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A TWO TIME-SCALE MODEL FOR TIDAL BED-LOAD

TRANSPORT †

STÉPHANE CORDIER ‡ , CARINE LUCAS § , AND JEAN DE DIEU ZABSONRÉ ¶

Abstract. The goal of this article is to write a multi-scale analysis for a sedimentation model,
namely a bed-load transport model. As this issue can be very difficult and expensive from a numerical
point of view, the idea of the present work is to get a simplified model, satisfied by the first orders
of our variables (in terms of asymptotic development), that can be easily implemented. This model
is then validated on a numerical test of a dune in an ocean, submitted to tidal effects.

Key words. Shallow-Water Equations, bed-load transport, Exner equation, asymptotic devel-
opments, non-dimensional form, limit model, finite volumes scheme.

subject classifications. 34E13, 74S10, 65M06.

1. Introduction Developments in modeling bed-load transport are crucial
to improve the prediction of water flows. Erosion phenomena (such as transport or
sedimentation) can modify the human way of life, for example one can think about
mudslides that may occur when it’s raining for a long time. Erosion is not only due to
rain, but it is also related to the oceans. On some coasts, numerous scientific studies
aim at limiting disappearance of sand that weaken coastal installations, see among
others [2, 1]. Coastal erosion is linked to water flow, and also to tides that increase
the movements of the sea twice a day.
In this article, we consider the matter of the evolution of the topography in oceans,
indeed in shallow water and submitted to the effects of tides. To this end, we couple
Exner Equation for bed-load transport with Shallow-Water Equations and we perform
a multi-scale analysis in time for this model. Several works have been led on this
theme, see for example [7, 9, 10], but with the point of view of the stability analysis,
or [5] for some recent existence results. The idea of the present work is to get a
simplified model, satisfied by the first orders of our variables. This limit model is
compared to the “reference solution”, given by a finite volume scheme on the full
model (which can be very intricate). The comparison between these two models gives
the price to pay to have a simple system, that can be easily programmed.
More precisely, the outline of the present paper is the following: in Section 2, we
explain the obtention of the model. We begin writing the Shallow-Water Equations,
to get the evolution of the fluid, and the classical Exner Equation, for the evolution of
the topography. We have to choose one of the empirical expressions for the sediment
discharge in the bed-load transport model and we obtain our complete model. Then
we introduce non-dimensional variables and parameters to get the non-dimensional
equations and be able to perform the asymptotic analysis. Our new simplified model
is obtained combining the first orders of the asymptotics. In section 3, we explain
the way we implemented the complete model, with a finite volume scheme. We also
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2 A two time-scale model for tidal bed-load transport

compute the solutions of our new (and simple) limit model and we compare their
results; the test case is a dune, initially at rest, but that oscillates with tidal effects.
To improve the comparison, we introduce two variables related to the topography
that describe the way the dune spreads.

2. Derivation of the model We start this study with the derivation of the
model: we consider the Shallow-Water Equations coupled with the Exner equation
for the evolution of the bed. We introduce non-dimensional variables in order to make
an asymptotic analysis and obtain an approximate solution of the complete model.

2.1. Equations for bed-load transport The first point is to write equations
modelling the transport of sediments, in a shallow domain. Usually, the Shallow-Water
Equations (SWE) are coupled with a transport equation on the sediment height. More
precisely, we can define the following variables (see Figure 2.1):

0

sediment

water u(t, x)

x = (x1, x2)

ζ(t, x)

z

hb(t, x)
−H

Fig. 2.1. Sediment layer and water with free surface

H is the mean water height on the domain, u the velocity of the fluid, and ζ is the
function that describes the free surface. The function hb denotes the sediment height
starting from the level z =−H .

With these notations, the Shallow-Water Equations (SWE) are given by:

∂t(ζ−hb)+div((ζ +H−hb)u)=0, (2.1a)

∂t ((ζ +H−hb)u)+div((ζ +H−hb)u⊗u)+

g(ζ +H−hb)∇ζ +f(ζ +H−hb)u
⊥ =−ku, (2.1b)

where g is the gravity, f the Coriolis term, k the friction coefficient, and u⊥ =
t(−u2 u1) if u1 and u2 are the two components of the water velocity field u.

SWE (2.1) must be coupled with a bed-load evolution: for the sediment trans-
port, several formulations of the classical Exner equation are given in the literature,
depending on the sediment properties. We can mention here Van Rijn and Meyer-
Peter and Müller (MPM) formulations, cf. [11] for example. In our case, we choose a
simple expression, such as the one given by Grass [6]:

∂thb +Adiv(u3)=0, (2.2)

where A is a coefficient given by the sediment characteristics (usually small).

In the following, our objective is to study the coupling between Equations (2.1)
and (2.2).
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2.2. Choice of the scalings: non-dimensional quantities As we consider
a domain such as an ocean, we have to take into account tides effects. Then two length
scales coexist, namely L (the tidal wave length) and l (the tidal excursion length). If
σ denotes the tidal frequency and U the tidal current amplitude, we have l=U/σ.
We introduce non-dimensional variables, with a prime, given by:

u=Uu′, t=
t′

σ
, x= lx′, hb =Hh′

b, ζ =
ULσ

g
ζ′.

The scaling on ζ is linked to the typical momentum balance for a tidal wave.

We can introduce the small parameter δ, which is the ratio between l and L (δ≈
10−3). This parameter δ can also be written as δ =U/(σL), which means, considering
the dispersion relation Lσ=

√
gH , that the scaling on ζ reads:

ζ = δHζ′, with δ =
l

L
=

U

σL
.

Last, we must define some non-dimensional parameters

A′ =
AU3

lσH
, f ′ =

f

σ
, k′ =

k

Hσ

to simplify the writing of the equations.

2.3. Non-dimensional equations We replace the previous relations in Equa-
tions (2.1)–(2.2); dropping the primes, we get the following non-dimensional relations:

δ∂tζ−∂thb +δdiv(ζu)+div(u−hbu)=0,

∂t

(

(δζ +1−hb)u
)

+div
(

(δζ +1−hb)u⊗u
)

+

1

δ
(δζ +1−hb)∇ζ +f(δζ +1−hb)u

⊥ =−ku,

∂thb +Adiv(u3)=0.

As A is a small parameter (of order of δ2), we can define a new time scale:

τ =At,

and we assume hb to be a function of τ and x only. Then we can rewrite the non-
dimensional equations as:

δ∂tζ +δA∂τ ζ−A∂τhb +δdiv(ζu)+div(u−hbu)=0, (2.3a)

∂t

(

(δζ +1−hb)u
)

+A∂τ

(

(δζ +1−hb)u
)

+div
(

(δζ +1−hb)u⊗u
)

+
1

δ
(δζ +1−hb)∇ζ +f(δζ +1−hb)u

⊥ =−ku, (2.3b)

∂τhb +div(u3)=0. (2.3c)

In order to study these relations, we perform an asymptotic development in powers
of δ.
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2.4. Asymptotic development We decompose our variables in powers of δ:

ζ = ζ0 +δζ1 +δ2ζ2 . . .

hb =h0
b +δh1

b +δ2h2
b . . .

u=u0+δu1 +δ2u2 . . .

We replace these relations into Equations (2.3) and we identify the powers of δ. At
the first order, we find:

div(u0−h0
bu

0)=0,

∇ζ0 =0,

∂τh0
b +div

(

(

u0
)3

)

=0,

and at the second order, we get the evolution of u0:

∂tζ
0 +div(ζ0u0)+div(u1−h1

bu
0−h0

bu
1)=0,

(1−h0
b)∂tu

0 +div
(

(1−h0
b)u

0⊗u0
)

+(1−h0
b)∇ζ1 +f(1−h0

b)u
0⊥ =−ku0,

∂τh1
b +3div

(

u02
u1

)

=0.

2.5. Model The study of the first orders shows that ζ0 is a function of t only,
given by the boundary conditions. The evolutions of u0 and h0

b satisfy:

div(u0−h0
bu

0)=0, (2.4a)

∂τh0
b +div

(

(

u0
)3

)

=0, (2.4b)

(1−h0
b)∂tu

0 +div
(

(1−h0
b)u

0⊗u0
)

+(1−h0
b)∇ζ1

+f(1−h0
b)u

0⊥ =−ku0, (2.4c)

system that can be solved using finite elements and the augmented Lagrangian
method, in order to be able to treat the term in ζ1.
Remark 2.1. We could also introduce other space variables, namely X =x/δ and

χ= δx. In the first case, writing the equations, we find that the first order does not

depend on X, and we get the same system as in Section 2.5 taking the mean value, in

X of our equations.

In the second case, we obtain a system of the same type as the one of Section 2.5 but

instead of ∇ζ1 we have ∇ζ1 +∇χζ0, where ∇χ is the gradient in the coordinates χ.

3. Numerical test In order to validate our new model, we compare the results
given by a finite volumes scheme on the full equations (2.1)-(2.2) and the solution of
(2.4) on a one dimensional test case. We consider a dune in the domain and we impose
periodic boundary conditions on the velocity to simulate tides.

3.1. Finite volume scheme for the full model The first approach is to
get a “reference solution”, through the resolution of the full Shallow-Water-Exner
equations (2.1)–(2.2). This problem has been studied for example by [3, 4] using a
finite volumes scheme.
In order to keep the same notations as the one used in the above references, we do
not consider notations of Figure 2.1 anymore but the one of Figure 3.1 (note that the
variables are related through the relation h=H +ζ−hb).
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0

z

x

zb(t, x): sediment layer

h(t, x): water height
u(t, x): velocity

Fig. 3.1. Sediment layer and water with free surface for the finite volume scheme

With these notations, in one dimension (without the Coriolis term) and without
friction (k=0), Shallow-Water and Exner equations read:

∂th+∂x(hu)=0,

∂t(hu)+∂x(hu2)+g(h+zb)∂xh=0,

∂tzb +A∂xu3 =0.

(3.1)

System (3.1) can be written under the form ∂tW +A(W )∂xW =B(W )∂xW , where
A(W )=∂W (F (W )) is the jacobian matrix of F , being

W =





h
q
zb



 , F =







q
q2

h + 1

2
gh2

A q3

h3






, B =





0 0 0
0 0 −gh
0 0 0



.

The full Shallow-Water Exner system (3.1) can also be written:

∂tW +A(W )∂xW =0, (3.2)

where A(W )=A(W )−B(W ). Due to the definition of F we have the following ex-
pression for A(W ):

A(W )=







0 1 0

− q2

h2 +gh 2 q
h gh

−3A q3

h4 3A q2

h3 0






.

To simulate this model, we consider the finite volumes scheme developed in [3].
Let Wn

i be the average of W over the volume Vi at time tn. We obtain the following
numerical scheme :

Wn+1
i =Wn

i − dt

dx

(

D+

i+1/2
+D−

i+1/2

)

,

with

D±
i+1/2

= ±α0

2
(Wn

i+1−Wn
i )

±
(

1

2
+

α1

2

)

(

F (Wn
i+1)−F (Wn

i )−Bi+1/2(W
n
i+1−Wn

i )
)

±α2

2
Ai+1/2

(

F (Wn
i+1)−F (Wn

i )−Bi+1/2(W
n
i+1−Wn

i )
)

,
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where Ai+1/2 is the Roe linearization matrix. The coefficients αi are given by the
formulas:

α0 =
|λ1|λ2λ3

(λ2−λ1)(λ3−λ1)
+

|λ2|λ1λ3

(λ1−λ2)(λ3−λ2)
+

|λ3|λ1λ2

(λ3−λ1)(λ3−λ2)
,

α1 = −λ1

( |λ2|
(λ1−λ2)(λ3−λ2)

+
|λ3|

(λ1−λ3)(λ2−λ3)

)

−λ2

( |λ1|
(λ2−λ1)(λ3−λ1)

+
|λ3|

(λ1−λ3)(λ2−λ3)

)

−λ3

( |λ1|
(λ2−λ1)(λ3−λ1)

+
|λ2|

(λ3−λ2)(λ1−λ2)

)

,

and

α2 =
|λ1|

(λ2−λ1)(λ3−λ1)
+

|λ2|
(λ1−λ2)(λ3−λ2)

+
|λ3|

(λ3−λ1)(λ3−λ2)
,

where the coefficients λi,(for i=0,1,2) are the eigenvalues of the matrix Ai+1/2,
see [4].

3.2. Numerical results We consider the spatial domain [0,20], discretized
with 100 points. In this domain, we impose an initial dune, given by:

zb(t=0,x)= b0+max
(

0.1−0.05(x−10)2,0
)

, with b0 =0.1

see Figure 3.2.

0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x (in meters)

 topography

 velocity

 free surface

Fig. 3.2. Initial conditions

In order to have a constant free surface, we choose a low velocity with periodic con-
dition on the boundaries x=0 and x=20, namely:

u(t,x=0)=u(t,x=20)=5.4sin(πt/6), in m/h.

The variable t is the time expressed in hours, such that there are two periods a day.
We assume that at the initial time, the velocity is null: u(t=0,x)=0 such that the
initial conditions are given by Figure 3.2. For these choices of initial conditions and
velocity, the free surface stays flat without moving.

Let us explain the results we obtained. First, we present the evolution of the
bottom at the times t=3, 6, 12, 18, 24, 30, 36, 48 hours respectively in Figure 3.3,
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Fig. 3.3. Evolution of the topography with the complete model (100 points)
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Fig. 3.4. Evolution of the topography with the complete model (200 points)
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solution of system (3.1) with A=0.001. One can notice that the dune is moving
towards the right or the left, depending on the sign of the velocity. At the same time,
the dune is spreading.

In Figures 3.4, we plotted the results obtained with the complete model by using
a finer grid. Instead of the space step dx, we took dx

2
. Comparing the results obtained

in these configurations, we can assert that the displacement of the dune is not only
due to this numerical diffusion.

To improve the comparison between the two models (full Shallow Water system
with Exner equation and the simplified limit model), we consider the two following
functions (of time):

Z(t)= max
0≤x≤L

zb(x,t) and N(t)= card

{

i s.t. zb(xi,t)≥
Z(t)−b0

2
+b0

}

.

0 10 20 30 40 50

0.15
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Function Z(t) for 100 points

time (in hours)

(a) 100 points
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Fig. 3.5. Graphs of the function Z(t)
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(a) 100 points
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(b) 200 points

Fig. 3.6. Graphs of the function N(t)

The first function Z represents the evolution in time of the maximum of the dune,
and the second function N characterize the spread of the dune.

The results are plotted in Figures 3.5-3.6 (the sawtooth shape of the function N
is due to the integer values of N(t) and to the discrete values of the time, every one
hour).
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Fig. 3.7. Evolution of the topography with the asymptotic model (100 points)
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Fig. 3.8. Evolution of the topography with the asymptotic model (200 points)
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Let us now compare the solutions of the two systems.
First one may notice that for 100 points, the complete model needs nearly one hour,
with 200 points, the computation time is about several hours, whereas the limit model
takes a few seconds.
For the asymptotic model, we plotted in Figure 3.7 the solutions of (2.4) at t=3, 6,
12, 18, 24, 30, 36, 48 hours respectively for 100 points. In Figure 3.8, the space step is
divided by 2. Comparing with Figures 3.3-3.4 for the full model, we conclude that our
new simplified system gives good results, but the computation time is much smaller
than for the complete model.
Last, in Figures 3.9-3.10, one can compare the functions Z and N for the limit model,
still very similar to results for the full model.
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Fig. 3.9. Graphs of the function Z(t)
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Fig. 3.10. Graphs of the function N(t)

The first conclusion we can give with these numerical results is that the simplified
limit model behaves very well compared to the complete model, but the computation
time is very lower.

3.3. More numerical results In this part, we focus our attention on the
spreading on the dune, in both models. To that end, we consider several space steps:
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dx=0.2, dx
2

, dx
4

and dx
8

. Our goal is to quantify the effects of the numerical diffusion.
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Fig. 3.11. Graphs of the functions Z(t)
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Fig. 3.12. Graphs of the functions N(t)

In Figures 3.11-3.12, we plotted the functions Z and N for the various space steps,
for the complete and the limit model. (Functions N are rescaled to take into account
the number of points). As explained before, the two models have the same behavior
but this is not the point we want to emphasize. These figures and Figures 3.3-3.4,
3.7-3.8 show that the x-coordinate of the culmination of the dune does not depend
of the space step (the movement due to tides is well reproduced by the two models).
However, in both cases, the height of the culmination point is linked to the value of
the space step: the diffusion that makes the dune spread is only numerical diffusion,
even if it seems “natural”. This means that the diffusion of the topography is not
modeled in the complete system (2.1)-(2.2) (and consequently in the limit model).

4. Conclusions In this paper, we performed asymptotic developments in order
to decouple the two time scales that appear in the oceans, considering the effect of
tides. We obtained a new model and we carried out some experiments. Comparisons
with the complete model give good results in one dimension, with the advantage that



14 A two time-scale model for tidal bed-load transport

our new limit model is much faster (a few seconds compared to a few hours) and
easier to implement than the complete one.
However, the spreading of the dune is only due to the numerical diffusion, which means
that, in the Shallow-Water system with Exner equation considering Grass flow, there
is no diffusion of the evolution of the topography. This is contrary to the observations
one can make, and we can suggest to add diffusive terms in the Exner equation, as in
[12] for example, or [8] for Meyer-Peter and Müller equation.
The numerical validation of these results is still in progress in the two dimensional
case.
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