order several authors have proposed different multivariate extensions, namely Shaked and Shanthikumar (1998) and Fernández-Ponce and Suárez-Llorens (2003) propose multivariate dispersive orders based on the standard construction.

In this paper we analyzed the relationship between these multivariate dispersion notions. The organization is the following. First in section 2 we present some well known characterizations of the univariate dispersion order and discuss how they have been used to define several multivariate dispersion orderings under the standard construction. Second in Section 3 we propose a new multivariate dispersion order which will be used later in Section 3 to relate the multivariate dispersion orders defined in Section 2. Third in Section 4 we show the relationship among the multivariate dispersion concepts introduced in the previous sections. In particular some interesting results are obtained for random vectors with a
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common copula and positive dependence properties. Finally, in Section 5 we present how those relationships can be applied and used to simplify some known results in the literature.

In this paper for any random variable X and an event A, we let {X|A} denote any random variable whose distribution is the conditional distribution of X given A. Expected values are assumed to exist whenever they are mentioned. By = st we denote equality in law.

The univariate dispersion order: characterizations and generalizations

A formal definition of the univariate dispersive order is based on the notion of quantile. Given a random variable X with distribution function F , we define the univariate quantile as

Q X (u) ≡ F -1 X (u) = inf{x : F X (x)
≥ u}, for all real value u ∈ (0, 1) (for definition and characterizations of the dispersive order see Section 2.B.2 in [START_REF] Shaked | Stochastic Orders and Their Applications[END_REF]). Given two random variables X and Y , we say that X is less in the dispersive order than Y , denoted by

X ≤ disp Y , if Q X (v) -Q X (u) ≤ Q Y (v) -Q Y (u) for all 0 < u ≤ v < 1. ( 1 
)
Clearly this is a dispersive order notion because it requires the distance between any two quantiles of X to be less separated than the corresponding quantiles of Y .

An interesting characterization is given in terms of expansion functions. A real valued function φ is said to be an expansion function

if φ(x ′ ) -φ(x) ≥ x ′ -x whenever x ′ ≥ x. If φ is differentiable then φ is an expansion function if dφ(x)/dx ≥ 1 for all x.
We have that X ≤ disp Y if, and only if, Y = st φ(X) for some expansion function φ.

(
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Also, from the definition, it is easy to see that X ≤ disp Y if, and only if,

φ(x) = Q Y (F X (x)) is an expansion function. (3) 
In addition, if the distribution functions of X and Y are strictly increasing, then the function φ defined in [START_REF] Bäuerle | Monotonicity results for MR/GI/1 queues[END_REF], is the only one that satisfies [START_REF] Barlow | Statistical Theory of Reliability and Life Testing[END_REF]. To finalize we present another characterization which we will use later. Given two random variables X and Y , with absolutely continuous distribution functions, and density functions

f X and f Y , then X ≤ disp Y if, and only if, f X (Q X (u)) ≥ f Y (Q Y (u)), for all u ∈ (0, 1). ( 4 
)
Based on these characterizations several authors have proposed different extensions to the multivariate case. Important contributions in this case have been made by [START_REF] Oja | Descriptive statistics for multivariate distributions[END_REF] and Giovagnoly and Wynn (1995). Clearly inspired in (2), those authors define multivariate dispersion orders through the existence of a multivariate function k which maps stochastically a random vector X to another one Y, that is Y = st k(X). It is well known that there are different transformations that map a multivariate random vector to another one. For this reason Shaked and Shanthikumar (1998) and Fernández-Ponce and Suárez-Llorens (2003) consider a particular one based on the standard construction. First we need some definitions. From now on, we will assume that the multivariate distribution function is an absolutely continuous function.
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Let X be a random vector and let u = (u 1 , . . . , u n ) in [0, 1] n . The standard construction for X, denoted by x(u) = (x 1 (u 1 ), x2 (u 1 , u 2 ), . . . , xn (u 1 , . . . , u n )), is defined as follows

x1 (u 1 ) = Q X 1 (u 1 ) xi (u 1 , . . . , u i ) = Q {X i | i-1 T j=1 X j =x j (u j )} (u i ), for i = 2, . . . , n.
This known construction is widely used in simulation theory and plays the role of the quantile in the multivariate case. The following result, it is well known (see Li, Scarsini and Shaked (1996

)) x(U) = st X, (5) 
where U is a random vector with n independent uniform distributed components on [0, 1].

By "inverting" the standard construction, we can express the independent uniform random variables U i 's as functions of the X i 's. Let us denote

⋆ x (X) = st U. ( 6 
)
Let us consider the n-dimensional function φ(x) = (φ 1 (x 1 ), . . . , φ n (x 1 , . . . , x n )) defined as

φ 1 (x 1 ) = (ŷ 1 • ⋆ x 1 )(x 1 ) = Q Y 1 (F X 1 (x 1 )) (7) 
φ i (x 1 , . . . , x i ) = (ŷ i • ⋆ x i )(x 1 , . . . , x i ) = Q {Y i | i-1 T j=1 Y j =φ j (x 1 ,...,x j )} (F {X i | i-1 T j=1 X j =x j } (x i )), (8) 
for i = 2, . . . , n.

It is clear from ( 5) and ( 6) that φ maps stochastically X to Y, that is φ(X) = st Y. It is also apparent that the standard construction can be seen as a generalization of the univariate quantile function.

Let X and Y be two random vectors on R n and let x(•), ŷ(•) the corresponding standard constructions. Shaked and Shantikumar (1998) considered the following condition

ŷ(u) -x(u) is increasing in u ∈ (0, 1) n , (9) 
as a multivariate generalization of (1). To maintain a coherent notation, we will say that X is less than Y in variability if [START_REF] Giovagnoli | Multivariate dispersion orderings[END_REF] holds, and we will denote it as X ≤ var Y. Note that (9) can be rewritten in terms of the function φ defined in ( 7) and (8) as

φ(x(u)) -x(u) is increasing in u ∈ (0, 1) n .
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Another multivariate generalization based on the standard construction was given recently by Fernández-Ponce and Suárez-Llorens (2003). Given two n-dimensional random vectors X and Y, we say that X is less in the multivariate dispersive order than Y, denoted by X ≤ disp Y, if, and only, if

x(v) -x(u) 2 ≤ ŷ(v) -ŷ(u) 2
for all u, v ∈ [0, 1] n , where • 2 means the Euclidean distance. Note that the last inequality can be considered as a multivariate extension of (1). Also Fernández-Ponce and Suárez-Llorens (2003) proved that the ≤ disp order is equivalent to check if the function φ defined in [START_REF] Belzunce | Multivariate properties of random vectors of order statistics[END_REF] and ( 8) is a multivariate expansion function, where multivariate expansion means that ||φ(x) -φ(x ′ )|| 2 ≥ ||xx ′ || 2 for all x, x ′ in R n , and therefore can be also seen as a multivariate generalization of (3).

The Conditional Dispersive Order

In this section we present a new multivariate dispersion order as a generalization of (3) for the univariate case. The purpose of this order is to relate the ≤ disp and ≤ var orders as we will see later on in Section 4. On the other hand it will also give a meaningful interpretation in terms of dispersion to both orders. Definition 1. Let X and Y be two n-dimensional random vectors. We consider the function φ defined in [START_REF] Belzunce | Multivariate properties of random vectors of order statistics[END_REF] and (8) which maps X onto Y. We say that X is less in the conditional dispersive order than Y, denoted by

X ≤ c-disp Y, if φ i (x 1 , . . . , x i ) is an expansion function in x i in the univariate sense, for all i = 1 . . . , n.
Roughly speaking, the conditional dispersive order is defined through a function which maps stochastically a vector to another one and satisfies that i-th component is an expansion function in x i when x 1 , . . . , x i-1 remains fixed. We observe that from [START_REF] Belzunce | Multivariate properties of random vectors of order statistics[END_REF], ( 8) and (3) we have that φ 1 (x 1 ) is an expansion function in x 1 if, and only if,

X 1 ≤ disp Y 1 (10) 
and for fixed (x 1 , . . . ,

x i-1 ) ∈ R i-1 , φ i (x 1 , . . . , x i ) is an expansion function in x i , if, and only if,    X i i-1 j=1 X j = xj (u 1 , . . . , u j )    ≤ disp    Y i i-1 j=1 Y j = ŷj (u 1 , . . . , u j )    , (11) 
for i = 2, . . . , n and for all u i such that 0

< u i < 1, i = 1, . . . , n.
Therefore the conditional dispersive order can be checked by the univariate dispersive order. The conditions [START_REF] Kamps | A Concept of Generalized Order Statistics[END_REF] and [START_REF] Khaledi | Dispersive ordering among linear combinations of uniform random variables[END_REF] provide a geometrical interpretation for the ≤ c-disp order which we present in the bivariate case.

Fernández-Ponce and Suárez-Llorens (2003) provided the notion of corrected orthant associated with the standard construction and studied the accumulated probability in all of them. Let X = (X 1 , X 2 ) be a bivariate random vector and let (u 1 , u 2 ) in [0, 1] 2 . The intersection between the curve x 2 = x2 (•, u 2 ), where u 2 is fixed, and the line x 1 = x1 (u 1 ) is achieved at the point x(u 1 , u 2 ) = (x 1 (u 1 ), x2 (u 1 , u 2 )) and this intersection provides four corrected orthants (2 n on R n ) which we represent in Figure 1.
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In order to clarify the understanding of the corrected orthant concept, we show the definition of the left lower corrected orthant one

{(x 1 , x 2 ) : x 1 ≤ x1 (u 1 ), x 2 ≤ x2 (F X 1 (x 1 ), u 2 )}.
The result states that the accumulated probability in all corrected orthants depend on u 1 and u 2 (see Figure 1). Note that the conditional function x 2 = x2 (•, u 2 ) represents the extreme behavior of the dependent variable X 2 conditional on the explanatory variable X 1 .

Pr=u 1 (1 -u 2 ) Pr=(1 -u 1 )(1 -u 2 ) Pr=(1 -u 1 )u 2 Pr=u 1 u 2 x 2 = x2 ( • , u 2 ) x(u 1 , u 2 ) x 1 = x1 (u 1 )
Figure 1: The four corrected orthants and accumulated probabilities.

Let us consider now

(u 1 , u 2 ) and (v 1 , v 2 ) ∈ [0, 1] 2 where u i < v i , i = 1, 2.
According to the previous discussion is easy to see that Figure 2 represents a bivariate central region for the random vector X given by the conditional function.

Let consider now Y = (Y 1 , Y 2 ) such that X ≤ c-disp Y.
Then it holds by [START_REF] Kamps | A Concept of Generalized Order Statistics[END_REF] and [START_REF] Khaledi | Dispersive ordering among linear combinations of uniform random variables[END_REF] 

that x1 (v 1 ) -x1 (u 1 ) ≤ ŷ1 (v 1 ) -ŷ1 (v 1 ) x2 (u, v 2 ) -x2 (u, u 2 ) ≤ ŷ2 (u, v 2 ) -ŷ2 (u, u 2 ), for all 0 ≤ u i ≤ v i ≤ 1, i = 1, 2, u ∈ [0, 1].
Then is easy to note that the central region for X represented in Figure 2 is less widely separated than the corresponding for Y. Therefore the interpretation of ≤ c-disp in terms of dispersion is clear: we have found a wider region that accumulates the same probability.

x(u 1 , v 2 ) x(v 1 , v 2 ) x(u 1 , u 2 ) x(v 1 , u 2 ) x 1 = x1 (u 1 ) x 1 = x1 (v 1 ) x 2 = x2 ( • , u 2 ) x 2 = x2 ( • , v 2 ) Pr=(v 2 -u 2 )(v 1 -u 1 )
Figure 2: Central Region for X

To continue with the interpretation we observe that given an n-dimensional random
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vector X with density function f X then

f X (x(u)) = f 1 (x(u 1 )) n i=2 f i|1,...,i-1 (x i (u 1 , . . . , u i-1 )),
for all u ∈ [0, 1] n , where f 1 is the density function of X 1 and f i|1,...,i-1 is the density function of

X i i-1 j=1
X j = xj (u 1 , . . . , u j ) . Therefore from ( 10), ( 11) and ( 4), it is clear

that if X ≤ c-disp Y then f X (x(u)) ≥ f Y (ŷ(u)), ∀u ∈ [0, 1] n .
Hence the multivariate density functions evaluated at standard constructions are ordered as a clear generalization of (4).

We observe that ≤ c-disp is not invariant under the permutation of the marginal distributions because the standard construction depends on the choice of the ordering of the marginal distributions. This is also the case of the ≤ disp and ≤ var orders. On the other hand is easily to prove that ≤ c-disp is location invariant.

The ≤ c-disp order can be also interpreted in terms of local volume elements. Let X and Y two n-dimensional random vectors. [START_REF] Oja | Descriptive statistics for multivariate distributions[END_REF] 

defined that Y is more scattered than X, denoted by X ≤ ∆ Y, if there is a function k : R n -→ R n such that Y = st k(X) and for all {x 1 , . . . , x n+1 } ⊂ R n it holds that ∆(k(x 1 ), . . . , k(x n+1 )) ≥ ∆(x 1 , . . . , x n+1 ), (12) 
where ∆(x 1 , . . . , x n+1 ) is the volume of the "simplex" with vertices at x 1 , . . . , x n+1 . Note that although condition [START_REF] Khaledi | Ordering convolutions of gamma random variables[END_REF] seems to be a strict one, in practice it is only necessary to check if the absolute value of the determinant of the Jacobian matrix of k is bigger than 1 (see Giovagnoly and Wynn (1995)), i.e.

abs(Det(J

k (x))) ≥ 1, for all x ∈ R n . (13) 
Let us consider two n-dimensional random vectors X and Y such that X ≤ c-disp Y. From the characterization of the univariate expansion functions it easily holds that ∂φ i /∂x i ≥ 1 for i = 1, . . . , n. Due to the fact that φ has a lower triangular Jacobian matrix it is apparent that Det(J φ ) ≥ 1. Hence from [START_REF] Khaledi | Dependence, dispersiveness, and multivariate hazard rate ordering[END_REF] it holds that ≤ c-disp ⇒≤ ∆ .

Fernández-Ponce and Suárez-Llorens (2003) proved in Theorem 3.1 that if we take a function k such that Y = st k(X) and k has a lower triangular matrix with diagonal elements strictly positive then k has the form of the function φ. From this result there are many possible distributions which can be compared in the ≤ c-disp ordering. If we consider a random vector X = (X 1 , . . . , X n ) and a transformation Y = φ(X), such that Y i = f i (X i ) + g i (X 1 , . . . , X i-1 ), where f i is an strictly increasing differentiable expansion function and g i is any differentiable function for all i = 1, . . . , n, then it is apparent that X ≤ c-disp Y. As a particular case, this result holds for f i (x) = a i x where a i > 1, for i = 1, . . . , n.

To finish this section we present a result for the preservation of the conditional dispersive order under conjuction of independent random vectors ordered in the conditional dispersive order.
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Theorem 1. Let X 1 , X 2 , . . . , X m be a set of independent random vectors where the dimension of X i is n i , i = 1, 2, . . . , m and let Y 1 , Y 2 , . . . , Y m be another set of independent random vectors where the dimension of

Y i is n i , i = 1, 2, . . . , m. If X i ≤ c-disp Y i for i = 1, 2, . . . , m then (Y 1 , Y 2 , . . . , Y m ) ≤ c-disp (Y 1 , Y 2 , . . . , Y m ).
4 The relationships among ≤ disp , ≤ var and ≤ c-disp orders

In this section we study the relationships among the ≤ disp , ≤ var and ≤ c-disp orders. The relationship among the ≤ disp and conditions ( 10) and ( 11) was given by Fernández-Ponce and Suárez-Llorens (2003) (see Corollary 3.1), and therefore the following result holds.

Theorem 2. Let X and Y be two n-dimensional random vectors.

If X ≤ disp Y then X ≤ c-disp Y.
We want to emphasize that Fernández-Ponce and Suárez-Llorens (2003) did not consider ( 10) and ( 11) as a multivariate dispersive order and they just studied the relationship among these conditions and the ≤ disp order.

Next we show that the variability order is stronger than the conditional dispersive order.

Theorem 3. Let X and Y be two n-dimensional random vectors. If X ≤ var Y then X ≤ c-disp Y.
Proof. Let X and Y be two n-dimensional random vectors and let x(•), ŷ(•) the corresponding standard constructions. In particular, condition [START_REF] Giovagnoli | Multivariate dispersion orderings[END_REF] implies that ŷi (u 1 , u 2 , . . . , u i ) -xi (u 1 , u 2 , . . . , u i ) is increasing in u i ∈ (0, 1), for i = 1, 2, . . . , n.

Note that if we fix u 1 , . . . , u i-1 then ŷi (u 1 , . . . , u i ) and xn (u 1 , . . . , u i ) are the univariate quantile functions of (

X i | i-1 j=1 X j = xj (u 1 , . . . , u j )) and (Y i | i-1 j=1
Y j = ŷj (u 1 , . . . , u j )) respectively. Hence the proof follows from ( 10) and [START_REF] Khaledi | Dispersive ordering among linear combinations of uniform random variables[END_REF].

Next we show that previous implications are strict and also we show the the ≤ disp and ≤ var orders, in general, are not related.

Example 1. Let X ∼ N ((0, 0), Σ X ) and Y ∼ N ((0, 0), Σ Y ) be two bivariate normal distributions where

Σ X =   σ 1X σ 12X σ 12X σ 2X   and Σ Y =   σ 1Y σ 12Y σ 12Y σ 2Y   .
Note that without lack of generality the mean vectors can be considered with components equal to zero. It is well known that the conditional distributions for multivariate normal distribution are also normal distributions. Then, the distribution of X 2 conditioned to X 1 is given by

(X 2 | X 1 =x 1 ) ∼ N x 1 σ 12X σ 2 1X , σ 2X (1 -ρ 2 X ) ,
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where ρ X represents the correlation coefficient of X 1 and X 2 . Analogously for Y 2 conditioned to Y 1 . First, we consider the ≤ c-disp ordering. It is a well known result that two univariate normal distributions are ordered in the univariate dispersion sense if, and only if their variances are ordered. Hence using [START_REF] Kamps | A Concept of Generalized Order Statistics[END_REF] and (11) it easily holds that X ≤ c-disp Y if, and only if

σ 1Y ≥ σ 1X σ 2Y 1 -ρ 2 Y ≥ σ 2X 1 -ρ 2 X . (14) 
Now we consider the ≤ disp order. Fernández-Ponce and Suárez-Llorens (2003) studied the Jacobian matrix of the function φ given in [START_REF] Belzunce | Multivariate properties of random vectors of order statistics[END_REF] and (8) for the bivariate normal distribution and they obtained a 2 × 2 lower triangular matrix of the form

J φ =     σ 1Y σ 1X 0 σ 2Y σ 1X ρ Y -ρ X √ (1-ρ 2 Y ) √ (1-ρ 2 X ) σ 2Y √ (1-ρ 2 Y ) σ 2X √ (1-ρ 2 X ) .    
Giovagnoli and Wynn (1995) characterized multivariate expansion function in terms of its Jacobian matrix. Let k(•) be a continuously differentiable function. Then k(•) is a multivariate expansion function if, and only if the matrix

J k (x) t J k (x) -I n is nonnegative definite ∀x ∈ R n , where J k = ∂k i ∂x j
is the Jacobian matrix of k(•) and I n is the identity matrix of order n. Under a straightforward computation of the eigenvalues of the matrix J φ (x) t J φ (x)-I 2 we obtain that this one is nonnegative definite if, and only if the inequalities given by (14) hold and

σ 2 2Y ρ Y 1 -ρ 2 X -ρ X 1 -ρ 2 Y 2 ≤ (σ 2 1Y -σ 2 1X )(σ 2 2Y (1 -ρ 2 Y ) -σ 2 2X (1 -ρ 2 X )). ( 15 
)
Let us consider now the ≤ var order. Given that we deal with conditional normal distributions the standard construction for X is easily given by x1 (u

1 ) = Q Z (u 1 )σ 1X and x2 (u 1 , u 2 ) = Q Z (u 1 )ρ X σ 2X + Q Z (u 2 )σ 2X (1 -ρ 2 X )
where Z is distributed as N (0, 1) and analogously for Y. Then X ≤ var Y holds if, and only if the inequalities given by [START_REF] Kochar | Dispersive ordering of convolutions of exponential random variables[END_REF] hold and

σ 2Y ρ Y ≥ σ 2X ρ X . ( 16 
)
Note that from [START_REF] Korwar | On stochastic orders for sums of independent random variables[END_REF] the ≤ var ordering depends on the signs of the correlation coefficients. we present some detailed cases in order to study the strict implications among the different dispersion orders. If we take σ iX = σ iY , for i = 1, 2, then (14) holds if, and only if |ρ X | ≥ |ρ Y |. If we take ρ X = -0, 7 and ρ Y = 0, 4, then X ≤ c-disp Y holds and from (16) X ≤ var Y also holds. However from (15) X ≤ disp Y does not hold. Under the same assumption for the marginal variances and taking ρ X = 0, 7 and ρ Y = 0, 4, X ≤ c-disp Y holds. However from (15) and (16) neither X ≤ disp Y nor X ≤ var Y hold respectively. On the other hand if we take ρ X = ρ Y and σ iX < σ iY , for i = 1, 2. Then from ( 14) and (15), both X ≤ c-disp Y and X ≤ disp Y hold respectively. However the ≤ var ordering depends on the signs of the correlation coefficients. In particular if we consider ρ X = ρ Y < 0 does not hold.
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To summarize we have the following chains of strict implications:

≤ disp ⇒ ≤ c-disp ⇒ ≤ ∆ ⇑ ≤ var
Following [START_REF] Müller | Stochastic comparison of random vectors with a common copula[END_REF], Khakedi and [START_REF] Khaledi | Dependence, dispersiveness, and multivariate hazard rate ordering[END_REF] and Arias-Nicolás, Fernández-Ponce, Luque-Clavo and Suarez-Llorens (2005), a natural question arises: Whether the ≤ c-disp order holds under the dispersive order of the marginals, for random vectors with the same copula?

A copula C is a cumulative distribution function with uniform margins on [0, 1]. Furthermore, it has been shown that if H is a n-dimensional distribution function, with marginal distribution functions F 1 , . . . , F n then there exists a n-copula C such that for all (x 1 , . . . , x n ) ∈ R n , it holds that H(x 1 , . . . , x n ) = C(F 1 (x 1 ), . . . , F n (x n )). Moreover, if F 1 , • • • , F n are continuous then C is unique (for details about copulas see [START_REF] Nelsen | An Introduction to Copulas[END_REF]). It follows that if X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y n ) are two n-dimensional random variables, then they have the same copula if, and only if (X 1 , . . . ,

X n ) = st (Q X 1 (F Y 1 (Y 1 )), . . . , Q Xn (F Yn (Y n ))).
To summarize the copula allows us to separate the effect of the dependence from effects of the marginal distributions. With this settings, we can formulate the following theorem.

Theorem 4. Let X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y n ) be two n-dimensional random vectors such that they have the same copula. Then X ≤ c-disp Y if and only if X i ≤ disp Y i for all i = 1, . . . , n.

Proof. Arias-Nicolás, Fernández-Ponce, Luque-Calvo and Suárez-Llorens (2005) showed that, for two random vectors with the same copula, the function φ can be expressed as

φ i (x 1 , . . . , x i ) = Q Y i (F X i (x i )). ( 17 
)
for i = 1, . . . , n. Hence in light of (3) the result holds.

Therefore given two n-dimensional random vectors X and Y, with the same copula, then

X ≤ disp Y ⇔ X ≤ c-disp Y ⇔ X i ≤ disp Y i ∀i = 1, 2, . . . , n. ⇑ X ≤ var Y (18) 
Looking at the last discussion of the Example 1 and from the well known fact that two bivariate normal distributions have a common copula if, and only if they have the same correlation coefficient then it is apparent a strict implication for ≤ var holds. As a special case of distribution functions having the same structure dependence are two random vectors X and Y having independent components.

The strict implication in [START_REF] Li | Linkages: A tool for the construction of multivariate distributions with given nonoverlapping multivariate marginals[END_REF] for the ≤ var ordering it is not surprising if we take in account that the ≤ var ordering seems to be associated with the positive dependence structure of the random vectors. Those considerations lead us to assume some dependence properties for the random vectors. To simplify the notation we will say that the random vector (X 1 , . . . , X n ) is conditionally increasing in quantile, denoted by CIQ in order to simplify, if the standard construction x(u) is increasing in u ∈ (0, 1) n .
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One of the most interesting properties of the ≤ var ordering is given by the study of conditions for the variability ordering of increasing directionally transformations of the random vectors. Recall from [START_REF] Rüschendorff | Solution of a statistical optimization problem by rearrangement methods[END_REF] that a real function ϕ on R n is said to be directionally convex if for any x i ∈ R n , i = 1, 2, 3, 4, such that x 1 ≤ x 2 ≤ x 4 , x 1 ≤ x 3 ≤ x 4 and x 1 + x 4 = x 2 + x 3 , one has ϕ(x 2 ) + ϕ(x 3 ) ≤ ϕ(x 1 ) + ϕ(x 4 ).

(
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Shaked and Shanthikumar (1998) in Theorem 4.2 proved that given two nonnegative ndimensional random vectors X and Y, with the CIS property, if X ≤ var Y then ϕ(X) ≤ st:icx ϕ(Y), for all increasing directionally convex functions ϕ. Where the ≤ st:icx ordering means that E[h(ϕ(X))] ≤ E[h(ϕ(Y))] for all increasing functions h for which the expectations exists (that is, if ϕ(X) ≤ st ϕ(Y)) and Var[h(ϕ(X))] ≤ Var[h(ϕ(Y))] for all increasing convex functions h for which the variances exist. The ≤ st:icx ordering is of interest because it lets you to compare the variances.

Note that Shaked and Shantikumar (1998) assume the ≤ var ordering between two nonnegative random vectors and the CIS property. If we consider random vectors with a common copula, using Theorem 5 and the mentioned fact that CIS implies CIQ, in this case the ≤ var ordering can be easily checked just comparing in dispersion the marginal distributions. Hence from the fact that the function ϕ(x) = n i=1 x i is increasing directionally convex we can state the following general result.

Corollary 1. Let X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y n ) be two n dimensional nonnegative CIS random vectors with a common copula. If X i ≤ disp Y i for every i = 1, . . . , n , then n i=1 X i ≤ st:icx n i=1 Y i .

In particular we have that V ar[h( n i=1 X i )] ≤ V ar[h( n i=1 Y i )], for every increasing convex function h, provided the previous variances exist, and therefore we can compare the variability of convolutions of random variables not necessarily independent. 
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⋆ x (x) = ( ⋆ x 1 (x 1 ), . . . , ⋆ x n (x 1 , . . . , x n ))as the vector given by⋆ x 1 (x 1 ) = F X 1 (x 1 ), ⋆ x i (x 1 , . . . , x i ) = F {X i | i-1 T j=1 X j =x j } (x i ), for i = 2, . . . , n.It is also well known, see for instance Shaked and Shantikumar (1998) that
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The CIQ notion is related to the following property. The random vector (X 1 , . . . , X n ) is said to be conditionally increasing in sequence (CIS) if (see [START_REF] Barlow | Statistical Theory of Reliability and Life Testing[END_REF]), X i ↑ st (X 1 , . . . , X i-1 ), i = 2, . . . , n, that is, if

1 , . . . , X i-1 = x ′ i-1 ] whenever x j ≤ x ′ j , j = 1, 2, . . . , i -1.

Rubinstein, Samorodnitsky and [START_REF] Rubinstein | Antithetic variates, multivariate dependence and simulation of stochastic systems[END_REF] proved that the CIS property implies the CIQ property. Also the CIQ property is preserved by strictly increasing transformations of each component.

Theorem 5. Let X and Y be two n-dimensional random vectors with the same copula. If X is CIQ then X ≤ var Y if, and only if X i ≤ disp Y i for all i = 1, . . . Proof. Note that from [START_REF] Li | Linkages: A tool for the construction of multivariate distributions with given nonoverlapping multivariate marginals[END_REF] it is only necessary to show the sufficient condition. Under the expression of φ for random vectors with the same copula given by equation ( 17) and the fact that φ maps the standard construction of X to the corresponding of Y it easily holds that Q Y i (F X i (x i (u 1 , . . . , u i )) = ŷi (u 1 , . . . , u i ) for all i = 1, . . . , n. Hence

From [START_REF] Müller | Stop-loss order for portfolios of dependent risks[END_REF] if

for i = 1, . . . , n. On the other hand, from [START_REF] Müller | Stop-loss order for portfolios of dependent risks[END_REF] it holds that xi (u 1 , . . . , u i ) and ŷi (u 1 , . . . , u i ) provide the same univariate quantile for the marginal variables X i and Y i respectively. By hypothesis assumption the marginal distributions are ordered in dispersion. Then

Then we obtain condition [START_REF] Giovagnoli | Multivariate dispersion orderings[END_REF]. Hence X ≤ var Y.

Therefore from [START_REF] Li | Linkages: A tool for the construction of multivariate distributions with given nonoverlapping multivariate marginals[END_REF] and Theorem 5, given two random vectors X and Y, with the same copula and with the CIQ property, then we have the following chain of equivalences:

We would like to emphasize that the equivalences given by ( 20) simplify the conditions where the ≤ var ordering can be verified which, from a practical viewpoint, can be very complicated to compute. Specifically, we can take advantage of [START_REF] Müller | Stochastic comparison of random vectors with a common copula[END_REF] in the applications of the ≤ var ordering.

Applications

Models of ordered random variables

An interesting application of the implications given by ( 20) can be given for several models of ordered random variables with applications in statistics and reliability. For instance,
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the order statistics from a sample of i.i.d. random variables, the random vector of the first n epoch times of a nonhomogeneous Poisson process, k records and order statistics under multivariate imperfect repair. A general concept where the previous models are included is the concept of generalized order statistics see [START_REF] Kamps | A Concept of Generalized Order Statistics[END_REF]. Formally, let n ∈ N, k ≥ 1, m 1 , . . . , m n-1 ∈ R, M r = n-1 j=r m j , 1 ≤ r ≤ n -1, be parameters such that γ r = k + n -r + M r ≥ 1 for all r ∈ 1, . . . , n -1, and let m = (m 1 , . . . , m n-1 ), if n ≥ 2 ( m ∈ R arbitrary, if n = 1). We call uniform generalized order statistics to the random vector (U (1,n, m,k) , . . . , U (n,n, m,k) ) with joint density function

on the cone 0 ≤ u 1 ≤ . . . ≤ u n ≤ 1. Now given a distribution function F we call generalized order statistics (GOS) based on F to the random vector

Note that if F is an absolutely continuous distribution then F -1 is strictly increasing. Therefore is apparent from ( 21) that two random vectors of generalized order statistics, with the same parameters, and possibly, based on different absolutely continuous distributions F and G, have the same copula. In addition a random vector of generalized order statistics have the CIS property (this follows from the Markovian property of GOS and the transition probabilities) , so it also has the CIQ property.

Under the previous arguments and using [START_REF] Müller | Stochastic comparison of random vectors with a common copula[END_REF] it holds that two random vectors of generalized order statistics (X 

Variability ordering of convolutions

Convolutions appear naturally in several context such as risk theory, reliability and statistics. For example consider an insurance company with a number n of clients, with individual risks X 1 , . . . , X n then the company bears the risk S = n i=1 X i . In reliability theory convolutions appear when a failed unit is replaced by a new one and the total life is obtained by the addition of the two lifelength. Also several statistics are linear combinations of random variables. In the literature one can find several results on variability comparisons of convolutions. Most of these results are given for some parametric models (uniform and gamma distributions) of independent random variables see for example Kochar and Ma (1999a) and (1999b), [START_REF] Korwar | On stochastic orders for sums of independent random variables[END_REF], Khaledi and[START_REF] Khaledi | Dispersive ordering among linear combinations of uniform random variables[END_REF][START_REF] Khaledi | Ordering convolutions of gamma random variables[END_REF] in the case of the dispersive order. For dependent components a simple but elegant result is provided by [START_REF] Bäuerle | Monotonicity results for MR/GI/1 queues[END_REF], [START_REF] Bäuerle | Comparison results for Markov-modulated recursive models[END_REF] and [START_REF] Müller | Stop-loss order for portfolios of dependent risks[END_REF], which prove that the convolution of the components of two random vectors, ordered in the supermodular order, are ordered in the increasing convex order.