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Abstract. In this work, we propose an approach for automated analysis
of real-time scheduling problems based on timed automata. Tasks are
modeled using timed automata while schedulers correspond to feasible
runs computed using model checking algorithms. Using this model, we
present a method to prove on one hand the feasibility of a scheduling
problem and to compute, on the other hand, an hybrid off-line/on-line
scheduling policy. We expose how to use it to re-demonstrate well known
results, to produce efficient schedule regarding of various properties such
as minimal preemption number, and to address the problem of scheduling
real-time task set composed by possibly self-suspending tasks which is
known to be NP-hard.
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1 Introduction

In real-time systems, the scheduling problem consists in producing a feasible
schedule for a real-time task set whenever one exists. A slightly different problem
is, given a task set and a scheduling policy, to answer the question: did all the
tasks will respect all their deadlines? This is the feasibility problem. The aim of
this paper is to answer to these two problems: to provide a framework to both
analyze the properties of a given schedule and to generate a feasible schedule
(optionally with some parameterizable properties).

The scheduling theory often concentrates on the search for an optimal sched-
uler. An optimal scheduling policy is a policy that, given a task set, produces a
non-feasible schedule if and only if it does not exist any other scheduling policy
in the same class of algorithm that can produce a feasible schedule. The precision
in the same class of algorithm is of importance. Indeed, scheduling algorithms
can be characterized in many ways: off-line or on-line (priority driven), work-
conserving or idle, preemptive or not. To illustrate the ambiguity of the word
optimal, we can cite the RM, DM and EDF algorithms [1], which are all three
said optimal. In fact, RM is optimal among fixed priority driven preemptive
schedulers, and only for traffic composed by periodic tasks with implicit dead-
lines (i.e. Di = Ti). DM is optimal among the same kind of schedulers, but for
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traffic composed by periodic tasks with constrained deadlines (i.e. Di ≤ Ti). Fi-
nally EDF is optimal among (not necessarily fixed) priority driven schedulers for
traffic composed by periodic tasks with constrained deadlines. Any optimality-
related result on a scheduling policy (or comparison between several algorithms)
so should be considered in a well defined referential, composed by the kind of
scheduler considered for comparison, and the kind of scheduling problem con-
sidered (hypotheses on the traffic model).

Our approach is to clearly separate the behavior of a real-time task from spe-
cific constraints of a scheduling policy. Using a timed automaton [2], we model a
task as a transition system between possible configurations of a task (activated,
preempted, running, blocked). Feasible schedules then correspond to specific runs
on the model. Different scheduling and feasibility problems can be solved using
CTL [3] model checking on the generic model without constraining the model.
While changing the property to verify, we can consider feasible runs only the
ones which follow specific rules (e.g. the ones leading to an EDF schedule) or
just ask if there exists a way to respect real-time constraints without restriction
of the scheduling policy. This design permits to use the model either to test prop-
erties of a task set (e.g. schedulable, unschedulable, ...), of a specific scheduling
policy on a task set (e.g. schedulable with RM, ...) or even to generate a feasible
schedule.

One important characterization of a scheduling policy is the separation be-
tween off-line schedulers in one side, and on-line schedulers in the other side.
A scheduling policy is said on-line if the scheduling decisions (task start, pre-
emption, resume...) are taken at run time. It is said off-line if the actions at
runtime are limited to read a table where all scheduling decisions are store.
On-line scheduling is mostly represented by a sub-category: the priority-driven
schedulers. Such a scheduler maintains up-to-date a sorted-by-priority queue of
active tasks, and the processor is allocated to the task in head of this queue. A
Distinction can also be made between fixed priority schedulers for which a prior-
ity is assigned to each task once and for all, and dynamic priority schedulers for
which the priority of a task can change at any time. Off-line scheduling policies
are easy to implement and have a very low overhead cost. However, they suffer
from a possibly high space complexity issue, and are not suitable on systems
that have to react dynamically to external and/or unpredictable behavior such
as aperiodic event happening, cost under-run or over-run of a task or deadline
missed. Moreover, the generation of the table can have a high time complexity,
depending of the scheduling problem considered.

In the case of scheduling problem without uncertainties, the timed automa-
ton model permits to produce off-line a scheduling table that can be read on-
line. In scheduling under temporal uncertainties, the model produces a kind of
hybrid scheduling policy. Decisions are taken on-line according to data com-
puted off-line. It is suitable to schedule highly dynamics systems even if the
space complexity should be examined in details. Such a scheduling policy can
be classified among clairvoyant algorithms. This is an interesting property since
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a lot of negative results for numbers of scheduling-related problems, such as
NP-completeness, are applicable only to non-clairvoyant algorithms.

To illustrate the interest of our approach, we focus on one open problem
in real-time systems theory: the scheduling of possibly self-suspending real-time
tasks. This problem has recently been shown to be NP-hard in the strong sense
[4], i.e. there is no optimal on-line algorithm to schedule it which takes its de-
cisions in a polynomial time (unless P = NP ). Using our approach to model
self-suspending tasks, we can both determine if a schedule exists, and provide
the scheduler with extra data to drive it to an existing schedule. Moreover, the
use of the model permits us to conjecture that the schedulability of such task
set is sustainable regarding the variations either on execution duration and sus-
pension duration for work-conserving scheduler (this property can be trivially
proved true with an idle scheduler). The sustainability is an important property
of a scheduling problem solution: it says that if a task set is feasible, then the
same task set with positive modifications (such as reduced execution time or
augmented period) is still guaranteed feasible. This property permits to answer
the feasibility problem on the based of the worst case execution times for tasks
with uncertain durations.

After a review of related works in the remainder of this Section, we introduce
timed automata in Section 2. Section 3 presents our model. Section 4 exposes
how to use it to test systems schedulability. In Section 5 we present the problem
of schedule self-suspending tasks and how to handle it with our model. Finally
we conclude in Section 6.

Task Model. In this paper, we consider real-time systems built from a set of n
periodic real-time tasks τ1, τ2, ..., τn. Each task τi is characterized by a period
Ti, a worst-case execution time Ci and a relative deadline Di.

Related Work. In [5,6] timed automata are used to solve mainly non preemptive
job shop scheduling problem. In these approaches, reachability analysis algo-
rithms are used to construct optimal schedules in the sense of minimal total
execution time. Handling preemptible tasks using timed automata is not possi-
ble mainly because clock variables cannot be stopped and modeling such tasks
can only be done using stopwatch automata. Unfortunately, reachability anal-
ysis of stopwatch automata is an undecidable problem in the general case [7].
However, there exits methods [8,9] by which we can model preemptible tasks
in timed automata with over-approximation and modeling with stopwatches is
recently possible using the tool Uppaal 4.1 [10] with the support of a zone based
over-approximation state exploration. In [11], authors proposed a schedulability
analysis algorithm where the scheduler is modeled using an extension of timed
automata called suspension automata [12]. Unfortunately the number of clocks
needed is proportional to the maximal number of schedulable task instances as-
sociated with the model. The authors then presents an efficient algorithm in [13]
for the problem of fixed priority scheduling, as the problem is undecidable when
the execution times are given as intervals, they propose an over-approximation
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technique. The control synthesis approach has been used to solve the job schedul-
ing problem in the case of uncertain execution times [14], and in [15,16] control
synthesis is used to construct a scheduler by adding control invariant modeling
the schedulability constraints.

2 Preliminaries

Timed Automata A timed automaton [2] is a finite automaton augmented
with a finite set of real-valued variables evolving continuously and synchronously
with absolute time. Formally, let X be a set of real variables called clocks and
C(X ) the set of clock constraints φ over X generated by the following grammar:
φ ::= x♯c | x− y♯c | φ∧ φ where c ∈ IN , x, y ∈ X , and ♯ ∈ {<,≤,≥, >}. A clock
valuation is a function v : X → R+ ∪{0} which associates with every clock x its
value v(x). Given a real d ∈ R we write v+ d for the clock valuation associating
with clock x the value v(x)+ d. If r is a subset of X , [r = 0]x is the valuation v′

such that v′(x) = 0 if x ∈ r, and v′(x) = v(x) otherwise.

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple A =
(Q, q0,X , I, ∆,Σ) where, Q is a finite set of states, q0 is the initial state, X is a
finite set of clocks, I : Q → C(X ) if the invariant function, ∆ ⊆ Q×C(X )×Σ×
2X ×Q is a finite set of transitions and Σ is an alphabet of actions augmented
with the action ⊥ that represents the empty action

A configuration of a timed automaton is a pair (q,v) consisting of a state q

and a dim(X ) vector v of clock valuations. The semantic of a timed automa-
ton is given as a timed transition system with two types of transition between
configurations defined by the following rules:

– a discrete transition (q,v)
a

−→ (q′,v′) where there exists δ = (q, φ, a, r, q′) ∈
∆ such that v satisfies φ and v′ = [r = 0]x,

– a timed transition (q,v)
d

−→ (q,v+ d1) d ∈ R+ with v and v+ d satisfying
I(q) the invariant of state q.

A run of the timed automaton starting from a configuration (q0,v0) is a sequence

of time and discrete transitions ξ : (q0,v0)
t1−→ (q1,v1)

t2−→ · · · .
The reachability problem for timed automata is decidable and PSPACE-

complete [2,17]. Since this result, many model checking algorithms [18,19,20]
and timed model checkers [21,22] have been developed.

This basic model of timed automata can be extended to allow the use of
integer variables. Let V be a set of integer variables and B(V) a set of integer
constraints over V generated by the following grammar: φV ::= x < c | x ≤ c |
x > c | x ≥ c | φ ∧ φ where c ∈ IN and x ∈ V. We define a timed automaton
using integer variables as a tuple A = (Q, q0,X ,V, I, ∆,Σ) where a transition
(q, φx, φv, a, rx, rv, q

′) ∈ ∆ is defined, in addition to the basic transitions of a
timed automaton, by the integer guard φv ∈ B(V) and the set rv of linear
update functions over integer variables.
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A network of timed automata is the parallel composition A1|| . . . ||An of a
set of timed automata A1, . . . ,An. Parallel composition used an interleaving se-
mantic and synchronous communication can be done using input actions denoted
a? and output actions denoted a! (this hand shake synchronization is used in
the tool Uppaal [22]) while asynchronous communication is done using shared
variables.

Timed Game Automata A timed game automaton model [23] is an extension
of the timed automaton model, which has been introduced for the synthesis of
timed controllers.

Definition 2 (Timed Game Automaton). A timed game automaton (TGA)
is a timed automaton where the set of transitions ∆ is split into controllable (∆c)
and uncontrollable (∆u) transitions.

The timed game automaton model defines the rules of a two players game
with on one side the controller (mastering the controllable transitions) and on
the other side the environment (mastering the uncontrollable transitions). Given
a timed game automaton and a logic formula, solving a timed game consists in
finding a strategy f s.t. the automaton starting at the initial configuration and
supervised by f always satisfies the formula whatever actions are chosen by the
environment. More precisely, a strategy is a partial mapping f from the set of
runs of the TGA to the set ∆c ∪ {λ} s.t. for a finite run ξ, if f(ξ) = e ∈ ∆c

then execute the controllable transition e from the last configuration of the run
ξ and if f(ξ) = λ then wait in the last configuration of the run ξ. A strategy is
memory-less whenever its result depends only on the last configuration of the
run. It has been shown that solving a timed game is a decidable problem [23,24].

3 Real-Time Task Automata Model

s

e

f

p

cτ = C − 1 ∧ xτ = 1

xτ := 0 ∧ t := 1

cτ < C ∧ xτ = 0 ∧ t = 0

xτ := 0

xτ := 0 ∧ cτ := 0 ∧ t := 1

xτ ≤ 1

cτ < C − 1 ∧ xτ = 1

cτ := cτ + 1 ∧ xτ := 0 ∧ t := 0

Fig. 1. Real-time task automaton

We present our method by introducing a generic model for scheduling using
timed automata. For the sake of clarity, we assume a single processor scheduling
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s

e p
xτ := 0 ∧ t := 1

cτ < 6 ∧ xτ = 0 ∧ t = 0

cτ = 4 ∧ xτ = 1

f

xτ = 1

xτ ≤ 2

cτ < 4 ∧ xτ = 1

xτ := 0 ∧ cτ := 0 ∧ t := 1

xτ ≤ 1

cτ := cτ + 2 ∧ xτ := 0 ∧ t := 0

Fig. 2. Real-time task automaton, C = 7 and preemption every 2 time units

problem and all tasks periodic with their deadlines equal to their periods. How-
ever, the proposed approach can be easily generalized to less specific scheduling
problems.

A real-time task can be among one of the possible configurations: active,
running, waiting for the next activation, or preempted. The timed automaton
model is used in our approach to model a real-time task as a transition system
where the set of states represents the possible configurations of a task and the
set of transitions the possible moves between different configurations of a task.

For every real-time task τ = (C,D, T ), we associate a 4-states timed au-
tomaton Aτ with one clock xτ , one integer variable cτ and a set of states
Q = {s, e, f, p}. State s is the waiting state where the task is active and not
yet executed, e is the active state where the task is running, p is the state where
the task is preempted and f is the one where the task is waiting for the next
activation. An example is given by Figure 1. To compute the execution time of
a task, we use the clock xτ and the variable cτ as follows: the automaton can
stay in the execution state exactly one time unit and the variable cτ keeps track
of how many time unit has been performed. This is represented by an invariant
xτ ≤ 1 on state e and a loop transition that increments cτ . The transition from
e to f is enabled when the total time spent in the active state is equal to C (the
completion time of the task τ). The preemption of the task is modeled using
transitions from e to p and from p to e. Note it is supposes in this model that
a task can be preempted only at integer times, moreover, if we consider that
preemptions can occur only at certain known integer points we can arise the
staying condition of state e as shown in Figure 2.

To make this task periodic of period T , we use a second timed automaton AT

with one state and a loop transition enabled every T time unit. This transition
is labeled with an output action T ! and synchronize with the transition from
waiting to active state of the automaton Aτ .

Definition 3 (A real-time task automata model). Let τ(C, T,D) be a real-
time periodic task with T = D. A real-time task automata model for τ is a tuple
(Aτ ,AT ) where Aτ and AT are two timed automata defined as follows:
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1. Aτ (Qτ , s, xτ , cτ , Iτ , ∆τ , Στ ):

– Qτ = {s, e, f, p},
– Iτ (e) = xτ ≤ 1 and ∀q ∈ Qτ , if q 6= e Iτ (q) = true,

– ∆τ is composed of the following transitions

• (s, true, true,⊥, xτ , cτ = 0, e),
• (e, xτ = 1, cτ = C − 1,⊥, ∅, ∅, f),
• (e, xτ = 0, cτ < C,⊥, ∅, ∅, p),
• (p, true, true,⊥, xτ , ∅, e),
• (e, xτ = 1, cτ < C − 1,⊥, xτ , cτ = cτ + 1, e),
• (f, true, true, T?, ∅, ∅, s).

– Στ = {T?}.

2. AT (sT , sT , xT , ∅, IT , ∆T , ΣT ):

– IT (sT ) = xT ≤ T ,

– ∆T = {(sT , xT = T, true, T !, xT , ∅, sT )},
– Στ = {T !} .

xτ := 0 ∧ t := 1

cτ < Cu ∧ xτ = 0 ∧ t = 0

cτ ≥ Cl − 1 ∧ xτ = 1
xτ := 0

xτ ≤ 1
pe

s

f

xτ := 0 ∧ cτ := 0 ∧ t := 1

cτ < Cu − 1 ∧ xτ = 1

cτ := cτ + 1 ∧ xτ := 0 ∧ t := 0

Fig. 3. Uncertain real-time task automaton

In the treated problem, we consider that all the task parameters (execution
time, period and deadline) are known precisely in advance. In real-time schedul-
ing, task processing can take more or less time than expected, thus the system is
evaluated according to its worst case behavior. Let us consider a non determinis-
tic scheduling problem where the execution time of a task is not given in advance,
but restricted to be bounded within an interval. Let us call a real-time task τ an
uncertain real-time task if at every activation of the task, the execution time can
vary within an interval [Cl, Cu]. An uncertain real-time task is modeled using
a timed game automata noted T GAτ . The modeling of an uncertain task τ is
similar to the model of definition 3, with a distinction between controllable and
uncontrollable transitions. The start and preemption transition are controlled
by the scheduler, while the end transition, from state e to f , is controlled by
the environment and can be taken within c ∈ [Cl, Cu]. This is modeled using a
guard cτ ≥ Cl − 1 on the end transition and a guard cτ < Cu − 1 on the loop
execution transition. Figure 3 represents an uncertain real-time task automaton
where the uncontrollable transition is represented using a dashed line.
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4 Schedulability Using Real-Time Task Automata

This section introduces some of the properties we are interested to verify from
a scheduling point of view on real-time systems and exposes how to check these
properties on our model using CTL [3] properties.

The first and more natural property we want to verify on the model is the
feasibility of the task set. Second, one can be interested to know if the system can
be scheduled with a specific scheduling policy (e.g. RM, DM, EDF). However,
the feasibility of the system is not the only property of importance in the choice
of the scheduling policy. One can be interested in a lot of other characterizations
for the obtained schedule: minimizing average response times, the number of
preemptions, the maximum jitter or ensure the sustainability of the schedule.
A feasible schedule is said sustainable regarding to a parameter if it remains
feasible when this parameter is changed in a positive way. For example, if a
sustainable scheduling policy regarding to tasks’ cost succeed to schedule a task
set Σ, it should feasibly-schedule any task set where all the tasks has the same
parameters as the ones of Σ except their cost which can be lesser or equal3.
Sustainability of scheduling policies can be studied on a lot of parameters, such
as the periods, the number of tasks or the system load. We will expose how these
properties can be checked on the model.

A scheduling algorithm defines the rules which control when and how transi-
tions between different task states occur. In our approach, the scheduling algo-
rithm corresponds to a run in the product automaton of real-time task automata.

e p xT ≤ T

T?

T !

xT = T
T?

T?

STOP

T?

T?

xτ := 0

s

xτ < 1

xτ ≤ 1
sT

f

Fig. 4. Real-time task automata model. To be more readable, we omit the guards and
updates represented in Figure 1.

Let Σ = {τ1(C1, D1, T1) . . . τn(Cn, Dn, Tn)} be a finite set of real-time tasks.
We associate to every task τi a real-time task automata model (Ai

τ ,A
i
T ) with

Ai
τ (Q

i
τ , s

i, xi
τ , c

i
τ , I

i
τ , ∆

i
τ , Σ

i
τ ) and Qi

τ = {si, ei, fi, pi}. We use a global variable
proc indicating if the processor is idle (proc = 1) or not (proc = 0). This variable
is tested for every transition leading to the execution state and reset to one for

3 e.g. this property is not verified for most of the traditional multiprocessor scheduling
algorithms
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every transition starting from it. In the case of multi-processor scheduling, one
can use several global variables, each of them corresponding to a processor.

We introduce a new state STOPi for each automaton Ai
τ , which is reached

if a task misses its deadline. For every state of Ai
τ , a transition labeled by an

input action Ti? leads to state STOPi. Thus, if a new instance of the task is
active before the execution of the previous one, the automata goes to the state
STOPi as shown by Figure 4.

Let us note (qi,vi) a configuration of the parallel composition of A1
τ || . . . ||A

n
τ

s.t. qi = (q1i , q
2
i , . . . , q

n
i ) where q

j
i is a state of the automaton Aj

τ . We note q0

the tuple where ∀j ∈ 1 . . . n q
j
0 = sj . The set of clocks is augmented with a

global clock t which is never reset. We note ti the valuation of the clock t in the
configuration (qi,vi) and v0 the vector of valuations where all the clocks are set
to 0.

Definition 4 (Scheduling run). Let Σ((Aτ1 ,AT1
), . . . , (Aτn ,ATn

)) be a set of
real-time task automata. A scheduling run ξ : (q0,v0) −→ (q1,v1) −→ · · · is
a run of the parallel composition of Aτ1 || . . . ||Aτn . A scheduling run is feasible
iff ∀(qi,vi) ∈ ξ ∀j ∈ {1 . . . n} q

j
i 6= STOPj.

Thus, a set τ = {τ1(C1, D1, T1) . . . τn(Cn, Dn, Tn)} is schedulable if and only
if there exists a feasible scheduling run in the corresponding real-time task au-
tomata model. Then, schedulability can be verified using the CTL formula 1.

φSched : EG¬(
∨

i=1...n

STOPi) (1)

A scheduling algorithm can be computed using a feasible trace satisfying this
formula if it exists using Algorithm 1. This algorithm takes as input a feasible
scheduling run and defines a scheduling policy. The proof of termination is based
on the fact that if ξ is a feasible schedule, then it exists a configuration (qi,vi)
with qi = q0 and ti > 0 where all active tasks have terminated their execution
without missing their deadline. In the case where D ≤ T , this configuration is
reached at least at the hyper-period, the least common multiple of the periods
of all tasks. We then just have to repeat this algorithm to obtain an infinite
schedule.

Work-Conserving Scheduler Our model generates possibly idle schedules,
i.e. schedules where the processor can be idle at any time. Scheduling theory
often implicitly addresses problems for work-conserving schedulers (that produce
schedule where the processor can be idle only when there is no ready task)
because leaving the processor idle when tasks are ready seems to result in a
resource wasting. But it is important to not restrict the model to work-conserving
schedules since it exists task sets only feasible with idle schedulers. Moreover,
the scheduling problem in idle-scheduling environment was proved undecidable
without a clairvoyant algorithm.



10 Yasmina Abdeddäım and Damien Masson

Algorithm 1 Scheduling Run Algorithm

SchedRun[ξ]

i← 0, ti ← 0
while qi 6= q0 or ti == 0 do

if ∃qji 6= q
j
i+1 then

if q
j
i+1 = ej then

execute task τj at time t = ti
end if

if q
j
i+1 = pj then

preempt task τj at time t = ti
end if

end if

i← i+ 1
end while

Definition 5 (Work-Conserving Scheduling Run). A scheduling run ξ is
work conserving iff ∀(qi,v) ∈ ξ if ∃qji ∈ {si, pi} and q

j
i+1

= q
j
i then ∃k 6= j s.t.

qki ∈ {ek}

Work conserving runs corresponds to work-conserving scheduling algorithms.
Let P, be the set of n permutations of the set {p, s, f} where the tuple

(f, f, . . . , f) is excluded. We note ki ∈ P the tuple (k1i , k
2
i . . . k

n
i ) where ∀j ∈

1 . . . n k
j
i ∈ {pj , sj , fj} the preemptive, start and final states of the task τj .

To compute work-conserving runs, we use the CTL formula 2

φWC : EG¬(
∨

ki∈P

(k1i ∧ k2i ∧ . . . ∧ kni ∧ POS)) (2)

where POS is a state of an observer automaton, which is in state POS if ∃j ∈
1 . . . n s.t. xj

τ > 0 and in state NPOS if ∀j ∈ 1 . . . n xj
τ = 0. This formula states

that it exists a run where in all the configurations containing an active task, it
exists a task in its execution state.

Fixed-Priority Scheduler We consider that the tasks τi are sorted according
to a priority function, such that τ1 ≤ τ2 . . . ≤ τn. A system of task is schedulable
according to a fixed priority algorithm if and only if the CTL formula 3 is
satisfied.

φFP : EG¬(
∨

i=1...n−1

(si
∧

j=i...n

ej) ∨
∨

i=1...n−1

(pi
∧

j=i...n

ej) ∨ (
∨

i=1...n

STOPi)) (3)

This formula states that it exists a run where in all the configurations, a task
cannot be in its execution state if a less priority task is active.

Earliest-Deadline-First Scheduler Earliest deadline first (EDF) is a dy-
namic priority scheduler where, if two tasks are active, the scheduler assigns the
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processor to the task the closest to its deadline. A system of task is schedulable
according to EDF if and only if the CTL formula 4 is satisfied.

φedf : EG¬(
∨

i=1..n

∨

j 6=i=1..n

(si∧ej∧Pij)
∨

i=1..n

∨

j 6=i=1..n

(pi∧ej∧Pij)∨(
∨

i=1..n

STOPi))

(4)

In this formula, Pij and NPij are the states of an observer automaton, the
automaton is in state Pij if xTi

−xTj
> Ti−Tj and in NPij if x

i
T −xi

T ≤ Ti−Tj

where xi
T and x

j
T are the clocks of the period automata Ai

T and Aj
T . This formula

states that it exists a run where in all the configurations, a task cannot be in its
execution state if a task with a closer deadline is active.

Minimal Preemption Scheduler Our approach can be used to find schedul-
ing algorithms that minimizes the number of preemptions. This can be done
simply by adding a variable that counts the number of preemptions. A task
cannot be preempted no more than its duration, so a guard is used to limit
the number of preemptions. A global variable preemp is used to count the total
number of preemptions. To verify if a task set is schedulable with less then c

preemptions, we use the CTL formula:

φPreemp : EG¬(
∨

i=1...n

STOPi ∨ preemp > c) (5)

Sustainable Scheduler Let τ = {τ1([C
1
l , C

1
u], D

1, T 1) . . . τn([C
n
l , C

n
u ], D

n, Tn)}
be a finite set of uncertain real-time tasks. We associate to every task τi an un-
certain real-time task automaton TGAi

τ . A scheduling algorithm is sustainable
in [Ci

l , C
i
u]∀i ∈ 1 . . . n if all tasks do not miss there deadline whatever are the

execution times.

Definition 6 (Scheduling strategy). Let A be a network of n uncertain real-
time task automata. A scheduling strategy is a strategy f from the set of con-
figurations of A to the set ∆1

c ∪ . . . ∆n
c ∪ {λ}. A scheduling strategy is feasible iff

the automata A starting at the initial configuration and supervised by f never
reach a state STOPi ∀i ∈ 1 . . . n.

In CTL, this means that the network supervised by f satisfies the safety
formula:

φsust : AG¬(
∨

i=1...n

STOPi) (6)

Given a network of uncertain real-timed automata and a formula φsust, find-
ing a sustainable scheduling algorithm (in [Cl, Cu]) consists in the construction of
a feasible strategy if one exists. The scheduler can be computed using Algorithm
2.
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Algorithm 2 Scheduling Strategy Algorithm

SchedStrategy[f ]

(q,v)← (q0,v0), t← 0
while q 6= q0 or t == 0 do

while f((q,v)) = λ or no task has finished do

v = v+ 1
end while

if f((q,v)) = tr ∈ ∆j
c then

(qk,vk) is the successor of (q,v) while taking the transition tr

if ∃qjk 6= qj and q
j

k = ej then

execute task τj at time t = tk
end if

if ∃qjk 6= qj and q
j

k = pj then

preempt task τj at time t = tk
end if

end if

if a task τj has finished then

let be (qk,vk) s.t.:
∀i = 1 . . . n i 6= j qik = qi, vk(x

i
τ ) = vk(x

i
τ ) and

q
j

k = f j , vk(x
j
τ ) = 0

end if

(q,v) = (qk,vk)
end while

5 Self-Suspending Tasks

Traditional real-time scheduling theory is build on the hypothesis that the tasks
cannot suspend themselves [1]. However, real-world tasks have to communicate,
to synchronize and to perform external input/output operations. Each of these
actions can result in a significant suspension interval for a task. It is especially
true when modern architectures are considered: a task executing on a multi-core
processor can have to synchronize with another one which is executing on a
different core ; a task executing on an heterogeneous ISA multiprocessor system
can have to migrate temporarily in order to execute specific instructions ; in
the context of embedded systems where some accelerated co-processors such as
Digital Signal Processors (DSPs) or Graphics Processing Units (GPUs) can be
available, executing a part of a task on one of them results in a self-suspension
of the task from the main processor point of view. Moreover, the durations of
the suspension intervals are mostly independent of the processor (CPU) speed
and so of tasks’ worst case execution times. The easiest way to deal with such
tasks is to account these suspension intervals as a part of the task computation
time itself, and to enforce busy-waiting, wasting the gain-time offered by the
hardware parallelism.

Task Model with Self-Suspensions Two task models are considered in the
literature. In the simplest one, each task is characterized by the tuple τi =
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(Ci, Ei, Ti, Di) where Ci is its worst case execution time and Ei its worst case sus-
pension time (Ti and Di being as usual the period and the deadline). There is no
assumption on the number and time arrival of suspensions. The only information
is the sum of their durations. This model was used in [25,26]. The second is an
extension where a task is characterized by the tuple τi = (Pi, Ti, Di) with Pi its
execution pattern. An execution pattern is a tuple Pi = (C1

i , E
2
i , C

2
i , E

2
i , ..., C

m
i )

Where each C
j
i is a worst case execution time and each E

j
i a worst case suspen-

sion time. This model was used in [27,4].
In [4], authors expose three negative results on these kind of systems sched-

uled on-line with a non-clairvoyant algorithm. These three points can be solved
using our framework:

The scheduling problem for self-suspending tasks is NP-hard in the strong sense.
However, with our model we can say if a task set is feasible.
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Fig. 5. Feasible schedule exists but neither pfp or EDF is able to find it

Classical algorithms do not maximize tasks completed by their deadlines. Figure
5 shows that it exists systems for which feasible schedules exist whereas neither
PFP (with all priority assignments possibilities) nor EDF are able to produce one
of them. However our timed-automata-assisted-scheduler (TAS on the Figure)
permits to find a feasible schedule whenever one exists.

Scheduling Anomalies can occur at run-time. Figure 6 exhibits the non sustain-
ability of fixed priority schedulers when tasks can suspend themselves. Sub-figure
6(a) presents the schedule of task set {τ1, τ2, τ3} = {((2, 2, 4), 10, 10, High) ,
((2, 8, 2), 20, 20,Medium) , (2, 12, 12, Low)} when the tasks always execute and



14 Yasmina Abdeddäım and Damien Masson

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� �� �� ��

���� ���� ���� ���� ����

τ1

τ2

τ3

10 20 30 40 50 600

(a) With A fixed priority preemptive pol-
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(b) But can be unfeasible if a working
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(c) Sustainability can be enforced
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(d) But a more efficient schedule can be
found with the model

Fig. 6. PFP is not sustainable for self-suspending tasks: counter example on system
{τ1, τ2, τ3} = {((2, 2, 4), 10, 10, High) , ((2, 8, 2), 20, 20,Medium) , (2, 12, 12, Low)}

suspend exactly for their worst case execution time. We can see that the system
is feasible all over its hyper period. Sub-figure 6(b) exposes the schedule where

the third instance of τ1 executes with the pattern P1 = (
C1

1

2
,
E1

1

2
, C2

1 ). It results in
a deadline missed for the τ3 at time 49. Note that it exists a simple way to enforce
the sustainability: forcing the system to simulate activity when a task completes
earlier than it was supposed to. Figure 6(c) exposes the resulting schedule of this
strategy on the previous example. However, this results in resource wasting. The
gain time resulting from the earlier completion of a task could better be used
for increase system dynamism or robustness, e.g. to compensate a cost overrun.
Figure 6(d) produces a feasible schedule for the previous example where the sys-
tem is never idle when work is pending. It is possible at the expense of a priority
inversion at time 21. The time automata assisted scheduling can easily find such
feasible schedule, where the problem is probably hard for a pure non-clairvoyant
scheduler. To conclude with this example, note that an EDF schedule suffers
from the exactly same anomaly. The system is feasible when the costs are fixed,
but deadlines are missed (by τ2 at time 40 and τ1 at time 50) if the third instance
of τ1 executes according to the modified pattern.

Self-Suspending Automata To handle self-suspending scheduling problem
with timed automata, we had to modify our model by adding a suspended state
for tasks, however, all results presented in the previous section will remain valid
with the modified model.



Timed Automata to Schedule Real-Time Applications 15

s

e

f

p
xτ ≤ E

i := i+ 1 ∧ C := Ci ∧ cτ := 0

xτ = E

i = m

sp

C := C0∧

i := 0cτ = C − 1 ∧ xτ = 1 ∧ i < m

E := Ei ∧ xτ := 0

(a) Worst case execution time

s

e

f

p
xτ ≤ E

xτ ≥ El

i = m

sp
i := 0

cτ ≥ Cl − 1 ∧ xτ = 1 ∧ i < m

Eu := Ei
u ∧ El := Ei

l
∧ xτ := 0

Cl := C0
u∧

Cu := C0
u∧

i := i+ 1 ∧ Cu := Ci
u ∧ Cl := Ci

l
∧ cτ := 0

(b) Uncertain durations

Fig. 7. Self suspending automata

Let τ = (P, T,D) be a self suspending task with an execution pattern P =
(C1, E1, C2, E2, ..., Cm) composed of m steps. To model a self suspending task
using timed automata, we add to the real-time task automaton a new state sp

where the execution of a task can be suspended (see Figure 7(a)). The automaton
can stay in the state exactly E time units, this is modeled using an invariant
xτ ≤ E and a guard xτ = E. At each step i of the execution pattern, the
variables E and C are settled to Ei and Ci respectively and the task finishes
when all the steps has been computed (see the guard i = m on the end transition
of Figure 7(a)). The timed game automaton of Figure 7(b) represents the model
for an uncertain self suspending task. In this model, the execution pattern P is
a set of intervals ([C1

l , C
1
u], [E

1
l , E

1
u], [C

2
uC

2
u], [E

2
l , E

2
u], ..., [C

m
l Cm

u ]) representing
uncertain execution time and suspension time.

6 Conclusion

We presented a real-time application model using timed automata and exposed
how to use it to handle classical and known-unfeasible scheduling problems. The
approach has been tested using the tools Uppaal [22] and Uppaal-Tiga [28]. In
our experiments, we focused on the efficiency of the model to construct different
schedules by changing the properties to verify. We managed to use our model
to test the feasibility of scheduling problem according to fixed priority and dy-
namic priority schedulers and to produce feasible schedules when these methods
are not optimal. We tested also the model for minimal preemption scheduling
and to generate sustainable schedules when they exists. All the tests have been
done in both cases of work-conserving and idle scheduling. Actually, the sched-
ules are generated by hand using the feasible trace and the winning strategy
generated by the tools. Future works must propose an automatic generation of
the scheduler and must examine other solutions to model the preemption or
focus on optimization algorithm for state space exploration. Indeed, we used a
discretization of the execution time of a task to handle preemption. This can
leads to a combinatoric explosion of the model when the execution time of tasks
grows.
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