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THE NUMBER OF INTERVALS IN THE m-TAMARI LATTICES

MIREILLE BOUSQUET-MÉLOU, ÉRIC FUSY, AND LOUIS-FRANÇOIS PRÉVILLE-RATELLE

To Doron Zeilberger, on the occasion of his 60th birthday

Abstract. An m-ballot path of size n is a path on the square grid consisting of north and
east steps, starting at (0, 0), ending at (mn, n), and never going below the line {x = my}.
The set of these paths can be equipped with a lattice structure, called the m-Tamari lattice

and denoted by T
(m)
n , which generalizes the usual Tamari lattice Tn obtained when m = 1.

We prove that the number of intervals in this lattice is

m + 1

n(mn+ 1)

((m+ 1)2n+m

n− 1

)

.

This formula was recently conjectured by Bergeron in connection with the study of diagonal
coinvariant spaces. The case m = 1 was proved a few years ago by Chapoton. Our proof
is based on a recursive description of intervals, which translates into a functional equation
satisfied by the associated generating function. The solution of this equation is an algebraic
series, obtained by a guess-and-check approach. Finding a bijective proof remains an open
problem.

1. Introduction

A ballot path of size n is a path on the square lattice, consisting of north and east steps,
starting at (0, 0), ending at (n, n), and never going below the diagonal {x = y}. There are three
standard ways, often named after Stanley, Kreweras and Tamari, to endow the set of ballot
paths of size n with a lattice structure (see [15, 20, 22], and [4] or [21] for a survey). We focus
here on the Tamari lattice Tn, which, as detailed in the following proposition, is conveniently
described by the associated covering relation. See Figure 1 for an illustration.

Proposition 1. [4, Prop. 2.1] Let P and Q be two ballot paths of size n. Then Q covers P in
the Tamari lattice Tn if and only if there exists in P an east step a, followed by a north step b,
such that Q is obtained from P by swapping a and S, where S is the shortest factor of P that
begins with b and is a (translated) ballot path.

Alternatively, the Tamari lattice Tn is often described in terms of rooted binary trees. The
covering relation amounts to a re-organization of three subtrees, often called rotation (Figure 1).
The equivalence between the two descriptions is obtained by reading the tree in postorder, and
encoding each leaf (resp. inner node) by a north (resp. east) step (apart from the first leaf,
which is not encoded). We refer to [4, Sec. 2] for details. The Hasse diagram of the lattice Tn is
the 1-skeleton of the associahedron, or Stasheff polytope [11].

A few years ago, Chapoton [12] proved that the number of intervals in Tn (i.e., pairs P,Q ∈ Tn
such that P ≤ Q) is

2

n(n+ 1)

(

4n+ 1

n− 1

)

.
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Figure 1. A covering relation in the Tamari lattice, shown on ballot paths and
binary trees. The path encodes the postorder of the tree (apart from the first
leaf).

He observed that this number is known to count 3-connected planar triangulations on n +
3 vertices [30]. Motivated by this result, Bernardi and Bonichon found a beautiful bijection
between Tamari intervals and triangulations [4]. This bijection is in fact a restriction of a
more general bijection between intervals in the Stanley lattice and Schnyder woods. A further
restriction leads to the enumeration of intervals of the Kreweras lattice.

In this paper, we study a generalization of the Tamari lattices to m-ballot paths due to
Bergeron, and count the intervals of these lattices. Again, a remarkably simple formula holds
(see (1)). As we explain below, this formula was first conjectured by F. Bergeron, in connection
with the study of coinvariant spaces.

An m-ballot path of size n is a path on the square grid consisting of north and east steps,
starting at (0, 0), ending at (mn, n), and never going below the line {x = my}. It is a classical

exercice to show that there are 1
mn+1

(

(m+1)n
n

)

such paths [14]. Consider the following relation
≺ on m-ballot paths, illustrated in Figure 2.

Definition 2. Let P and Q be two m-ballot paths of size n. Then P ≺ Q if there exists in P
an east step a, followed by a north step b, such that Q is obtained from P by swapping a and S,
where S is the shortest factor of P that begins with b and is a (translated) m-ballot path.

As we shall see, the transitive closure of ≺ defines a lattice on m-ballot paths of size n. We

call it the m-Tamari lattice of size n, and denote it by T
(m)
n . Of course, T

(1)
n coincides with

Tn. See Figure 3 for examples. The main result of this paper is a closed form expression for the

≺ab b

a

S S

Figure 2. The relation ≺ between m-ballot paths (m = 2).
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Figure 3. The m-Tamari lattice T
(m)
n for m = 1 and n = 4 (left) and for

m = 2 and n = 3 (right). The three walks surrounded by a line in T
(1)
4 form a

lattice that is isomorphic to T
(2)
2 . This will be generalized in Section 2.

number f
(m)
n of intervals in T

(m)
n :

f (m)
n =

m+ 1

n(mn+ 1)

(

(m+ 1)2n+m

n− 1

)

. (1)

The first step of our proof establishes that T
(m)
n is in fact isomorphic to a sublattice (and more

precisely, an upper ideal) of Tmn. We then proceed with a recursive description of the intervals

of T
(m)
n , which translates into a functional equation for the associated generating function (Sec-

tion 2, Proposition 8). This generating function keeps track of the size of the paths, but also
of a catalytic parameter1 that is needed to write the equation. This parameter is the number of
contacts of the lower path with the line {x = my}. A general theorem asserts that the solution
of the equation is algebraic [7], and gives a systematic procedure to solve it for small values of
m. However, for a generic value of m, we have to resort to a guess-and-check approach to solve
the equation (Section 3, Theorem 10). We enrich our enumeration by taking into account the
initial rise of the upper path, that is, the length of its initial run of north steps. We obtain an
unexpected symmetry result: the joint distribution of the number of contacts of the lower path
(minus one) and the initial rise of the upper path is symmetric. Section 4 presents comments
and questions.

To conclude this introduction, we describe the algebraic problem that led Bergeron to con-
jecture (1).

Let X = (xi,j)1≤i≤ℓ

1≤j≤n

be a matrix of variables, for some positive integers ℓ, n ≥ 1. We call each

line of X a set of variables. Let C[X ] be the ring of polynomials in the variables of X . The
symmetric group Sn acts as a representation on C[X ] by permuting the columns of X . That is,

1This terminology is due to Zeilberger [32].
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if σ ∈ Sn and f(X) ∈ C[X ], then

σ(f(X)) = f(σ(X)) = f((xi,σ(j))1≤i≤ℓ

1≤j≤n

).

We consider the ideal I of C[X ] generated by Sn-invariant polynomials having no constant
term. The quotient ring C[X ]/I is (multi-)graded because I is (multi-)homogeneous, and is a
representation of Sn because I is invariant under the action of Sn. We focus on the dimension
of this quotient ring, and to the dimension of the sign subrepresentation. We denote by W ε the
sign subrepresentation of a representation W .

Let us begin with the classical case of a single set of variables. When X = [x1, . . . , xn], we
consider the coinvariant space Rn, defined by

Rn = C[X ]
/

〈{

n
∑

i=1

xr
i

∣

∣r ≥ 1
}〉

,

where
〈

S
〉

denotes the ideal generated by the set S. It is known [1] that Rn is isomorphic to
the regular representation of Sn. In particular, dim(Rn) = n! and dim(Rε

n) = 1. There exist
explicit bases of Rn indexed by permutations.

Let us now move to two sets of variables. In the early nineties, Garsia and Haiman introduced

an analogue of Rn for X =

[

x1 . . . xn

y1 . . . yn

]

, and called it the diagonal coinvariant space [19]:

DR2,n = C[X ]
/

〈{

n
∑

i=1

xr
i y

t
i

∣

∣r + t ≥ 1
}〉

.

About ten years later, using advanced algebraic geometry [18], Haiman settled several conjectures
of [19] concerning this space, proving in particular that

dim(DR2,n) = (n+ 1)n−1 and dim(DR ε
2,n) =

1

n+ 1

(

2n

n

)

. (2)

He also studied an extension of DR2,n involving an integer parameter m and the ideal A generated
by alternants [16, 17]:

A =
〈{

f(x)
∣

∣σ(f(X)) = (−1)inv(σ)f(X), ∀σ ∈ Sn

}〉

.

There is a natural action of Sn on the quotient space Am−1
/

JAm−1. Let us twist this action
by the (m− 1)st power of the sign representation ε: this gives rise to spaces

DRm
2,n := εm−1 ⊗Am−1

/

JAm−1,

so that DR1
2,n = DR2,n. Haiman [18, 17] generalized (2) by proving

dim(DRm
2,n) = (mn+ 1)n−1 and dim(DRm ε

2,n ) =
1

mn+ 1

(

(m+ 1)n

n

)

.

Both dimensions have simple combinatorial interpretations: we recognize in the latter the number
of m-ballot paths of size n, and the former is the number of m-parking functions of size n (these
functions can be described as m-ballot paths of size n in which the north steps are labelled from
1 to n in such a way the labels increase along each run of north steps; see e.g. [31]). However, it
is still an open problem to find bases of DRm

2,n or DRm ε
2,n indexed by these simple combinatorial

objects.
For ℓ ≥ 3, the spaces DRℓ,n and their generalization DRm

ℓ,n can be defined similarly. Haiman
explored the dimension of DRℓ,n and DR ε

ℓ,n. For ℓ = 3, he observed in [19] that, for small values
of n,

dim(DR3,n) = 2n(n+ 1)n−2 and dim(DR ε
3,n) =

2

n(n+ 1)

(

4n+ 1

n− 1

)

.
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Following discussions with Haiman, Bergeron came up with conjectures that directly imply the
following generalization (since DR1

3,n coincides with DR3,n):

dim(DRm
3,n) = (m+ 1)n(mn+ 1)n−2 and dim(DRm ε

3,n ) =
m+ 1

n(mn+ 1)

(

(m+ 1)2n+m

n− 1

)

.

Both conjectures are still wide open.
A much simpler problem consists in asking whether these dimensions again have a simple com-

binatorial interpretation. Bergeron, starting from the sequence 2
n(n+1)

(

4n+1
n−1

)

, found in Sloane’s

Encyclopedia that this number counts, among others, certain ballot related objects, namely in-
tervals in the Tamari lattice [12]. From this observation, and the role played by m-ballot paths

for two sets of variables, he was led to introduce the m-Tamari lattice T
(m)
n , and conjectured

that m+1
n(mn+1)

(

(m+1)2n+m
n−1

)

is the number of intervals in this lattice. This is the conjecture we

prove in this paper. Another of his conjectures is that (m + 1)n(mn + 1)n−2 is the number
of Tamari intervals where the larger path is “decorated” by an m-parking function [3]. This is
proved in [6, 5].

2. A functional equation for the generating function of intervals

The aim of this section is to describe a recursive decomposition of m-Tamari intervals, and
to translate it into a functional equation satisfied by the associated generating function (Propo-
sition 8). There are two main tools:

• we prove that T
(m)
n can be seen as an upper ideal of the usual Tamari lattice Tmn,

• we give a simple criterion to decide when two paths of the Tamari lattice are comparable.

2.1. An alternative description of the m-Tamari lattices

Our first transformation is totally harmless: we apply a 45 degree rotation to 1-ballot paths
to transform them into Dyck paths. A Dyck path of size n consists of steps (1, 1) (up steps) and
steps (1,−1) (down steps), starts at (0, 0), ends at (0, 2n) and never goes below the x-axis.

We now introduce some terminology, and use it to rephrase the description of the (usual)
Tamari lattice Tn. Given a Dyck path P , and an up step u of P , the shortest portion of P that
starts with u and forms a (translated) Dyck path is called the excursion of u in P . We say that
u and the final step of its excursion match each other. Finally, we say that u has rank i if it is

the ith up step of P .
Given two Dyck paths P and Q of size n, Q covers P in the Tamari lattice Tn if and only if

there exists in P a down step d, followed by an up step u, such that Q is obtained from P by
swapping d and S, where S is the excursion of u in P . This description implies the following
property [4, Cor. 2.2].

Property 3. If P ≤ Q in Tn then P is below Q. That is, for i ∈ [0..2n], the ordinate of the
vertex of P lying at abscissa i is at most the ordinate of the vertex of Q lying at abscissa i.

Consider now an m-ballot path of size n, and replace each north step by a sequence of m
north steps. This gives a 1-ballot path of size mn, and thus, after a rotation, a Dyck path. In
this path, for each i ∈ [0..n− 1], the up steps of ranks mi+ 1, . . . ,m(i+ 1) are consecutive. We
call the Dyck paths satisfying this property m-Dyck paths. Clearly, m-Dyck paths of size mn
are in one-to-one correspondence with m-ballot paths of size n. Consider now the relation ≺ of
Definition 2: once reformulated in terms of Dyck paths, it becomes a covering relation in the
(usual) Tamari lattice (Figure 4). Conversely, it is easy to check that, if P is an m-Dyck path
and Q covers P in the usual Tamari lattice, then Q is also an m-Dyck path, and the m-ballot
paths corresponding to P and Q are related by ≺. We have thus proved the following result.

Proposition 4. The transitive closure of the relation ≺ defined in Definition 2 is a lattice on
m-ballot paths of size n. This lattice is isomorphic to the sublattice of the Tamari lattice Tmn
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≺S
S

Figure 4. The relation ≺ of Figure 2 reformulated in terms of m-Dyck paths
(m = 2).

consisting of the elements that are larger than or equal to the Dyck path umdm . . . umdm. The
relation ≺ is the covering relation of this lattice.

Notation. From now on, we only consider Dyck paths. We denote by T the set of Dyck paths,
and by Tn the Tamari lattice of Dyck paths of length n. By T (m) we mean the set of m-Dyck

paths, and by T
(m)
n the Tamari lattice of m-Dyck paths of size mn. This lattice is a sublattice

of Tmn. Note that T (1) = T and T
(1)
n = Tn.

2.2. Distance functions

Let P be a Dyck path of size n. For an up step u of P , we denote by ℓP (u) the size of the
excursion of u in P . The function DP : [1..n] → [1..n] defined by DP (i) = ℓ(ui), where ui is

the ith up step of P , is called the distance function of P . It will sometimes be convenient to see
DP as a vector (ℓ(u1), . . . , ℓ(un)) with n components. In particular, we will compare distance
functions component-wise. The main result of this subsection is a description of the Tamari
order in terms of distance functions. This simple characterization seems to be new.

Proposition 5. Let P and Q be two paths in the Tamari lattice Tn. Then P ≤ Q if and only
if DP ≤ DQ.

In order to prove this, we first describe the relation between the distance functions of two
paths related by a covering relation.

Lemma 6. Let P be a Dyck path, and d a down step of P followed by an up step u. Let S be
the excursion of u in P , and let Q be the path obtained from P by swapping d and S. Let u′

be the up step matched with d in P , and i0 the rank of u′ in P . Then DQ(i) = DP (i) for each
i 6= i0 and DQ(i0) = DP (i0) + ℓP (u).

u
′

u u
′ u

≺

S
S

P Q
2ℓP (u

′) 2ℓP (u) 2ℓQ(u
′)

d

Figure 5. How the distance function changes in a covering relation.

This lemma is easily proved using Figure 5. It already implies that DP ≤ DQ if P ≤ Q. The
next lemma establishes the reverse implication, thus concluding the proof of Proposition 5.

Lemma 7. Let P and Q be two Dyck paths of size n such that DP ≤ DQ. Then P ≤ Q in the
Tamari lattice Tn.

Proof. Let us first prove, by induction on the size, that P is below Q (in the sense of Property 3).
This is clearly true if n = 0, so we assume n > 0.

Let u be the first up step (in P and Q). Note that ℓP (u) = DP (1) ≤ DQ(1) = ℓQ(u). Let P ′

(resp. Q′) be the path obtained from P (resp. Q) by contracting u and the down step matched
with u. Observe that DP ′ is obtained by deleting the first component of DP , and similarly for



THE NUMBER OF INTERVALS IN THE m-TAMARI LATTICES 7

DQ′ and DQ. Consequently DP ′ ≤ DQ′ , and hence by the induction hypothesis, P ′ is below
Q′. Let us consider momentarily Dyck paths as functions, and write P (i) = j if the vertex of
P lying at abscissa i has ordinate j. Note that P (i) = P ′(i − 1) + 1 for 1 ≤ i < 2ℓP (u), and
P (i) = P ′(i − 2) for 2ℓP (u) ≤ i ≤ 2n. Similarly Q(i) = Q′(i − 1) + 1 for 1 ≤ i < 2ℓQ(u), and
Q(i) = Q′(i− 2) for 2ℓQ(u) ≤ i ≤ 2n. Since ℓP (u) ≤ ℓQ(u) and P ′(i) ≤ Q′(i) for 0 ≤ i ≤ 2n− 2,
one easily checks that P (i) ≤ Q(i) for 0 ≤ i ≤ 2n, so that P is below Q.

In order to prove that P ≤ Q, we proceed by induction on ||DP−DQ||, where ||(x1, . . . , xn)|| =
|x1| + · · ·+ |xn|. If DP = DQ then P = Q, because P is below Q and Q is below P . So let us
assume that DP 6= DQ. Let i be minimal such that DP (i) < DQ(i). We claim that P and Q
coincide at least until their up step of rank i. Indeed, since P lies below Q, the paths P and Q
coincide up to some abscissa, and then we find a down step δ in P but an up step in Q. Let
j be the rank of the up step that matches δ in P . This up step belongs also to Q, and, since
δ 6∈ Q, we have DP (j) < DQ(j). Hence j ≥ i by minimality of i, and P and Q coincide at least
until their up step of rank i, which we denote by u. Let d be the down step matched with u in
P (Figure 6). Since DP (i) < DQ(i), the step d is not a step of Q. The step of Q located at the
same abscissa as d ends strictly higher than d, and in particular, at a positive ordinate. Hence
d is not the final step of P . Let s be the step following d in P .

u d
su′

P
Q

Figure 6. Why s cannot be descending.

Let us prove ad absurdum that s is an up step. Assume s is down. Then s is matched in P
with an up step u′ of rank j < i (Figure 6). Hence u′ belongs to Q and has rank j in Q. Since
s cannot belong to Q, this implies that DP (j) < DQ(j), which contradicts the minimality of i.

Hence s is an up step of P (Figure 7). Let S be the excursion of s in P . Since ℓQ(u) > ℓP (u)
and since Q is above P , we have ℓQ(u) ≥ ℓP (u) + ℓP (s), i.e., DQ(i) ≥ DP (i) + ℓP (s). Let P ′ be
the path obtained from P by swapping d and S. Then P ′ covers P in the Tamari lattice. By
Lemma 6, DP = DP ′ except at index i (the rank of u), where DP ′(i) = DP (i) + ℓP (s). Since
DP (i) + ℓP (s) ≤ DQ(i), we have DP ′ ≤ DQ. But ||DP ′ −DQ|| = ||DP −DQ|| − ℓP (s) and by
the induction hypothesis, P ′ ≤ Q in the Tamari lattice. Hence P < P ′ ≤ Q, and the lemma is
proved.

2.3. Recursive decomposition of intervals and functional equation

A contact of a Dyck path P is a vertex of P lying on the x-axis. It is initial if it is (0, 0). A
contact of a Tamari interval [P,Q] is a contact of the lower path P . The recursive decomposition
of intervals that we use makes the number of contacts crucial, and we say that this parameter is
catalytic. We also consider another, non-catalytic parameter, which we find to be equidistributed
with non-initial contacts (even more, the joint distribution of these two parameters is symmetric).
Given an m-Dyck path Q, the length of the initial run of up steps is of the form mk; the integer
k is called the initial rise of Q. The initial rise of an interval [P,Q] is the initial rise of the upper
path Q. The aim of this subsection is to establish the following functional equation.
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u d s

2ℓP (u) 2ℓP (s)

2ℓQ(u)

Q
P

Figure 7. General form of P and Q.

Proposition 8. For m ≥ 1, let F (x) ≡ F (m)(t;x) be the generating function of m-Tamari
intervals, where t counts the size (divided by m) and x the number of contacts. Then

F (x) = x+ xt (F (x) ·∆)
(m)

(F (x)),

where ∆ is the following divided difference operator

∆S(x) =
S(x)− S(1)

x− 1
,

and the power m means that the operator G(x) 7→ F (x) ·∆G(x) is applied m times to F (x).
More generally, if F (x, y) ≡ F (m)(t;x, y) keeps track in addition of the initial rise (via the

variable y), we have the following functional equation:

F (x, y) = x+ xyt (F (x, 1) ·∆)
(m)

(F (x, y)). (3)

Note that each of the above two equations defines a unique formal power series in t (think of
extracting inductively the coefficient of tn in F (m)(t;x) or F (m)(t;x, y)).
Examples

1. When m = 1, the above equation reads

F (x, y) = x+ xytF (x, 1) ·∆(F (x, y))

= x+ xytF (x, 1)
F (x, y)− F (1, y)

x− 1
.

When y = 1, we obtain, in the terminology of [7], a quadratic equation with one catalytic
variable:

F (x) = x+ xtF (x)
F (x)− F (1)

x− 1
.

2. When m = 2,

F (x, y) = x+ xyt F (x, 1) ·∆(F (x, 1) ·∆(F (x, y)))

= x+ xyt F (x, 1) ·∆

(

F (x, 1)
F (x, y)− F (1, y)

x− 1

)

= x+
xyt

x− 1
F (x, 1)

(

F (x, 1)
F (x, y)− F (1, y)

x− 1
− F (1, 1)F ′(1, y)

)

,

where the derivative is taken with respect to the variable x. When y = 1, we obtain a cubic
equation with one catalytic variable:

F (x) = x+
xt

x− 1
F (x)

(

F (x)
F (x) − F (1)

x− 1
− F (1)F ′(1)

)

.

The solution of (3) will be the topic of the next section. For the moment we focus on the proof
of this equation.

We say that a vertex q lies to the right of a vertex p if the abscissa of q is greater than
or equal to the abscissa of p. A k-pointed Dyck path is a tuple (P ; p1, . . . , pk) where P is a
Dyck path and p1, . . . , pk are contacts of P such that pi+1 lies to the right of pi, for 1 ≤ i < k
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(note that some pi’s may coincide). Given an m-Dyck path P of positive size, let u1, . . . , um

be the initial (consecutive) up steps of P , and let d1, . . . , dm be the down steps matched with
u1, . . . , um, respectively. The m-reduction of P is the m-pointed Dyck path (P ′; p1, . . . , pm)
where P ′ is obtained from P by contracting all the steps u1, . . . , um, d1, . . . , dm, and p1, . . . , pm
are the vertices of P ′ resulting from the contraction of d1, . . . , dm. It is easy to check that they
are indeed contacts of P ′ (Figure 8).

⇒

P
P ′

DP = (10,7, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1) DP ′ = (2, 1, 4, 1, 2, 1, 2, 1, 2, 1)

x1=6 x2=8

Figure 8. The m-reduction of an m-Dyck path (m = 2).

The map P 7→ (P ′; p1, . . . , pm) is clearly invertible, hence m-Dyck paths of size mn are in
bijection with m-pointed m-Dyck paths of size m(n− 1). Note that the non-initial contacts of P
correspond to the contacts of P ′ that lie to the right of pm. Note also that the distance function
DP ′ (seen as a vector with m(n−1) components) is obtained by deleting the first m components
of DP . Conversely, denoting by 2xi the abscissa of pi, DP is obtained by prepending to DP ′ the
sequence (xm +m,xm−1 +m− 1, . . . , x1 + 1). In view of Proposition 5, this gives the following
recursive characterization of intervals.

Lemma 9. Let P and Q be two m-Dyck paths of size mn > 0. Let (P ′; p1, . . . , pm) and

(Q′; q1, . . . , qm) be the m-reductions of P and Q respectively. Then P ≤ Q in T
(m)
n if and

only if P ′ ≤ Q′ in T
(m)
n−1 and for i ∈ [1..m], the point qi lies to the right of pi.

The non-initial contacts of P correspond to the contacts of P ′ located to the right of pm.

Let us call k-pointed interval in T (m) a pair consisting of two k-pointed m-Dyck paths
(P ; p1, . . . , pk) and (Q; q1, . . . , qk) such that P ≤ Q and for i ∈ [1..k], the point qi lies to the
right of pi. An active contact of such a pair is a contact of P lying to the right of pk (if k = 0,
all contacts are declared active). For 0 ≤ k ≤ m, let us denote by G(m,k)(t;x, y) ≡ G(k)(x, y) the
generating function of k-pointed m-Tamari intervals, where t counts the size (divided by m), x
the number of active contacts, and y the initial rise (we drop the superscript m since it will not
vary). In particular, the series we are interested in is

F (x, y) = G(0)(x, y). (4)

Moreover, Lemma 9 implies

F (x, y) = x+ xytG(m)(x, y). (5)

We will prove that, for k ≥ 0,

G(k+1)(x, y) = F (x, 1) ·∆G(k)(x, y). (6)

The functional equation (3) then follows using (4) and (5).
For k ≥ 0, let I = [P •, Q•] be a (k+1)-pointed interval in T (m), with P • = (P ; p1, . . . , pk+1)

and Q• = (Q; q1, . . . , qk+1) (see an illustration in Figure 9 when k = 0). Since P is below Q,
the contact qk+1 of Q is also a contact of P . By definition of pointed intervals, qk+1 is to the
right of p1, . . . , pk+1. Decompose P as PℓPr where Pℓ is the part of P to the left of qk+1 and
Pr is the part of P to the right of qk+1. Decompose similarly Q as QℓQr, where the two factors
meet at qk+1. The distance function DP (seen as a vector) is DPℓ

concatenated with DPr
, and

similarly for DQ. In particular, DPℓ
≤ DQℓ

and DPr
≤ DQr

. By Proposition 5, Ir := [Pr, Qr]
is an interval, while Iℓ := [P ◦, Q◦], with P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk), is a
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⇒

,

⇒

p1 q1

Figure 9. The recursive decomposition of intervals. Starting from an m-
Tamari interval of size n (here, m = 1 and n = 7), one first obtains by re-
duction an m-pointed interval of size n− 1 (Lemma 9). This interval is further
decomposed into two intervals, the first one being (m− 1)-pointed.

k-pointed interval. Its initial rise equals the initial rise of I. We denote by Φ the map that sends
I to the pair of intervals (Ir , Iℓ).

Conversely, take an interval Ir = [Pr, Qr] and a k-pointed interval Iℓ = [P ◦, Q◦], where
P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk). Let P = PℓPr, Q = QℓQr, and denote by qk+1

the point where Qℓ and Qr (and Pr and Pℓ) meet. This is a contact of P and Q. Then the
preimages of (Ir , Iℓ) by Φ are all the intervals I = [P •, Q•] such that P • = (P ; p1, . . . , pk+1) and
Q• = (Q; q1, . . . , qk+1), where pk+1 is any active contact of Pℓ. If Pℓ has i active contacts and
Pr has j contacts, then (Ir , Iℓ) has i preimages, having respectively j, 1 + j, . . . , i+ j − 1 active
contacts (j active contacts when pk+1 = qk+1, and i + j − 1 active contacts when pk+1 = pk).

Let us write G(k)(x, y) =
∑

i≥0 G
(k)
i (y)xi, so that G

(k)
i (y) counts (by the size and the initial rise)

k-pointed intervals with i active contacts. The above discussion gives

G(k+1)(x, y) = F (x, 1)
∑

i≥1

G
(k)
i (y)(1 + x+ · · ·+ xi−1)

= F (x, 1)
∑

i≥1

G
(k)
i (y)

xi − 1

x− 1

= F (x, 1) ·∆G(k)(x, y),

as claimed in (6). The factor F (x, 1) accounts for the choice of Ir, and the term ∆G(k)(x, y) for
the choice of Iℓ and pk+1. This completes the proof of Proposition 8.

3. Solution of the functional equation

In this section, we solve the functional equation of Proposition 8, and thus establish the main
result of this paper. We obtain in particular an unexpected symmetry property: the series
yF (m)(t;x, y) is symmetric in x and y. In other words, the joint distribution of the number of
non-initial contacts (of the lower path) and the initial rise (of the upper path) is symmetric.

For any ring A, we denote by A[x] the ring of polynomials in x with coefficients in A, and by
A[[x]] the ring of formal power series in x with coefficients in A. This notation is extended to
the case of polynomials and series in several indeterminates x1, x2, . . .

Theorem 10. For m ≥ 1, let F (m)(t;x, y) be the generating function of m-Tamari intervals,
where t counts the size (divided by m), x the number of contacts of the bottom path, and y the
initial rise of the upper path. Let z, u and v be three indeterminates, and set

t = z(1− z)m
2+2m, x =

1 + u

(1 + zu)m+1
, and y =

1 + v

(1 + zv)m+1
. (7)

Then F (m)(t;x, y) becomes a formal power series in z with coefficients in Q[u, v], and this series
is rational. More precisely,

yF (m)(t;x, y) =
(1 + u)(1 + zu)(1 + v)(1 + zv)

(u− v)(1 − zuv)(1− z)m+2

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (8)

In particular, yF (m)(t;x, y) is a symmetric series in x and y.
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Remark. This result was first guessed for small values of m. More precisely, we first guessed

the values of ∂iF
∂x

(1, 1) for 0 ≤ i ≤ m− 1, and then combined these conjectured values with the
functional equation to obtain conjectures for F (x, 1) and F (x, y). Let us illustrate our guessing
procedure on the case m = 1. We first consider the case y = 1, where the equation reads

F (x, 1) = x+ xtF (x, 1)
F (x, 1) − F (1, 1)

x− 1
. (9)

Our first objective is to guess the value of F (1, 1). Using the above equation, we easily compute,
say, the 20 first coefficients of F (1, 1). Using the Maple package gfun [27], we conjecture from
this list of coefficients that f ≡ F (1, 1) satisfies

1− 16 t− (1− 20 t) f −
(

3 t+ 8 t2
)

f2 − 3 t2f3 − t3f4 = 0.

Using the package algcurves, we find that the above equation admits a rational parametrization,
for instance

t = z(1− z)3, f = F (1, 1) =
1− 2z

(1− z)3
.

This is the end of the “guessing” part2. Assume the above identity holds, and replace t and
F (1, 1) in (9) by their expressions in terms of z. This gives an algebraic equation in F (x, 1), x
and z. Again, the package algcurves reveals that this equation, seen as an equation in F (x, 1)
and x, has a rational parametrization, for instance

x =
1 + u

(1 + zu)2
, F (x, 1) =

(1 + u)
(

1− 2 z − z2u
)

(1 + zu) (1− z)
3 .

Let us finally return to the functional equation defining F (x, y):

F (x, y) = x+ xytF (x, 1)
F (x, y) − F (1, y)

x− 1
.

In this equation, replace t, x and F (x, 1) by their conjectured expressions in terms of z and u.
This gives

(

1 + zu− zy
(1 + u)2

u

)

F (x, y) =
1 + u

1 + zu
− zy

(1 + u)2

u
F (1, y). (10)

We conclude by applying to this equation the kernel method (see, e.g. [2, 8, 26]): let U ≡ U(z; y)
be the unique formal power series in z (with coefficients in Q[y]) satisfying

U = zy(1 + U)2 − zU2.

Equivalently,

U = z
1 + v

1− 2z − z2v
, with y =

1 + v

(1 + zv)2
.

Setting u = U in (10) cancels the left-hand side, and thus the right-hand side, giving

yF (1, y) =
(1 + v)

(

1− 2 z − z2v
)

(1 + zv) (1− z)3
.

A conjecture for the trivariate series F (t;x, y) follows, using (10). This conjecture coincides
with (8). 2

Before we prove Theorem 10, let us give a closed form expression for the number of intervals

in T
(m)
n .

2For a general value of m, one has to guess the series ∂
i
F

∂x
(1, 1) for 0 ≤ i ≤ m − 1. All of them are found to

be rational functions of z, when t = z(1− z)m
2+2m.
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Corollary 11. Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamari lattice T
(m)
n is

f (m)
n =

m̄

n(mn+ 1)

(

nm̄2 +m

n− 1

)

,

where we denote m̄ = m + 1. For 2 ≤ i ≤ n + 1, the number of intervals in which the bottom
path has i contacts with the x-axis is

f
(m)
n,i =

(nm̄2 − im̄+m)!(im̄−m)!

(nm̄2 − n− im+ 2m)!(n− i+ 1)!(mi)!(i− 2)!
Pm(n, i), (11)

where Pm(n, i) is a polynomial in n and i. In particular,

P1(n, i) = 2, P2(n, i) = 6(33 in− 9 i2 + 15 i− 2n− 2).

More generally,

i(i− 1)Pm(n, i) = −m̄!(m− 1)!(n− i+ 1)

(

im̄

m

)(

nm(m+ 2)− im+ 2m

m− 1

)

+

m−2
∑

k=1

kk!2(m− k − 2)!(m− k − 1)!((i + 1)mm̄+ 2m̄+ k)(n− i)(n− i+ 1)×

(

im̄− k − 1

m− k − 1

)(

im

k

)(

nm̄2 − im̄+m+ k

k

)(

nm(m+ 2)− im+ 2m

m− k − 2

)

+m!2
(

im

m− 1

)(

i

(

nm̄2 − im̄+ 2m

m

)

−
(m− 1)(im̄+ 2)(n− i+ 1)

m

(

nm̄2 − im̄+ 2m− 1

m− 1

))

.

(12)

Remarks

1. The case m = 1 of (11) reads

f
(1)
n,i =

(i− 1)(4n− 2i+ 1)!

(3n− i+ 2)!(n− i+ 1)!

(

2i

i

)

.

This result can also obtained using Bernardi and Bonichon’s bijection between intervals of size
n in the (usual) Tamari lattice and planar 3-connected triangulations having n+ 3 vertices [4].
Indeed, through this bijection, the number of contacts in the lower path of the interval becomes
the degree of the root-vertex of the triangulation, minus one [4, Def. 3.2]. The above result is
thus equivalent to a result of Brown counting triangulations by the number of vertices and the
degree of the root-vertex [10, Eq. (4.7)].

2. Our expression of Pm is not illuminating, but we have given it to prove that Pm is indeed a
polynomial. If we fix i rather than m, then, experimentally, Pm(n, i) seems to be a sum of two
hypergeometric terms in m and n. More precisely, it appears that

Pm(n, i) =
mm̄!(im)!

(im̄−m)!
(

n
i−1

)×

(

m̄Ri(m,n)

(

nm̄2 − (i − 2)m̄− 1

m̄

)

+Qi(m,n)

(

nm(m+ 2)− (i − 2)m

m

))

,

where Ri and Qi are two polynomials in m and n. This holds at least for small values of i.

3. The coefficients of the trivariate series F (t;x, y) do not seem to have small prime factors,
even when m = 1.

Proof of Theorem 10. The functional equation of Proposition 8 defines a unique formal power
series in t (think of extracting inductively the coefficient of tn in F (t;x, y)). The coefficients
of this series are polynomials in x and y. The parametrized expression of F (t;x, y) given in
Theorem 10 also defines F (t;x, y) uniquely as a power series in t, because (7) defines z, u and v
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uniquely as formal power series in t (with coefficients in Q, Q[x] and Q[y] respectively). Thus it
suffices to prove that the series F (t;x, y) of Theorem 10 satisfies the equation of Proposition 8.

If G(t;x, y) ≡ G(x, y) is any series in Q[x, y][[t]], then performing the change of variables (7)
gives G(t;x, y) = H(z;u, v), where

H(z;u, v) ≡ H(u, v) = G

(

z(1− z)m
2+2m;

1 + u

(1 + zu)m+1
,

1 + v

(1 + zv)m+1

)

.

Moreover, if F (x, y) is given by (8), then

F (x, 1) =
(1 + u)(1 + zu)

u(1− z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

,

and

F (x, 1)∆G(x, y) =
(1 + u)(1 + zu)

(1− z)m+2

H(u, v)−H(0, v)

u
.

Let us define an operator Λ as follows: for any series H(z;u, v) ∈ Q[u, v][[z]],

ΛH(z;u, v) := (1 + u)(1 + zu)
H(z;u, v)−H(z; 0, v)

u
. (13)

Then the series F (t;x, y) of Theorem 10 satisfies the equation of Proposition 8 if and only if the
series H(u, v) obtained by performing the change of variables (7) in y(1− z)m+2F (x, y), that is,

H(u, v) =
(1 + u)(1 + zu)(1 + v)(1 + zv)

(u− v)(1 − zuv)

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (14)

satisfies

zΛ(m)H(u, v) =
(1 + zu)m+1(1 + zv)m+1

(1 + u)(1 + v)
H(u, v)− (1− z)m+2. (15)

Hence we simply have to prove an identity on rational functions. Observe that both H(u, v) and
the conjectured expression of Λ(m)H(u, v) are symmetric in u and v. More generally, computing
(with the help of Maple) the rational functions Λ(k)H(u, v) for a few values of m and k suggests
that these fractions are always symmetric in u and v. This observation raises the following
question: Given a symmetric function H(u, v), when is ΛH(u, v) also symmetric? This leads to
the following lemma, which will reduce the proof of (15) to the case v = 0.

Lemma 12. Let H(z;u, v) ≡ H(u, v) be a series of Q[u, v][[z]], symmetric in u and v. Let Λ be
the operator defined by (13), and denote H1(u, v) := ΛH(u, v). Then H1(u, v) is symmetric in
u and v if and only if H satisfies

H(u, v) =
u(1 + v)(1 + zv)H(u, 0)− v(1 + u)(1 + zu)H(v, 0)

(u− v)(1 − zuv)
. (16)

If this holds, then H1(u, v) also satisfies (16) (with H replaced by H1). By induction, the same
holds for Hk(u, v) := Λ(k)H(u, v).

The proof is a straightforward calculation.

Note that a series H satisfying (16) is characterized by the value of H(u, 0). The series H(u, v)
given by (14) satisfies (16), with

H(u, 0) =
(1 + u)(1 + zu)

u

(

1 + u

(1 + zu)m+1
− 1

)

= Λ

(

1 + u

(1 + zu)m+1

)

.

Moreover, one easily checks that the right-hand side of (15) also satisfies (16), as expected from
Lemma 12. Thus it suffices to prove the case v = 0 of (15), namely

zΛ(m+1)

(

1 + u

(1 + zu)m+1

)

=
(1 + u)(1 + zu)

u

(

1−
(1 + zu)m+1

1 + u

)

− (1 − z)m+2. (17)

This will be a simple consequence of the following lemma.
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Lemma 13. Let Λ be the operator defined by (13). For m ≥ 1,

Λ(m)

(

1

(1 + zu)m

)

= (1− z)m − (1 + zu)m.

Proof. We will actually prove a more general identity. Let 1 ≤ k ≤ m, and denote w = 1 + zu.
Then

Λ(k)

(

1

(1 + zu)m

)

=
(1− z)k

wm−k
−

m−1
∑

i=k

k
∑

j=1

(−1)k+jzk−j+1

wm−i−1

(

k

j − 1

)(

i− j + 1

k − j

)

+

k−1
∑

i=1

i
∑

j=1

(−1)j−1zjwk−i

(

i− 1

j − 1

)(

m− k + j − 1

j

)

− wk. (18)

The case k = m is the identity of Lemma 13. In order to prove (18), we need an expression of
Λ(wp), for all p ∈ Z. Using the definition (13) of Λ, one obtains, for p ≥ 1,































Λ

(

1

wp

)

=
1− z

wp−1
− z

p−2
∑

a=0

1

wa
− w,

Λ(1) = 0,

Λ (wp) = (z − 1)w + z

p
∑

a=2

wa + wp+1.

(19)

We now prove (18), by induction on k ≥ 1. For k = 1, (18) coincides with the expression of
Λ(1/wp) given above (with p replaced by m). Now let 1 ≤ k < m. Apply Λ to (18), use (19)
to express the terms Λ(wp) that appear, and then check that the coefficient of wazb is what it
is expected to be, for all values of a and b. The details are a bit tedious, but elementary. One
needs to apply a few times the following identity:

r2
∑

r=r1

(

r − a

b

)

=
(r2 + 1− a− b)

b+ 1

(

r2 + 1− a

b

)

−
(r1 − a− b)

b+ 1

(

r1 − a

b

)

.

We give in the appendix a constructive proof of Lemma 13, which does not require to guess
the more general identity (18). It is also possible to derive (18) combinatorially from (19) using
one-dimensional lattice paths (in this setting, (19) describes what steps are allowed if one starts
at position p, for any p ∈ Z).

Let us now return to the proof of (17). We write

z
1 + u

(1 + uz)m+1
=

1

(1 + uz)m
+

z − 1

(1 + uz)m+1
.

Thus

zΛ(m+1)

(

1 + u

(1 + uz)m+1

)

= Λ

(

Λ(m)

(

1

(1 + uz)m

))

+ (z − 1)Λ(m+1)

(

1

(1 + uz)m+1

)

= Λ ((1− z)m − (1 + uz)m) + (z − 1)
(

(1 − z)m+1 − (1 + uz)m+1
)

by Lemma 13. Eq. (17) follows, and Theorem 10 is proved.

Proof of Corollary 11. Let us first determine the coefficients of F (t; 1, 1). By letting u and v
tend to 0 in the expression of yF (t;x, y), we obtain

F (t; 1, 1) =
1− (m+ 1)z

(1 − z)m+2
,

where t = z(1− z)m
2+2m. The Lagrange inversion formula gives

[tn]F (t; 1, 1) =
1

n
[tn−1]

1− (m+ 1)2t

(1− t)nm(m+2)+m+3
,
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and the expression of f
(m)
n follows after an elementary coefficient extraction.

We now wish to express the coefficient of tnxi in

F (t;x, 1) =
(1 + u)(1 + zu)

u(1− z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

.

We will expand this series, first in x, then in t, applying the Lagrange inversion formula first to
u, then to z. We first expand (1− z)m+2F (t;x, 1) in partial fractions of u:

(1 − z)m+2F (t;x, 1) = −z1m>1 − (1 + zu)−
m−2
∑

k=1

z

(1 + uz)k
+

1− z2

z(1 + uz)m−1
−

(1 − z)2

z(1 + uz)m
.

By the Lagrange inversion formula, applied to u, we have, for i ≥ 1 and p ≥ −m,

[xi](1 + zu)p =
p

i

(

im̄+ p− 1

i− 1

)

zi(1− z)im+p,

with m̄ = m+ 1. Hence, for i ≥ 1,

i[xi]F (t;x, 1) = −

(

im̄

i− 1

)

zi(1− z)(i−1)m−1 +

m−2
∑

k=1

k

(

im̄− k − 1

i− 1

)

zi+1(1 − z)(i−1)m−k−2

− (m− 1)

(

im̄−m

i− 1

)

zi−1(1 + z)(1− z)(i−2)m +m

(

(i− 1)m̄

i− 1

)

zi−1(1− z)(i−2)m.

We rewrite the above line as
(

im̄−m

i− 1

)(

i

im̄−m
zi−1(1− z)(i−2)m − (m− 1)zi(1− z)(i−2)m

)

.

Recall that z = t

(1−z)m2+2m
. Hence, for i ≥ 1,

i[xitn]F (t;x, 1) = −

(

im̄

i− 1

)

[tn−i]
1

(1− z)m̄(im+1)

+

m−2
∑

k=1

k

(

im̄− k − 1

i− 1

)

[tn−i−1]
1

(1− z)(i+1)mm̄+2m̄+k

+

(

im̄−m

i− 1

)(

i

im̄−m
[tn−i+1]

1

(1− z)m(im̄−m)
− (m− 1)[tn−i]

1

(1− z)m(im̄+2)

)

.

By the Lagrange inversion formula, applied to z, we have, for p ≥ 1 and n ≥ 1,

[tn]
1

(1 − z)p
=

p

n

(

nm̄2 + p− 1

n− 1

)

.

This formula actually holds for n = 0 if we write it as

[tn]
1

(1− z)p
=

p (nm̄2 + p− 1)!

n! (nm̄2 − n+ p)!
,

and actually for n < 0 as well with the convention
(

a
n−1

)

= 0 if n < 0. With this convention, we
have, for 1 ≤ i ≤ n+ 1,

i[xitn]F (t;x, 1) = −
m̄(im+ 1)

n− i

(

im̄

i− 1

)(

nm̄2 − im̄+m

n− i− 1

)

+

m−2
∑

k=1

k
(i+ 1)mm̄+ 2m̄+ k

n− i− 1

(

im̄− k − 1

i− 1

)(

nm̄2 − im̄+m+ k

n− i− 2

)

+m

(

im̄−m

i− 1

)(

i

n− i+ 1

(

nm̄2 − im̄+ 2m

n− i

)

− (m− 1)
im̄+ 2

n− i

(

nm̄2 − im̄+ 2m− 1

n− i− 1

))

.
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This gives the expression (11) of f
(m)
n,i , with Pm(n, i) given by (12). Clearly, i(i − 1)Pm(n, i) is

a polynomial in n and i, but we still have to prove that it is divisible by i(i− 1).

For m ≥ 1 and 1 ≤ k ≤ m − 2, the polynomials
(

im̄
m

)

and
(

im
k

)

are divisible by i. The next-
to-last term of (12) contains an explicit factor i. The last term vanishes if m = 1, and otherwise

contains a factor
(

im
m−1

)

, which is a multiple of i. Hence each term of (12) is divisible by i.

Finally, the right-hand side of (12) is easily evaluated to be 0 when i = 1, using the sum

function of Maple.

4. Final comments

Bijective proofs? Given the simplicity of the numbers (1), it is natural to ask about a bijective
enumeration of m-Tamari intervals. A related question would be to extend the bijection of [4]
(which transforms 1-Tamari intervals into triangulations) into a bijection between m-Tamari
intervals and certain maps (or related structures, like balanced trees or mobiles [28, 9]). Counting
these structures in a bijective way (as is done in [25] for triangulations) would then provide a
bijective proof of (1).

Symmetry. The fact that the joint distribution of the number of non-initial contacts of the
lower path and the initial rise of the upper path is symmetric remains a combinatorial mystery
to us, even when m = 1. What is easy to see is that the joint distribution of the number of non-
initial contacts of the lower path and the final descent of the upper path is symmetric. Indeed,
there exists a simple involution on Dyck paths that reverses the Tamari order and exchanges
these two parameters: If we consider Dyck paths as postorder encodings of binary trees, this
involution amounts to a simple reflection of trees. Via the bijection of [4], these two parameters
correspond to the degrees of two vertices of the root-face of the triangulation [4, Def. 3.2], so
that the symmetry is also clear in this setting.

A q-analogue of the functional equation. As described in the introduction, the numbers

f
(m)
n are conjectured to give the dimension of certain polynomial rings DRm ε

3,n . These rings are
tri-graded (with respect to the sets of variables {xi}, {yi} and {zi}), and it is conjectured [3] that
the dimension of the homogeneous component in the xi’s of degree k is the number of intervals

[P,Q] in T
(m)
n such that the longest chain from P to Q, in the Tamari order, has length k.

One can recycle the recursive description of intervals described in Section 2.3 to generalize the
functional equation of Proposition 8, taking into account (with a new variable q) this distance.
Eq. (3) remains valid, upon defining the operator ∆ by

∆S(x) =
S(qx)− S(1)

qx− 1
.

The coefficient of tn in the series F (t, q;x, y) does not seem to factor, even when x = y = 1. The
coefficients of the bivariate series F (t, q; 1, 1) have large prime factors.

More on m-Tamari lattices? We do not know of any simple description of the m-Tamari
lattice in terms of rotations in m+1-ary trees (which are equinumerous with m-Dyck paths). A
rotation for ternary trees is defined in [23], but does not give a lattice. However, as noted by the
referee, if we interpret m-ballot paths as the prefix (rather than postfix) code of an m+1-ary tree,
the covering relation can be described quite simply. One first chooses a leaf ℓ that is followed (in
prefix order) by an internal node v. Then, denoting by T0, . . . , Tm the m+ 1 subtrees attached
to v, from left to right, we insert v and its first m subtrees in place of the leaf ℓ, which becomes
the rightmost child of v. The rightmost subtree of v, Tm, finally takes the former place of v
(Figure 10).

More generally, it may be worth exploring analogues for the m-Tamari lattices of the numerous
questions that have been studied for the usual Tamari lattice. To mention only one, what is the
diameter of the m-Tamari lattice, that is, the maximal distance between two m-Dyck paths in
the Hasse diagram? When m = 1, it is known to be 2n− 6 for n large enough, but the proof is
as complicated as the formula is simple [13, 29].
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≺
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T0
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ℓ

v

T0

T1

T2

Figure 10. The covering relation of Figure 2 translated in terms of ternary trees.
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Appendix. A constructive approach to Lemma 13. In order to prove Lemma 13, we had
to prove the more general identity (18). This identity was first guessed by expanding Λ(k)(1/wm)
in w and z, for several values of k and m. Fortunately, the coefficients in this expansion turned
out to be simple products of binomial coefficients.

What if these coefficients had not been so simple? A constructive approach goes as follows.
Introduce the following two formal power series in3 t and s, with coefficients in Q[w, 1/w, z]:

P (t; s) =
∑

m≥1,k≥0

tksm−1Λ(k)(wm) and N(t; s) =
∑

m≥0,k≥0

tksmΛ(k)

(

1

wm

)

,

where we still denote w = 1 + zu. Observe that

P (t; 0) =
∑

k≥0

tkΛ(k)(w).

We want to compute the coefficient of tmsm of N(t; s), since this coefficient is Λ(m)(1/wm).
Eq. (19) yield functional equations for the series P and N . For P (t; s) first,

P (t; s) =
∑

m≥1

sm−1wm + t
∑

m≥1,k≥1

tk−1sm−1Λ(k−1)

(

(z − 1)w + z

m
∑

a=2

wa + wm+1

)

=
w

1− sw
+

t(z − 1)

1− s
P (t; 0) +

tz

1− s
(P (t; s)− P (t; 0)) + t

P (t; s)− P (t; 0)

s
.

Equivalently,
(

1−
tz

1− s
−

t

s

)

P (t; s) =
w

1− sw
−

tP (t; 0)

s(1− s)
. (20)

Now for N(t; s), we have

N(t; s) =
∑

m≥0

sm

wm
+ t

∑

m≥1,k≥1

tk−1smΛ(k−1)

(

1− z

wm−1
− z

m−2
∑

a=0

1

wa
− w

)

=
1

1− s/w
+ ts(1− z)N(t; s)−

tzs2

1− s
N(t; s)−

ts

1− s
P (t; 0).

3The variable t that we use here has nothing to do with the variable t that occurs in the generating function
F (t; x, y) of intervals.
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Equivalently,
(

1− ts+
tzs

1− s

)

N(t; s) =
1

1− s/w
−

ts

1− s
P (t; 0). (21)

Equation (20) can be solved using the kernel method (see e.g. [2, 8, 26]): let S ≡ S(t, z) be the
unique formal power series in t, with coefficients in Q[z], having constant term 0 and satisfying

1−
tz

1− S
−

t

S
= 0.

That is,

S =
1 + t− tz −

√

1− 2t(1 + z) + t2(1− z)2

2
. (22)

Then setting s = S cancels the left-hand side of (20), giving

P (t; 0) =
wS(1 − S)

t(1− wS)
.

Combined with (21), this yields an explicit expression of N(t; s):

N(t; s) =
1

1− ts+ tzs
1−s

(

1

1− s/w
−

wsS(1− S)

(1− s)(1 − wS)

)

.

We want to extract from this series the coefficient of tmsm, and obtain the simple expression
(1− z)m −wm predicted by Lemma 13. Clearly, the first part of the above expression of N(t; s)
(with non-positive powers of w) contributes (1 − z)m, as expected. For i ≥ 1, the coefficient of
wi in the second part of N(t; s) is

Ri := −
sSi(1 − S)

(1− s)
(

1− ts+ tzs
1−s

) .

Recall that S, given by (22), depends on t and z, but not on s. Since S = t+O(t2), the coefficient
of tmsm in Ri is zero for i > m. When i = m, it is easily seen to be −1, as expected. In order
to prove that the coefficient of tmsm in Ri is zero when 0 < i < m, we first perform a partial
fraction expansion of Ri in s, using

(1− s)

(

1− ts+
tzs

1− s

)

= (1− sS)(1− st/S),

where S is defined by (22). This gives

Ri = −
Si+1(1 − S)

t− S2

(

1

1− ts/S
−

1

1− sS

)

,

so that

[sm]Ri = −
Si+1−m(1 − S)

t− S2

(

tm − S2m
)

=

m−1
∑

j=0

tm−1−jS2j+i−m+1(S − 1)

and

[smtm]Ri =

m−1
∑

j=0

[tj+1]S2j+i−m+1(S − 1) =

m−i
∑

j=0

[tj+1]S2j+i−m+1(S − 1). (23)

The Lagrange inversion gives, for n ≥ 1 and k ∈ Z,

[tn]Sk(S − 1) =



























0 if n < k;
−1 if n = k;
1− kz if n = k + 1;

1

n

n−k
∑

p=1

zp
(

n

p

)(

n− k − 1

p− 1

)

n− p− kp

n− k − 1
otherwise.



20 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLE

Returning to (23), this gives

[smtm]Ri = −(m−i−1)z+

m−i−2
∑

j=0

m−i−j
∑

p=1

zp

j + 1

(

j + 1

p

)(

m− i− j − 1

p− 1

)

j + 1− p(2j + i−m+ 2)

m− i− j − 1
.

Proving that this is zero boils down to proving, that, for 1 ≤ p ≤ m− i,

m−i−2
∑

j=0

1

j + 1

(

j + 1

p

)(

m− i− j − 1

p− 1

)

j + 1− p(2j + i−m+ 2)

m− i − j − 1
= (m− i− 1)1p=1.

This is easily proved using Zeilberger’s algorithm [24, Chap. 6], via the Maple package Ekhad

(command zeil), or directly using the Maple command sum.
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