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A Note on the Malliavin Derivative Operator under Change of Variable

Christian-Oliver Ewald1,1

1 School of Economics and Finance, University of St.Andrews, KY16 9AL, St.Andrews, UK
( e-mail : ce16@st-andrews.ac.uk )

Abstract

The Malliavin derivative operator is classically defined with respect to the standard Brownian
motion on the Wiener space C0[0, T ]. We define the Malliavin derivative with respect to
arbitrary Brownian motions on general probability spaces and compute how the Malliavin
derivative of a functional on the Wiener space changes when the functional is composed with
transformation by a process which is sufficiently smooth. We then use this result to derive a
formula which says how the Malliavin derivatives with respect to different Brownian motions
on the same state space are related to each other. This has applications in many situations
in Mathematical Finance, where Malliavin calculus is used.

Keywords: Malliavin Calculus, Analysis on Wiener Space, Mathematical Finance

Mathematics Subject Classification: 60H07, 60H40, 91B28

1 Introduction

Malliavin calculus has undoubtedly played a major role in recent applications in Mathematical
finance. Its main object, the Malliavin derivative operator, is classically defined on the Wiener
space C0[0, T ] with respect to the standard Wiener measure. In Mathematical Finance however
one often works with a multitude of measures at the same time, for example when pricing
options in incomplete markets. In many cases one would like to have greater flexibility in order
to which measure the Malliavin derivative is taken and it is then important to understand how
the Malliavin derivatives with respect to these different measures relate to each other. In this
article we provide a formula which describes how Malliavin derivative operators with respect to
two different Brownian motions relate to each other. We found this formula to be useful in many
contexts, see for example [1],[2],[3],[4].

2 The Malliavin Derivative

We follow a similar approach as in [5]. Let (Ω,F ,P) be a complete probability space which carries
a Brownian motion (Wt) and denote with (Ft) the corresponding Brownian filtration. We assume
F = FT . Let F : Ω → R be an F-measurable functional. In the following we will say what it
means that F is Malliavin differentiable. For this let us first consider the case of the classical
Wiener space where Ω = C0([0, T ]), Wt(ω) = ω(t) for all ω and F is a cylindrical functional of the
form F (ω) := f(ω(t1), ..., ω(tn)), where f ∈ C∞b (Rn) is a smooth function which has bounded
derivatives of all orders. Given h ∈ L2[0, T ] we have that

∫ ·
0
h(s)ds ∈ C0[0, T ] where the dot

indicates that the upper bound of the integral is variable. The subspace of C0[0, T ] generated

1The author gratefully acknowledges support from the research grant ”Dependable adaptive systems and
mathematical modeling”, Rheinland-Pfalz Excellence Cluster. Furthermore the author would like to thank Ralf
Korn from the University of Kaiserslautern, Olaf Menkens from Dublin City University, Zhaojun Yang from Hunan
University ( Changsha ) and an anonymous referee for many suggestions and helpful comments.
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by this kind of functions is called the Cameron-Martin space. The directional derivative of F in
direction

∫ ·
0
h(s)ds at ω is given by

DhF (ω) :=
d

dε

∣∣∣∣
ε=0

F

(
ω + ε ·

∫ ·

0

h(s)ds
)

=
n∑
i=1

∂f

∂xi
(ω(t1), ..., ω(tn)) ·

∫ ti

0

h(s)ds.

Now for fixed ω we consider the linear bounded functional on L2[0, T ] given by h 7→ DhF (ω).
By the Riesz Representation theorem there is an element DF (ω) in L2[0, T ] such that

DhF (ω) =< h,DF (ω) >=
∫ T

0

h(s) ·DF (ω)(s)ds , ∀h ∈ L2[0, T ]. (1)

In the following we denote DF (ω)(s) with DsF (ω). Let us now consider ω as a variable. The
assumption that f has bounded derivatives of all orders ensures that for all p ≥ 1 we have
DF ∈ Lp(Ω, L2[0, T ]) when considered as an L2[0, T ] valued functional in ω. Assume now
that the functional F is not necessarily cylindrical but there exists a sequence of cylindrical
functionals Fn such that Fn → F in Lp(Ω) and DFn → G in Lp(Ω, L2[0, T ]). Then we define
DF := G = limn→∞DFn. One can show that this is well defined, see [5], Lemma 7.1. on
page 325. In other words, the operator D : Lp(Ω) → Lp(Ω, L2[0, T ]) defined on the cylindrical
functionals is closable. We define the Malliavin derivative operator D : Lp(Ω) → Lp(Ω, L2[0, T ])
as the closure of this operator and denote its domain with D1,p. If (Ω,F ,P) is not necessarily
the classical Wiener space we define the Malliavin derivative operator on Lp(Ω) as the unique
operator DP which makes the following diagram commutative :

Lp(C0[0, T ]) W∗
//

D

��

Lp(Ω)

DP

��
Lp(C0[0, T ], L2[0, T ])

(W×Id)∗// Lp(Ω, L2[0, T ])

Here W ∗ and (W × Id)∗ are the maps which are given by composition, i.e. F̃ 7→ F = F̃ ◦W
and G̃ → G = G̃ ◦ (W × Id), where G̃(ω)(t) ∈ Lp(C0[0, t], L2[0, T ]) is considered as a function
G̃(ω, t) on C0[0, t]× [0, T ]. It follows from our assumption on F that these two maps are isometric
isomorphic and therefore DP exists and is unique. The upper index P in DP is to indicate that
we work under a measure which is not necessarily the classical Wiener measure. However in
case that P is the classical Wiener measure on C0[0, T ] we omit the upper index. If F = F̃ ◦W
then F ∈ dom(DP) if and only if F̃ ∈ dom(D) and in this case DPF = DF̃ ◦ (W × id). For
any cylindrical functional on Ω of the form F = f(Wt1 , ...,Wtn) we have F = F̃ ◦ W with
F̃ (ω) = f(ωt1 , ..., ωtn) and therefore

< h,DF > =
n∑
i=1

∂f

∂xi
(Wt1 , ...,Wtn) ·

∫ ti

0

h(s)ds

=
d

dε

∣∣∣∣
ε=0

f

(
Wt1 + ε ·

∫ t1

0

h(s)ds, ...,Wtn + ε ·
∫ tn

0

h(s)ds
)
.

This means that the operator DP is in fact the derivative of F with respect to the Brownian
motion W on Ω. We will later need the following definition.

Definition 2.1. For p ≥ 1 we denote with LP
1,p the subclass of not necessarily adapted pro-

cesses (θs) in Lp(Ω, L2[0, T ]) such that for each t ∈ [0, T ] we have θt ∈ D1,p and there exists
a version of the two parameter process Dθ such that for ω a.s. Dθ ∈ L2([0, T ] × [0, T ]) and
‖Dθ‖L2([0,T ]×[0,T ]) ∈ Lp(Ω).
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3 The Malliavin Derivative and Transformations

In this section we consider the classical Wiener space Ω = C0[0, T ] together with the classical
Wiener measure. Let F : C0[0, T ] → R and ω : [0, T ] → R be an element of C0[0, T ]. Furthermore
let Θ : C0[0, T ] → C0[0, T ] be a transformation on the Wiener space. We can think of Θ as a
not necessarily adapted stochastic process on C0[0, T ] via Θt(ω) = Θ(ω)(t). For each ω we have
ω + Θ(ω) ∈ C0[0, T ] and we define a new functional on C0[0, T ] by the induced map (id+ Θ)∗F
which is given by ω 7→ F (ω + Θ(ω)). We assume that there exists a not necessarily adapted
process (θs) s.t. Θt =

∫ t
0
θsds and denote the map (id+Θ)∗ with Tθ. The following theorem says

that Tθ maps smooth functionals into smooth functionals under the appropriate assumptions.

Theorem 3.1. Let p, q ≥ 1 s.t. 1
p + 1

q = 1 and F ∈ D1,p. Assume (θs) ∈ L1,q and Tθ :
Lp(C0[0, T ]) → Lp(C0[0, T ]) is continuous. Then TθF ∈ D1,1 and its Malliavin derivative can be
computed by the formula

DTθF = TθDF +
∫ T

0

(Dθt · TθDtF )dt.

Proof. We use the notation introduced above. Let us first assume that F is a cylindrical functional
of the form F (ω) = f(ω(t1), ..., ω(tn)) where f ∈ C∞b (Rn). For h ∈ L2[0, T ] we have :

(DhTθF )(ω) =
d

dε

∣∣∣∣
ε=0

TθF

(
ω + ε ·

∫ ·

0

h(s)ds
)

=
d

dε

∣∣∣∣
ε=0

F

(
ω + ε ·

∫ ·

0

h(s)ds+ Θ
(
ω + ε ·

∫ ·

0

h(s)ds
))

=
n∑
i=1

{
∂f

∂xi
(ω(t1) + Θt1(ω), ..., ω(tn) + Θtn(ω))

}
· d
dε

∣∣∣∣
ε=0

(
ω(ti) + ε ·

∫ ti

0

h(s)ds+ Θti

(
ω + ε ·

∫ ·

0

h(s)ds
))

=
n∑
i=1

∂f

∂xi
(ω(t1) + Θt1(ω), ..., ω(tn) + Θtn(ω)) ·

∫ ti

0

h(s)ds

+
n∑
i=1

∂f

∂xi
(ω(t1) + Θt1(ω), ..., ω(tn) + Θtn(ω)) ·DhΘti(ω)

Since (θs) ∈ L1,q we have DhΘt =
∫ t
0
Dhθs and the map t 7→ Dhθt(ω) is in L2[0, T ] for ω a.s..

Hence we can write the last equality as

(DhTθF )(ω) = (DhF )(ω + Θ(ω)) + (DDhθ(ω)F )(ω + Θ(ω)).

Using this equation we obtain

< h,DTθF (ω) > = < h,DF (ω + Θ(ω)) > + < Dhθ(ω), DF (ω + Θ(ω)) > .

Furthermore, considered as a function in t we have Dhθt(ω) =< h,Dθt(ω) > and therefore the
second summand above gives < h,

∫ T
0
Dθt(ω) ·DtF (ω + Θ(ω))dt >. Hence we have established

the following equality :

< h,DTθF (ω) >=< h,DF (ω + Θ(ω)) > + < h,

∫ T

0

Dθt(ω) ·DtF (ω + Θ(ω))dt > .
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Since this relationship holds for all h ∈ L2[0, T ] we get

DTθF = TθDF +
∫ T

0

(Dθt · TθDtF )dt.

This now holds for all cylindrical functionals as above. For general F ∈ D1,p we can find a
sequence (Fn) of cylindrical functionals s.t.

lim
n
‖Fn − F‖Lp(Ω) = 0 (2)

lim
n
‖DFn −DF‖Lp(Ω,L2[0,T ]) = 0. (3)

By the continuity properties of Tθ we have that TθFn → TθF in L1(Ω). If we can show that
DTθFn → G in L1(Ω, L2[0, T ]) then by definition of D and completeness of D1,1 we have TθF ∈
D1,1 and G = DTθF . From the first part we know that for all n ∈ N.

DTθFn = TθDFn +
∫ T

0

(Dθt · TθDtFn)dt. (4)

So in order to proof our general result it suffices to show that∥∥∥∥∥DTθFn −
(
TθDF +

∫ T

0

Dθt · TθDtFdt

)∥∥∥∥∥
L1(Ω,L2[0,T ])

→ 0.

Setting Gn = Fn − F we find that the expression on the left side above is equal to∥∥∥∥∥TθDGn +
∫ T

0

Dθt · TθDtGndt)

∥∥∥∥∥
L1(Ω,L2[0,T ])

and using the triangle inequality we see that it is is dominated by

‖TθDGn‖L1(Ω,L2[0,T ]) +

∥∥∥∥∥
∫ T

0

Dθt · TθDtGndt)

∥∥∥∥∥
L1(Ω,L2[0,T ])

.

Denoting with ‖Tθ‖ the mapping norm of Tθ on Lp we can see that the first summand is bounded
by

‖TθDGn‖L1(Ω,L2[0,T ]) ≤ ‖TθDGn‖Lp(Ω,L2[0,T ]) ≤ ‖Tθ‖ · ‖DGn‖Lp(Ω,L2[0,T ]).

We know that limn ‖DGn‖Lp(Ω,L2[0,T ]) = 0 and since ‖Tθ‖ <∞ we are left to show that

lim
n

∥∥∥∥∥
∫ T

0

Dθt · TθDtGndt

∥∥∥∥∥
L1(Ω,L2[0,T ])

= 0

This expression is by definition of the norm in L1(Ω, L2[0, T ]) equal to limn Cn with Cn

Cn :=

∥∥∥∥∥∥
∥∥∥∥∥
∫ T

0

Dθt · TθDtGndt

∥∥∥∥∥
L2[0,T ]

∥∥∥∥∥∥
L1(Ω)

.

We have ∥∥∥∥∥
∫ T

0

Dθt · TθDtGndt

∥∥∥∥∥
2

L2[0,T ]

=
∫ T

0

(∫ T

0

Dsθt · TθDtGndt

)2

ds. (5)
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For fixed s ( and ω which we omit in the notation ) the maps t 7→ Dsθt and t 7→ TθDtGn are in
L2[0, T ] and by applying the Cauchy-Schwartz inequality we get∣∣∣∣∣

∫ T

0

Dsθt · TθDtGndt

∣∣∣∣∣ ≤ ‖Dsθ‖L2[0,T ] · ‖TθDGn‖L2[0,T ].

Therefore equation (5) implies that∥∥∥∥∥∥
∥∥∥∥∥
∫ T

0

Dθt · TθDtGndt

∥∥∥∥∥
L2[0,T ]

∥∥∥∥∥∥
L1(Ω)

≤

∥∥∥∥∥
∫ T

0

‖Dsθ‖2
L2[0,T ] · ‖TθDGn‖

2
L2[0,T ]ds)

1
2

∥∥∥∥∥
L1(Ω)

.

Since the second factor in the integral does not depend on s we can put it in front of the integral
and get

Cn ≤

∥∥∥∥∥{‖TθDGn‖L2[0,T ] · (
∫ T

0

‖Dsθ‖2
L2[0,T ]ds)

1
2

∥∥∥∥∥
L1(Ω)

≤ ‖{‖TθDGn‖L2[0,T ] · ‖Dθ‖L2([0,T ]×[0,T ])‖L1(Ω)

Using our assumptions we have ‖TθDGn‖L2[0,T ] ∈ Lp(Ω) and ‖Dθ‖L2([0,T ]×[0,T ]) ∈ Lq(Ω) and
therefore by applying the Hölder inequality we get

Cn ≤ ‖{‖TθDGn‖L2[0,T ]}‖Lp(Ω) · ‖{‖Dθ‖L2([0,T ]×[0,T ])}‖Lq(Ω)

Using again continuity of Tθ and setting C := ‖{‖Dθ‖L2([0,T ]×[0,T ])}‖Lq(Ω) we get

Cn ≤ C · ‖Tθ‖‖DGn‖Lp(Ω,L2[0,T ])

and the result follows from equation (3) and Gn = Fn − F .

Remark 3.1. With the assumption 1
p + 1

q = 1
r a slightly modified proof shows that TθF ∈ D1,r.

Remark 3.2. The continuity condition on Tθ is a trivial one in the case that p = ∞. In this
case we always have ‖TθF‖∞ ≤ ‖F‖∞.

4 The Malliavin Derivative and Girsanov Transformations

Let us assume that the process (θt) from the previous section is adapted. If

E
(∫ ·

0

−θsdWs

)
= exp

(∫ ·

0

−θsdWs −
1
2
θ2sds

)
is a martingale under the standard Wiener measure we can define a new probability measure Pθ
on C0[0, T ] via

dPθ

dP
= E

(∫ T

0

−θsdWs

)
.

Then by the Girsanov Theorem W θ defined by W θ
t := Wt +

∫ t
0
θsds is a Brownian motion on

C0[0, T ] under Pθ. Now, for a functional F : C0[0, T ] → R we can consider both the Malliavin

5
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derivative with respect to W and the Malliavin derivative with respect to W θ. To simplify the
notation we denote the Malliavin derivative DPθ

with respect to W θ as Dθ and write Dθ for DPθ

.
By our assumption F factorizes as F = F̃ ◦W θ = TθF̃ . Then F ∈ Dθ1,1 if and only if F̃ ∈ D1,1.
If Tθ is invertible then we have F̃ = T−1

θ F . We call a pair (θ, ψ) of adapted stochastic processes
which satisfy

ψs(ω) = −θs
(
ω +

∫ ·

0

ψu(ω)du
)
, θs(ω) = −ψs

(
ω +

∫ ·

0

θu(ω)du
)

an admissible Girsanov pair if (θs) satisfies the Novikov condition E
(
exp

(
1
2

∫ T
0
θ2sds

))
< ∞.

It is very easy to show that the existence of an admissible Girsanov pair (θ, ψ) is a sufficient
criterion for the invertebility of Tθ and that in this case (Tθ)−1 = Tψ.

Proposition 4.1. Let p, q ≥ 1 s.t 1
p + 1

q = 1. Furthermore let (θ, ψ) be an admissible Girsanov
pair such that (ψs) ∈ L1,q and there exists a constant C > 0 s.t. Eθ(|F |p) ≤ C · E(|F |p) for all
F ∈ L1(C0[0, T ]). Then if F ∈ D1,p we have F ∈ Dθ1,1 and

DθF = DF +
∫ T

0

TθDψt ·DtFdt.

Proof. The assumption that Eθ(|F |p) ≤ C ·E(|F |p) guarantees that the operator Tθ is continuous
as an operator on Lp. By the open mapping theorem we can conclude that Tψ is also continuous
and furthermore (ψs) satisfies the assumptions in Theorem 3.1 ( where (θs) is replaced by (ψs)).
We can then write F = Tθ(TψF ) = TψF ◦W θ. By definition of Dθ and application of Theorem
3.1 we have

DθF = DTψF ◦W θ =

(
TψFDF +

∫ T

0

Dψt · TψDtFdt

)
◦W θ

= TθTψDF + Tθ

(∫ T

0

Dψt · TψDtFdt

)
= DF +

∫ T

0

(TθDψt) ·DtFdt

where we used that the integral with respect to dt can be computed point-wise.
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