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Abstract

Detection of epistatic interaction between loci has been postulated to provide a more in-

depth understanding of the complex biological and biochemical pathways underlying 

human diseases.  Studying the interaction between two loci is the natural progression 

following the traditional and well-established single locus analysis. However, the added 

costs and time duration required for the computation involved have thus far deterred 

researchers from pursuing a genome-wide analysis of epistasis.  In this paper, we propose a 

method  allowing  such analysis to be conducted very rapidly.  The method, dubbed 

EPIBLASTER, is applicable to case-control studies and consists of a two-step process 

where the difference in Pearson's correlation coefficients is computed between controls and 

cases across all possible SNP pairs as an indication of significant interaction  warranting 

further analysis.  For the subset of interactions deemed potentially significant, a second 

stage analysis is performed using the likelihood ratio test from the logistic regression to 

obtain the p-value for the estimated coefficients of the individual effects and the interaction 

term.  The algorithm is implemented using the parallel computational capability of 

commercially available graphical processing units to greatly reduce the computation time 

involved.  In the current setup and example data-sets (211 cases, 211 controls, 299468 

SNPs and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be 

completed in roughly one day.  Our method allows for exhaustive and rapid detection of 

significant SNP pair interactions without imposing significant marginal effects of the single 

loci involved in the pair.        
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Introduction

Understanding the effects of genes on phenotypes and diseases has long been suggested to 

embed a complex form of interaction as a result of inter-inhibitory and -excitatory effects, 

with any attempt  to explain these effects simply as additive effects of the individual genes 

being an overly simplistic model which ultimately provides an incorrect view of the genetic 

influence on the phenotype.

   The study of interaction between polymorphic loci can stem both from a biological and 

statistical genetics perspective.  The first approach establishes a model based on a priori 

knowledge of how the genes function and interact.  The latter, being a 'biological blind' 

approach, helps draw inferences from previously unknown interdependencies between 

genes.  The ultimate objective, similar to all black-box studies, is to merge the conclusions 

drawn from both approaches but since the observations made cannot be measured at a level 

more finite  than the eventual system output, the former approach is more likely to be 

refined by first having a solid statistical finding as its basis.  

   As our effort primarily focuses on drawing statistical inference on epistatic 

actions/interactions between genes, a new method is proposed to help improve our 

capability to search and sift out significant interactions.  This paper will discuss the 

performance of our method in its current implementation.  The results applied to a 

simulated subset of SNPs and to two real genome-wide datasets recorded from panic 

disorder and multiple sclerosis studies will be presented, followed by a discussion of  some 

properties of the approach.  
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Materials and Methods

Overview of the two-stage search strategy 

The strategy  consists of a two-stage approach. First, a filtering stage using the difference 

of Pearson’s correlation coefficients that performs an exhaustive two-locus interaction 

multiplicative effects[1] search across all possible pairwise SNP combinations is 

preformed. This is followed by logistic regression analysis on those subset of pairs deemed 

significant in the previous stage.    

Data representation

Each SNP is represented as integer values ranging from 0 to 2 based on the count of a 

chosen reference nucleotide of the selected SNP for an allele dosage model, or as 0 or 1 

depending on the genotype for a dominance or recessivity coding.  In the current study, the 

the allele dosage model is applied. An overall matrix is generated to store the information 

of all SNPs as column vectors and the recorded values for individual subjects along the 

rows.  Column vectors are then analyzed in pairs and the correlation coefficients are 

tabulated for cases and controls separately.  Correlation coefficients are calculated from a 3 

x 3 ordered genotype matrix, the genotypes being encoded 0,1,2.  The difference between 

the correlation coefficients in cases and controls is then computed and used as an indication 

of the SNP pair contributing significantly to the classification between cases and controls 

(please refer to Equation 1).

   The first stage of analyzing the difference of correlations approach searches for 

significant interaction terms.  The second stage then computes the fit using a full rank 

logistic model (Equation 2), including the intercept and additive marginal effects, on the 
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subset of loci pairing deemed significant from the first stage, from which a statistical test 

can be conducted to test for the coefficient of interaction term being significantly different 

from zero.

Hardware and software setup

The hardware used in the experimental setup consists of two pairs of commercially 

available NVIDIA GTX295 GPUs running on a Intel Core i7 920 @ 2.67 GHz central 

processing unit host (CPU) using 12 GB of DDR3 RAM.  The software program is 

implemented in R (version 2.9.2) with the 'gputools' package beta version 0.1-4 installed, in 

which the function 'gpuCor' permits correlation coefficients to be tabulated for all possible 

pairwise interactions across the column vectors using the CUDA (Compute Unified Device 

Architecture) enabled NVIDIA graphic cards.  The graphical card uses its parallel 

computational capability to process independent evaluations faster than conventional CPU 

based computation.  Since the correlation coefficients between each SNP pair can be 

tabulated independently, this can take full advantage of the inherent parallel computation 

done on graphical cards.   The overall time performance depends on the sample size and 

desired marker coverage.  A total evaluation of (number of SNPs choose 2) interactions is 

typically accomplished within 24 hours for the entire data set (2000 individuals consisting 

of 1000 cases, 1000 controls with 500000 SNPs) with the available GPU resources and the 

given results retention criteria.  Limitations on the speed can originate from local main 

memory storage, memory transfer speed and number of on-board GPU cores present. 

Some data partitioning to take advantage of all current GPU resource is thus required to 

render this method most efficient.  The dataset for the study is first partitioned into blocks 
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containing 2000 SNPs each that can be handled by the memory on the graphic card. 

Hence, for a genome-wide dataset of 500k SNPs, 250 partitions are required.  

   The process goes through the entire dataset and calculates the correlation coefficients in 

blocks of 2000 SNPs.  The very first correlation analysis in performed  is on the first 

partition to itself, a 'partition-based autocorrelation', resulting in 1999000 unique 

correlations.  The process then increments the partition index of the second partition by one 

and completes a correlation between two distinct sets of 2000 SNPs, a 'partition-based 

cross-correlation', to yield 4 million unique results.  This process of incrementing the 

nested loop index is repeated until it reaches the last partition set at which point the top 

level loop index gets incremented by one.  The process can be summarized in the following 

steps:

1. Partition the data set into size of 2000 SNPs. Note that this number may increase or 

decrease depending on the number of individuals studied. 

2. Set up a two-level nested loop to apply the partition-based correlation for all 

possible SNP pairs for cases and controls separately.

3. Compute difference of correlation coefficients between cases and controls after 

each partition-based autocorrelation or cross-correlation is complete. 

4. Compute the p-values of each difference given that the distribution of the 

differences follows a Gaussian.(refer to Results section).

5. Retain only SNP pairs that show a p-value below a selected threshold.

6. Repeat steps 3-5 across all partition pairs.

7. Proceed to stage 2 by performing a logistic regression on the selected pairs. 
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Results

Simulated Data

A simulated dataset is generated consisting of 2000 SNPs and a subject size of 5000 

controls and 5000 cases.  This simulated dataset is created without any specific model 

allowing for any a priori knowledge of which particular pair will be significant, the purpose 

is demonstrate the validity in the approximation of the resulting logistic regression 

interaction term p-value to the approximation based on the difference in correlation 

coefficients. The distribution of the differences of correlation coefficients is noted to 

exhibit a Gaussian distribution within each partition set, referring to the histogram plot in 

Figure1.  This observation has been examined in greater detail by Gretton et al.[2] stating 

that when samples are indeed drawn from two different distributions, the distribution of the 

discrepancy of the chosen  function, difference of estimated mean correlation coefficients 

in this study, will converge to a Gaussian distribution.  An additional proof for the 

difference of correlation coefficients to exhibit a Gaussian distribution can be found in 

Wellek and Ziegler[3], who have also shown  that the variance of any single one difference 

under the null hypothesis and thus also of the distribution of  the sum of all differences is 

the sum of  the reciprocals of the number of cases and controls. For this Gaussianism it is 

not needed that there are equal numbers of cases and controls. 

   In practice, to test for the significance of each pair, a Z-score is tabulated for each 

difference within the partition set.  This Z-score is  computed based on the mean and the 

standard deviation of all the differences noted within the partition set  which is a close 

approximation to the  overall mean and standard deviation given that the partition size is 
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chosen to be large enough typically resulting in a few million pairs for each partition set. 

Those interactions exhibiting a high overall Z-score are then taken as an indication that the 

effect of the interaction term of the two SNPs in question is deemed valuable enough to be 

passed on to the second stage.  This filtered subset is then subjected to a second level of 

mathematical-intensive evaluation using the likelihood ratio test on the logistic regression 

model.    

   Referring to Figure 2, the p-values of the interaction product term in a general linear fit is 

plotted against their correlation coefficient differences between cases and controls.  To help 

delineate any logarithmic trend, the p-values are shown as the negative logarithmic values. 

As shown in Figure 2,  there is a strong relationship between the two variables, of a 

parabolic function in the region centered around the origin to a linear relationship in the 

region of higher values.  The region that is of most interest to the study is the higher 

numerical value region as the p-values are the smallest and the differences are the largest. 

Since the differences follow closely a Gaussian distribution (Figure 1), a Z-score threshold 

can be used to estimate the retention rate.  The statistic is then estimated using the fact that 

the Z-score would follow a standard T-distribution with sufficiently large number of 

degrees of freedom.  A plot comparing the p-values obtained between the approximation 

and the validation step is illustrated in Figure 3 and demonstrates a high R2 value of 99.9%. 

   To help address the issues of limited physical disk space and of retaining only those 

interactions that show strong significance, a Z-score of 4.5 was chosen as the cut-off 

threshold, which corresponds to a probability of 6.8 x10-6 retention rate.  Thus, for  the 

partition-based autocorrelation generating ~ 2 million (2000choose2) correlation 
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coefficient differences, the mere top 14 interaction pairs are expected to be retained. 

Overall, we expect the top ~8.5 x106 pairs out of a possible ~1.25 x1011 retained from the 

first stage in a marker coverage of 500k SNPs.

Real Data

Real genetic data have been recruited from two separate published studies.  The first 

dataset originating from a panic disorder study [4] with a total of 299468 SNPs and 211 

cases and 222 controls have been retained after standard quality control measures. 

Computing the difference of correlation coefficients across all pairs and choosing a p-value 

threshold of 1.0 x10-5  resulted in a retention of 373153 SNP pairs.  Similarly, a second 

larger dataset from a multiple sclerosis [5] study with a total of 291095 SNPs and 601 cases 

and 825 controls is also being investigated.  Using the same p-value threshold of 1.0 x10-5, 

the 407660 most significant SNP pairs are retained upon subjecting it to the first stage.  

   In view of verifying that indeed no significant pairs have been left out in the adopted 

difference of correlation coefficients stage of our method, a comparison to the p-values of 

the interaction term in a normal linear regression of all possible SNPs pairs must be made. 

To perform this brute-force approach in a time efficient manner, we have employed a 

newly released software tool, FastEpistasis,[6] which is an extension to the PLINK 

epistasis module capable of distributing the work in parallel on multiple CPU cores, it is 

important to point out that this method is not working on the difference of Odds Ratio as 

conducted by the Plink option bearing the same name.  The program is meant to be 

executed on quantitative phenotypes, but the difference in the p-values, which are the 

relevant measure for this comparison, have been noted to be negligible on several sample 
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SNP pairs (see also  Table 1, comparing the FastEpistasis column to the logistic regression 

interaction term p-value column, but also simulation studies (refer to Supplementary Figure 

1)).  The p-values computed from FastEpistasis is regarded to be the “true” value used for 

comparison to the approximated method described in stage 1 of EPIBLASTER.     

   Matching the results from SNP pairs with p-values below 1x10-6  tested against null from 

the FastEpistasis with the results obtained from the first stage of EPIBLASTER is 

performed.  From the panic disorder analysis, FastEpistasis produced 37336 SNP pairs of 

which 36056 of them are also found in the EPIBLASTER stage 1 retained subset (96,5%). 

The unmatched pairs are indeed examples where EPIBLASTER stage 1 underestimates the 

p-values and the hard threshold prevents it from being included, thus, these unmatched 

pairs all are in fact situated around the p-values threshold region and are of lesser 

significance compared to the others.  The plot of the matching pairs are shown on Figure 4 

and for ease of visualization, it is illustrated as a smoothed color density of the actual 

scattered points plot. The top 10 most significant pairs from the FatEpistasis approach are 

listed with greater details in Table 1 along with their annotations in Table 2 and are marked 

with a dark circle on Figure 4.  In order for EPIBLASTER stage 1 to capture all top 10 

pairs of the “true” approach (FastEpistasis), a p-value threshold of 1.26x10-8  must be 

applied, thus resulting in the top 387 pairs of EPIBLASTER stage 1 to be passed onto stage 

2.  In other words, EPIBLASTER would have produced an additional 377 pairs to be tested 

in view of capturing the very top 10 true results.  In Figure 5, the top 100 SNP pairs of the 

panic disorder study are marked, which would have resulted in applying a retention 

threshold for EPIBLASTER stage 1 of 1.67x10-7  passing on some 5194 pairs to stage 2.
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  From the multiple sclerosis analysis, FastEpistasis yielded  42731 pairs to have an 

interaction term with a p-value below 1x10-6 of which 42524 pairs (99.5%) are also 

retained from EPIBLASTER stage 1.  The matching pairs along with the respective p-

values tabulated using the FastEpistasis method versus the approximated EPIBLASTER 

stage 1 method are plotted in Figure 6.  The top ten pairs are marked in Figure 6 and listed 

in Table 3 along with the SNP annotations in Table 4.  In order for EPIBLASTER to 

capture the top 10 pairs, it would have required a 48 of its top significant SNP pairs to be 

carried over to stage 2 where the  p-values from logistic regression are tabulated.  In 

addition, in order to capture the  top 100 pairs (listed in greater details in Supplementary 

Table 2), EPIBLASTER would have required the top 19242 pairs obtained from stage 1 to 

be passed on to stage 2.  

Discussion

Although the search is conducted across all possible pairwise SNP interactions, the main 

interest is to delineate interactions between unlinked loci that influence the illness.  In the 

first stage, the difference of Pearson's correlation coefficients, tabulated from the SNP pair, 

is taken between controls and cases across all possible interactions.  In addition, this step 

can also incorporate replicating for significant association across two or more independent 

studies using a number of subjects weighted meta-analysis during the actual run.  In the 

current experimental setup with a genome-wide analysis of epistasis study, this first stage 

involving the difference of correlation coefficient evaluations can be completed within 

roughly 24 hours on commercially available GPU set-up compared to roughly a year on a 

single-core CPU. From the subset of interactions deemed significant in the rapid filtering 
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stage, a second stage analysis is performed using the likelihood ratio statistical test on the 

logistic regression to obtain the p-value on the estimated coefficients corresponding to the 

intercept, individual effects of the single loci and the interaction terms.  As this necessitates 

only a minor amount of computations of logistic regressions in R using 'anova' test on the 

'glm' fit with the 'binary' family option, for a retention rate of  6.8 x10-6  , an expected 

8.5x106 pairs, this requires some 2.5 days  on a single core system of the hardware 

specifications listed in the methods section in R.  This is impractical, however, if we are to 

limit ourselves to a range of top significant pairs which can be below a more stringent 

threshold, e.g. 1.0 x10-8, it drops down to an expected number of some 600-700 pairs, 

which requires around 150 seconds (4 computations per second) to validate. It should be 

noted that dedicated software, such as INTERSNP [7] is considerably faster for this second 

pass than pure R, the quoted figure of  8.5x106 interaction pairs  should be done between 

one or two hours using INTERSNP. A complete genome-wide association analysis  with 

INTERSNP on a single core would be in the order of a year.  FASTEPISTASI.S would 

have been some 70 days  on a single core. Note that INTERSNP is quoted here for a full 

logistic regression, whilst FASTEPISTASIS does a linear regression. Of course the 

performance of both INTERSNP (which again is about two orders of magnitude faster than 

plain R [using the glm() function]) and FASTEPISTASIS can be easily improved using 

multi-core systems and clusters.

Including more SNPs into the second stage is feasible, of course. We have found a 

threshold of 6.8 x 10-6 practical, lowering this by e.g. one order of magnitude will incur 

only a slight increase in run-time for stage 1 and a linear increase for stage 2. Of course, if 
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the threshold for entry into stage 2 is lowered too much, hardware specifics such as disk 

speed is becoming an issue in the performance of the program. 

The reasoning behind the two-stage approach is threefold.  First, the computations involved 

in the first stage are much less extensive as compared to estimating for significance in 

logistic regression.  Second, a readily available R package, 'gputools', allows the estimation 

of correlation coefficients to be performed on the graphic card which greatly reduces the 

time and cost.  Third, contrary to common multistage practice where the single locus test is 

performed initially followed by higher order testing on loci which showed single locus 

significance, the necessity of interaction loci to first show significant marginal effects is not 

imposed, thus rendering this method a truly exhaustive search across all two-way 

interactions.  The results from the MS and Panic disorder analyses are used as preliminary 

basis where this statement can be founded.  A Plink method to test for univariate SNP 

significance is used to provide an indication of the SNPs that would be kept using the more 

traditional mandatory main effect significance.  Firstly, referring to Tables S.2 and S.3 in 

the supplemental section, it is shown that a vast majority of significant interaction pairs 

would not have been captured if one is to pre-filter based on univariate significance. 

Furthermore, referring to Figures S.2 to S.5 in the supplemental section, univariate p-values 

are plotted against the interaction pairs captured by EPIBLASTER, the lack of trends helps 

support that the method is indeed conducting the search unbiased to the marginal effects at 

the two loci.   High overestimation of the significance of the pair in the premilinary step 

one filtering stage can occur when the SNPs are very rare.  Severe underestimating of the 

p-values using this approximation (false negatives) has also rarely been noticed but was 
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traced to a small subset of those SNP pairs that are in high linkage disequilibrium, which 

are not the main focus of this method.  For computational ease, no lower bound on physical 

distance between SNPs or on LD between SNPs is imposed.  

We also noted no inflation of the test statistic in our datasets, however, in cases it might be 

advisable to include MDS por PCA components in the analysis,   e.g. by working on 

residuals of the SNP genotypes on these components. 

  Overall, comparing the  p-values obtained from FastEpistasis to the approximated p-

values tabulated from EPIBLASTER stage 1 show that although discrepancy in the p-

values do exist, the adopted method does manage to capture all of the significant pairs and 

the occurrence of significant pairs being omitted is practically nil when the threshold p-

values is chosen to be far enough from the Bonferroni corrected global significance.  Still 

the computational load for the second stage analysis is negligible.

   The concept of adopting the analysis of the difference of case-only and control-only 

studies into an unified test has been suggested in prior studies analyze pairwise SNPs.  Hoh 

and Ott [8] initially proposed taking the ratios of the Chi-squares of the 3x3 contingency 

tables between cases and controls as a measure of significance.  Zhao et al.[9] and Zaykin 

et al[10] have also proposed examining the gene interactions with a defined Linkage 

Disequilibrium created by the interaction between two unliked loci. Significance is 

evaluated with the analysis of the difference of the LD values between case-only and 

control-only populations.  Hardy-Weinberg Equilibrium must hold for this measure of 

interaction and test statistics to be valid.  Zhao et al. has further suggested the method 
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exhibits greater power than conventional linear regression, as it does not treat the 

interaction as a residual term and allows for implicit nonlinear interaction, and faster 

computational time than the traditional four degrees of freedom logistic regression model 

rendering it more suitable for GWAS.  The proposed method in this paper performs the 

search in the first stage for only the effects of the interaction term by analyzing the 

difference of the correlation coefficients as an indication for significance and then adopts 

the more conventional logistic regression method to substantiate the findings on a subset of 

pairs.  As the difference is based on two separate groups, population stratification can have 

an effect on the power of the method.  However, looking at the number of pairs retained 

from our examples, the actual inflation is very low. In the multiple sclerosis analysis, 

423680 pairs is expected be below the 1x10-5 threshold, an observed number of pairs 

captured is noted as 407660.  The method can indeed be simplified to a case-only study, by 

making the assumption that the correlation coefficient of the controls be null for all pairs, 

this approach would further speed up the computational time by a factor of 2 at the expense 

of potentially losing both potentially power and clearly precision.  Moreover, the 

approximation approach does not only apply to the dosage coding (0, 1, 2), but also to 

other coding such as dominance, recessivity and heterozygosity.  In general a  p-value 

cutoff of less than 1e-5 should indeed be sufficient to capture all the results with a p <1e-08 

in the logistic regression and is, with all caution, suggested as a cut-off to be used in a first 

analysis, truly making EPIBLASTER exhaustive within this setting.

  With respect to the results from MS and panic disorder presented we note that, although, 

there is no pair beyond a Bonferroni corrected  threshold for significance at a corrected p-
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value of 0.05, the marginal effects in the top 10 pairs do not at all show a tendency to 

deviate from a uniform distribution. This means that prefiltering pairs of SNPs on marginal 

p-values for subsequent epistasis analysis may be a less promising strategy than sometimes 

considered, although more analyses and larger sample sizes will be needed for a better 

founded statement on this issue.

   In the editing phase of this article, it has come to our attention that Hu et al.[11] has also 

developed a strategy involving GPU to enhance genome-wide significant SNP pair 

interaction search, quoting a total runtime of 27 hours to scan through the Wellcome Trust 

Case Control Consortium's bipolar disorder data consisting of 500k SNPs.  The proposed 

algorithm by Hu et al. helps consolidate the improved time performance using the inherent 

parallel nature of GPU to search for significance in all possible SNP pairs.  The method is 

distinct from ours as it uses the a difference of odds ratios measure between cases and 

controls to pick significant SNP pair candidates.   

   We would like to point out that with EPIBLASTER it is possible to perform genome-

wide analysis of epistasis on very small-scale and inexpensive hardware, reducing the need 

for large clusters for this kind of application.

   Future work is planned to incorporate the logistic regression and other more novel 

definitions of gene-gene interactions onto the graphical processing units.  EPIBLASTER is 

available at http:/www.mpipsykl.mpg.de/epiblaster.

Acknowledgements

This work was funded in part by the Max-Planck Society. Support through the BMBF via 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22



the NGFN  ( Moods - 01GS08145 to BMM) and the project Control-MS within the “ 

Krankheitsbezogenes Kompetenznetz Multiple Sklerose is gratefully acknowledged 

Conflict of Interest Statement

The authors declare no conflict of interest.

Supplementary information is available at European Journal of Human Genetics' 

website

References

1 Marchini J, Donelly P, Cardon L.R.: Genome-wide strategies for detecting multiple loci 

that influence complex diseases. Nature Genetics 2005; 37: 413-417.

2 Gretton A, Borgwardt K, Rasch B, Schölkopf B, Smola A. A Kernel Method for the Two-

Sample-Problem. NIPS 2006: 513-520.

3 Wellek S, Ziegler A, : A Genotype-based approach to assessing the association between 

single nucleotide polymorphisms.  Human Heredity 2009; 67: 128-139.

4 Erhardt A et al.: TMEM132D, a new candidate for anxiety phenotypes: evidence from 

human and mouse studies.  Molecular Psychiatry 2010 April [Epub ahead of print].

5 Nischwitz S et al.:Evidence for VAV2 and ZNF433 as susceptibility genes for multiple 

sclerosis. Journal of Neuroimmunology 2010 June [Epub ahead of print]. 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

http://www.informatik.uni-trier.de/~ley/db/conf/nips/nips2006.html#GrettonBRSS06


6 Schüpbach T, Xenarios I, Bergmann S and Kapur K: FastEpistasis: a high performance 

computing solution for quantitative trait epistasis. Bioinformatics 2010 26(11):1468-1469

7 Herold C, Steffens M, Brockschmidt F, Baur MP and Becker T: INTERSNP: genome-

wide interaction analysis guided by a priori information. Bioinformatics 2009; 

25(24):3275-3281

8 Hoh J, Ott J:  Mathematical multi-locus approaches to localizing complex human trait 

genes.  Nature Reviews Genetics 2003; 4: 701-709.

9 Zhao J, Xiong M: Test for interaction between two unlinked loci. The American Journal 

of Human Genetics 2006; 79: 831-845.

10 Zaykin DV, Meng Z, Ehm MG: Contrasting linkage-disequilibrium patterns between 

cases and controls as a novel association-mapping method.  The American Journal of 

Human Genetics 2006; 78(5): 737-46.

11 Hu X, Liu Q, Zhang Z, Li Z, Wang S, He L, Shi Y: SHEsisEpi, a GPU-enhanced 

genome-wide SNP-SNP interaction scanning algorithm, efficiently reveals the risk genetic 

epistasis in bipolar disorder.  Cell Research 2010 Jul; 20(7):854-7. 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18



Figures, Equations and Tables.

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32



Equations

Equation 1.  Correlation coefficients (Pearson) difference  between case-only and control-
only for each SNP-SNP pair. Note that no assumptions, such as HWE to hold, are needed 
here.

Difference of Correlation Coefficients  = ∆ = 

The variance of each one of these correlation coefficients is, as shown by Wellek and 
Ziegler [3], equal to 1/n−1 where n is the respective number of cases and controls. As 
the cases and controls constitute, obviously, independent samples, the total variance Vtot is 
then the sum of the two single variances. As a consequence and from both Gretton et al[2] 
and Wellek and Ziegler[3] thus T = ∆ / Vtot ~ N(0,1).

Equation 2.  Full rank logistic regression model.

Phenotype =  Intercept + αSNP1 + βSNP2 + γSNP1*SNP2

∑
i=cases−only {SNP 1i−SNP 1i

________SNP 2i−SNP 2i

________
ni−1σ SNP1i

σ SNP 2i
} − ∑

j=controls−only {SNP 1 j−SNP 1 j

________ SNP 2 j−SNP 2 j

________ 
ni−1σ SNP1 j

σ SNP2 j
}
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Titles and legends to figures.

Figure 1. Histogram of differences of correlation coefficients of all 2-way interactions of  

2000 SNPs exhibiting the expected Gaussian distribution shape.

Figure 2. Logarithmic p-values from interaction term of logistic regression versus  

correlation coefficient differences of all 2-way interactions from 2000 SNPs. 

Figure 3.  Logarithmic p-values from interaction term of the logistic regression model  

versus correlation coefficient differences p-values from 2000 SNPs (2000C2 = 1999000 

SNP-SNP pairs).  Quality of Fit (R2) between the p-values is 99.9%.

Figure 4. Panic disorder logarithmic p-values density plot: Top 10 SNP pairs (points  

marked in black) and threshold correlation coefficient difference pvalue.  FastEpistasis p-

values are on the y-axis, p-values from EPIBLASTER on the x-axis. 

Figure 5. Panic disorder logarithmic p-values density plot: Top 100 SNP pairs (points  

marked in black) and threshold correlation coefficient difference p-value.  FastEpistasis p-

values are on the y-axis, p-values from EPIBLASTER on the x-axis.

Figure 6. Multiple sclerosis logarithmic p-values density plot: Top 10 SNP pairs (points  

marked in black) and threshold correlation coefficient difference p-value

Figure 7. Multiple sclerosis logarithmic p-values density plot: Top 100 SNP pairs (points  

marked in black) and threshold correlation coefficient difference p-value. 



Table 1. Top 10 panic disorder SNP pairs difference of correlation coefficient, 
FastEpistasis and logistic regression p-values.

Ranking SNP1 Name SNP2 Name
1 rs4653309 rs17338700 0.61 2.26E-10 6.97E-12 1.94E-01 6.16E-01 8.98E-12
2 rs4984422 rs1967113 -0.66 8.86E-12 1.06E-11 2.02E-01 8.66E-01 4.72E-13
3 rs1156847 rs7246846 0.62 1.21E-10 6.57E-11 7.45E-01 2.01E-01 4.02E-11
4 rs6455842 rs265548 0.64 2.81E-11 7.25E-11 3.67E-01 3.55E-01 6.17E-12
5 rs12188192 rs1317584 0.58 1.98E-09 8.08E-11 2.51E-01 4.90E-01 1.87E-10
6 rs2100807 rs4875302 0.61 1.95E-10 1.88E-10 7.15E-01 3.95E-01 1.45E-10
7 rs11900448 rs11939830 -0.6 5.07E-10 2.17E-10 2.27E-01 7.97E-01 2.64E-10
8 rs6762261 rs4745430 0.61 3.24E-10 2.36E-10 4.81E-01 1.87E-01 1.65E-10
9 rs2374344 rs1011308 0.55 1.26E-08 2.53E-10 3.97E-01 4.00E-01 4.41E-10
10 rs11925795 rs4731772 0.62 1.60E-10 3.11E-10 3.49E-03 4.37E-01 4.71E-10

Top 10 Panic Disorder SNP pairs ranked by FastEpistasis
Diff. of R Diff. Of R Pvalue FastEpistatic Pvalue Lreg-SNP1 Pvalue Lreg-SNP2 Pvalue Lreg-Interaction Pvalue
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Table 2. Top panic disorder SNP pairs annotations.
Top10 Panic Disorder SNP pairs ranked by FastEpistasis Annotations

SNP1 Name Chromosome Basepair Gene SNP 2 Name Chromosome Basepair Gene
rs4653309 chr1 37876927 rs17338700 chr2 33841677
rs4984422 chr15 94456392 rs1967113 chr18 26830011 DSC3
rs1156847 chr9 2586783 rs7246846 chr19 56705171
rs6455842 chr6 162962566 PARK2 rs265548 chr19 17763334
rs12188192 chr5 136380739 SPOCK1 rs1317584 chr6 12450775
rs2100807 chr3 117506680 LSAMP rs4875302 chr8 4028885 CSMD1
rs11900448 chr2 149650765 LOC130576 rs11939830 chr4 157150631
rs6762261 chr3 136073828 EPHB1 rs4745430 chr9 77461845
rs2374344 chr2 41994977 rs1011308 chr9 72478076
rs11925795 chr3 178001610 rs4731772 chr7 130582931
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Table 3.  Top 10 multiple sclerosis SNP pairs difference of correlation coefficient,
 FastEpistasis and logistic regression p-values. 
Top 10 multiple sclerosis SNP pairs ranked by FastEpistasis

Ranking SNP1 Name SNP2 Name Diff. of R Diff. Of R Pvalue FastEpistatic Pvalue Lreg-SNP1 Pvalue Lreg-SNP2 Pvalue Lreg-Interaction Pvalue
1 rs1392773 rs1384731 0.36 3.68E-11 3.78E-12 7.00E-01 9.90E-01 4.28E-12
2 rs1552621 rs6817936 0.34 2.00E-10 5.87E-11 7.85E-01 6.75E-01 6.71E-11
3 rs11710441 rs13226149 -0.33 5.92E-10 7.28E-11 4.79E-01 2.21E-01 8.66E-11
4 rs2218314 rs1384731 0.33 8.68E-10 8.19E-11 6.11E-01 9.99E-01 9.34E-11
5 rs6738313 rs3752735 -0.34 3.18E-10 1.03E-10 1.91E-01 7.18E-01 1.12E-10
6 rs7593466 rs11658318 0.34 3.14E-10 1.07E-10 7.66E-01 1.83E-01 1.01E-10
7 rs6758449 rs10055397 0.34 3.64E-10 1.09E-10 3.23E-01 6.90E-01 1.16E-10
8 rs17648731 rs7386137 0.35 1.22E-10 1.10E-10 8.15E-01 6.03E-01 1.05E-10
9 rs6550306 rs10503253 0.34 4.17E-10 1.52E-10 9.32E-01 3.58E-01 1.66E-10
10 rs2542509 rs2916433 0.34 5.04E-10 1.71E-10 6.94E-02 9.53E-01 1.81E-10
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Table 4. Top 10 multiple sclerosis SNP pairs annotations.
Top10 Multiple Sclerosis SNP pairs ranked by FastEpistasis Annotations

SNP1 Name Chromosome Basepair Gene SNP 2 Name Chromosome Basepair Gene
rs1392773 chr4 143053312 rs1384731 chr5 10660797
rs1552621 chr3 67460533 rs6817936 chr4 167934823 SPOCK3
rs11710441 chr3 145154009 rs13226149 chr7 94863536 PON3
rs2218314 chr4 143031581 rs1384731 chr5 10660797
rs6738313 chr2 3382368 TTC15 rs3752735 chr18 49363018
rs7593466 chr2 208807724 IDH1 rs11658318 chr17 27230172 UTP6
rs6758449 chr2 68290612 PPP3R1 rs10055397 chr5 120950796
rs17648731 chr2 77575007 rs7386137 chr8 142596655
rs6550306 chr3 34873129 rs10503253 chr8 4168252 CSMD1
rs2542509 chr2 71443251 ZNF638 rs2916433 chr4 4343724 LYAR/ZNF509

1
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