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SUMMARY
Long duration noisy-looking waveforms such as those obtained in randomly multiply scattering
and reverberant media are complex; they resist direct interpretation. Nevertheless, such wave-
forms are sensitive to small changes in the source of the waves or in the medium in which
they propagate. Monitoring such waveforms, whether obtained directly or obtained indirectly
by noise correlation, is emerging as a technique for detecting changes in media. Interpretation
of changes is in principle problematic; it is not always clear whether a change is due to sources
or to the medium. Of particular interest is the detection of small changes in propagation speeds.
An expression is derived here for the apparent, but illusory, waveform dilation due to a change
of source. The expression permits changes in waveforms due to changes in wavespeed to be
distinguished with high precision from changes due to otherreasons. The theory is successfully
compared with analysis of a laboratory ultrasonic data set and a seismic data set from Parkfield
California.

1 INTRODUCTION

The technique proposed in the 1980’s (Poupinet et al. 1984) and later called ”Coda wave interferometry” (Snieder et al.2002) compares coda
waveforms from multiply scattered waves obtained under different circumstances or on different dates and detects changes in a medium.
A multiply scattered wave can resist detailed interpretation, but for purposes of monitoring one may not need to interpret the waveform:
it is sufficient to notice changes. Coda wave interferometrywas first suggested for seismic waves but has also been applied in laboratory
ultrasonics (Weaver & Lobkis 2000; Gorin, Seligman & Weaver2006; Lobkis & Weaver 2008; De Rosny & Roux 2001; Lu & Michaels
2005). In many such cases the change is due to a uniform changeof temperature, and thus a uniform change in wave velocity. To detect such
changes, Weaver & Lobkis (2000) constructed a dilation correlation coefficient between waveformsφ1 andφ2.

X(ǫ) =

∫

φ1(t)φ2(t(1 + ǫ))dt
√

∫

φ2

1
(t)dt

∫

φ2

2
(t(1 + ǫ))dt

(1)

X takes on a value of unity atǫ = 0 if the two waveforms are identical. It will reach a value of unity at some characteristic value ofǫ if
the two waveforms differ only by some temporal dilation. Theestimated degree of dilation between two waveforms is takento be the value
of ǫ at whichX is maximum.X reaches a maximum of less than unity if the waveforms differ by more than dilation alone. Therefore, the
value ofX at its maximum, if it is less than unity, may be interpreted asa measure of the distortion between the waveforms.

An alternative formulation is Poupinet’s doublet method (Poupinet et al. 1984), which breaksφ1 andφ2 into a series of short time
windows at several distinct timest, and determines the apparent shiftδt between them by examining conventional cross spectrum.δt as a
function oft, and in particular its slopeδt/t reveals a change in the medium. Poupinet developed the doublet method in which seismic signals
from repeated seismic events could be compared to infer changes in the earth (Poupinet et al. 1984). Song & Richards (1996) and Zhang et
al. (1985) used this to show that certain earth crossing rayswere shifted and distorted compared to versions some years earlier, indicating a
relative rotation between the earth and its core.

The extensive literature in recent years on correlations ofdiffuse acoustic noise has reported theory and measurements in support of the
notion that such correlations are essentially equal to the acoustic response that one would have at one receiver were there a source at the other
(Lobkis & Weaver 2001; Weaver & Lobkis 2004; Derode et al. 2003; Snieder 2004; Roux et al. 2005; Gouédard et al. 2008; Tsai2009). More
technically, what is recovered is the Green’s function as filtered into the frequency band of the noise, whitened and symmetrized in time. Two
different kinds of records can be correlated. Sometimes it is coda that is correlated (Campillo & Paul 2003). Coda waves consist in a long
duration random looking signals that follows the main arrivals from a strong seismic source; coda waves are due to singleand/or multiple
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scattering. More commonly the diffuse noise is due to ambient seismic waves from continuously acting sources such as human activity or
ocean storms. Much recent literature reports constructions of the earth’s seismic response between two seismograph stations, without the use
of controlled sources, and without waiting for a seismic event. Tomographic maps of seismic velocity with unprecedented resolution have
been obtained (Shapiro et al. 2005; Sabra et al. 2005). The technique has even been applied on the moon (Larose et al. 2005). Very commonly,
the noise which is correlated is incompletely equipartitioned, such that the resulting correlation waveforms do not precisely correspond to
the Green’s function. A difference between noise correlation and Green’s function can also be observed when one has not averaged enough
raw data; the correlation may not have yet converged. Theoretical and applied work is ongoing in attempts to understand and correct for
systematic errors due to these effects (Weaver, Froment & Campillo 2009; Froment et al. 2010 ). Nevertheless, Hadziioannou et al. (2009)
demonstrated that it is not necessary to reconstruct the Green’s function to use correlations for monitoring purposes.

These two approaches have been combined into what may be termednoise-correlation interferometry(Sabra et al. 2006; Sens-Schönfelder
& Wegler 2006; Brenguier, Shapiro et al. 2008; Brenguier, Campillo et al. 2008) in which correlations of seismic noise taken in different
circumstances are compared. The correlations may have beenobtained from different samples of ambient noise, perhaps on different dates,
or from the codas of different events. The correlations are of course never identical; they are often very different. Onereason for a difference
is that the source of the noise may be different (yet if the correlation has converged to the local Green’s function, a change of noise source
ought to have little effect). Continuous seismic sources can move and strengthen or weaken as weather changes at sea. It may also be that
the correlation has not fully converged (ie, insufficient averaging has been done). A third possibilityis that the local mechanical or acoustic
environment may have evolved, in particular, the local wavespeed(s) may have changed. It is this possibility that is of particular interest,
as changes in seismic velocities are associated with relaxations after major seismic events (Brenguier, Campillo et al. 2008). In some cases
changes in seismic velocity can be used to predict volcanic eruptions (Brenguier, Shapiro et al. 2008). Therefore, it isof great interest to be
able to discern whether a change is due to a change in local environment or to a change in the character of the noise. The latter possibility is
of some interest; the former is of great interest.

Our purpose here is to evaluate the precision with which wavespeed changes can be evaluated. To do this we consider the case in which
the two waveformsφ1(t) andφ2(t) differ only by noise so that the actual relative dilation without noise, is zero. We then ask for the apparent
(non-zero in general) value ofǫ at which the correspondingX in equation (1) achieves its maximum. The next section calculates the root
mean square

〈

ε2
〉

of this apparent, and erroneous, relative dilation. The subsequent sections compare this prediction with experiment.

2 DILATION CORRELATION COEFFICIENT

Here we examine the apparent waveform-dilation between twonominally identical signals. Theoretically, one ought to infer a relative dilation
ǫ of zero, however, noise can corrupt the inference. Key to thefollowing analysis is an understanding that the signals being discussed are like
coda, in that they are statistically stationary with durations long compared to an inverse bandwidth. We take the two waveforms to have an
identical partψ(t), and to differ by noise2µχ(t). In the limitµ→ 0, the waveforms become identical and have no relative dilation. If µ 6= 0,
there will be an apparent, but actually meaningless, temporal dilation between them. We wish to estimate this erroneousapparent relative
dilation, and to identify any signatures that could be used to alert to the possibility of error. Note that the common partψ of the signals need
not be the local Green’s functions.

We split the difference between these two waveformsφ1 andφ2, and define two signalsψ andχ;

φ1,2 = ψ(t)± µχ(t) (2)

The waveform dilation-correlation coefficient (1) betweenthem is

X(ǫ, µ) =

∫

φ1(t(1 + ǫ/2)) φ2(t(1− ǫ/2)) dt
√

∫

φ2

1
(t(1 + ǫ/2)) dt

∫

φ2

2
(t(1− ǫ/2)) dt

=
√

1− ǫ2/4

∫

[ψ(t(1 + ǫ/2)) + µχ(t(1 + ǫ/2))] [ψ(t(1− ǫ/2)) − µχ(t(1− ǫ/2))] dt
√

[∫

(ψ2 + µ2χ2) dt
]2 − 4µ2

[∫

χψ dt
]2

(3)

=
√

1− ǫ2/4
N(ǫ, µ)

D(µ)

with N andD defined as, respectively, the numerator and the denominatorof X. The integrations are typically taken over a finite time-
window with tapered edges. We make the approximation that the change of variablet(1+ ε/2) → t andt(1− ε/2) → t in the denominator
only leaves a prefactor

√

1− ε2/4.
The value ofǫ at whichX achieves its maximum is the practitioner’s estimate of the dilation between the waveformsφ1 andφ2. It

occurs atǫ such that∂X/∂ǫ = 0, or,

0 =
√

1− ǫ2/4D(µ)
∂X(ǫ, µ)

∂ǫ
= − ǫ N(ǫ, µ)

4
+ (1− ǫ2/4)

∂N(ǫ, µ)

∂ǫ
. (4)
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If the phase shift due to time dilation is much less than one oscillation, which impliestωǫ ≪ 1 for all timest and frequenciesω of
interest, it suffices to expandN(ǫ, µ) through only the second power ofǫ:

N(ǫ, µ) =

∫
[

ψ(t) +
tǫ

2
ψ̇(t) +

t2ǫ2

8
ψ̈(t) + µχ(t) +

µǫt

2
χ̇(t) +

µt2ǫ2

8
χ̈(t)

]

×
[

ψ(t)− tǫ

2
ψ̇(t) +

t2ǫ2

8
ψ̈(t)− µχ(t) +

µǫt

2
χ̇(t)− µt2ǫ2

8
χ̈(t)

]

dt. (5)

On collecting terms inN(ǫ, µ) that are linear and quadratic inǫ obtains:

N(ǫ, µ) ∼
∫

[

ψ(t)2 − µ2χ(t)2
]

dt+

∫

[

tǫ

2
ψ̇(t) +

µǫt

2
χ̇(t)

]

[ψ(t)− µχ(t)] dt

+

∫

[

− tǫ
2
ψ̇(t) +

µǫt

2
χ̇(t)

]

[ψ(t) + µχ(t)] dt

+

∫
[

t2ǫ2

8
ψ̈(t) +

t2µǫ2

8
χ̈(t)

]

[ψ(t)− µχ(t)] dt

+

∫
[

t2ǫ2

8
ψ̈(t)− t2µǫ2

8
χ̈(t)

]

[ψ(t) + µχ(t)] dt

+

∫

[

tǫ

2
ψ̇(t) +

µǫt

2
χ̇(t)

] [

− tǫ
2
ψ̇(t) +

µǫt

2
χ̇(t)

]

dt (6)

=

∫

[

ψ(t)2 − µ2χ(t)2
]

dt+ ǫ

∫

tµ
[

(χ̇(t)ψ(t)− χ(t)ψ̇(t)
]

dt

+
ǫ2

4

∫

t2
[

ψ̈(t)ψ(t)− µ2χ̈(t)χ(t)
]

dt (7)

− ǫ
2

4

∫

t2
[

ψ̇(t)2 − µ2χ̇(t)2
]

dt.

The first term inǫ2 may be integrated by parts.

N(ǫ, µ) ∼
∫

[

ψ(t)2 − µ2χ(t)2
]

dt+ ǫ

∫

tµ
[

χ̇(t)ψ(t)− χ(t)ψ̇(t)
]

dt

−1

2
ǫ2
∫

t2
[

ψ̇(t)2 − µ2χ̇(t)2
]

dt+
1

4
ǫ2r (8)

where the quantityr is:

r =

∫

[

ψ(t)2 − µ2χ(t)2
]

dt− t
[

ψ(t)2 − µ2χ(t)2
]

− t2
[

ψ(t)ψ̇(t)− µ2χ(t)χ̇(t)
]

, (9)

whose expectation is zero and whose typical value is much less (by a factor oft2ω2) than the other coefficient ofǫ2 in Eq. (8). For this reason
we henceforth neglect it.

So finally, neglecting high order ofε,

∂N(ǫ, µ)/∂ǫ ∼
∫

µt
[

χ̇(t)ψ(t)− χ(t)ψ̇(t)
]

dt− ǫ

∫

t2
[

ψ̇(t)2 − µ2χ̇(t)2
]

dt. (10)

Equation (4) is satisfied for:

ǫ = n/d, (11)

with

n = µ

∫

t
[

χ̇(t)ψ(t)− χ(t)ψ̇(t)
]

dt,

d =

∫

[

t2(ψ̇(t)2 − µ2χ̇(t)2)
]

dt+
1

4

∫

[

ψ(t)2 − µ2χ(t)2
]

dt.

Equation (11) is an expression for the apparent dilation induced by the difference2µχ between the original waveformsφ1 andφ2.
Given specificψ andχ, one could evaluate it. It will be more useful, however, to obtain statistical estimates for the apparent dilation given
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assumptions about the envelopes and spectra ofψ andχ. The numeratorn has expectation zero, asχ andψ are statistically unrelated. Thus
within the stated limitωtǫ << 1, differencesφ2 − φ1 do not manifest as an apparent dilation and the expected dilation ǫ is zero.

3 VARIANCE ESTIMATION AND STATISTICAL ERROR

Given〈n〉 = 0, one then seeks estimates for the root-mean-square of equation (11) in order to judge typical fluctuations around the expected
zero. These will be made based on assumptions thatψ andχ are stationary, noise-like and Gaussian, with similar spectra, having central
frequencyωc. ψ andχ have the same duration, long compared to the inverse ofωc. Without loss of generality it is also assumed that they
have the same amplitudes〈ψ2〉 = 〈χ2〉 = 1. They are taken to extend from a start timet1 to an end timet2. Under these assumptions the
denominator of (11) is estimated as :

d ≈ (1− µ2)
[

1

3
ω2

c (t
3

2 − t31) +
1

4
(t2 − t1)

]

≈ (1− µ2)
1

3
ω2

c (t
3

2 − t31). (12)

The square of the numerator of (11) is

n2 ≈ µ2

[
∫ ∫

tt′
{

ψ(t)χ̇(t)− ψ̇(t)χ(t)
}{

ψ(t′)χ̇(t′)− ψ̇(t′)χ(t′)
}

dt dt′
]

. (13)

On changing variables:t+ t′ = 2τ , t− t′ = ξ and dropping the cross terms as having expectation zero, (13) becomes:

〈n2〉 ≈ µ2

∫
(

τ 2 − ξ2

4

)

{

ψ
(

τ +
ξ

2

)

χ̇
(

τ +
ξ

2

)

ψ
(

τ − ξ

2

)

χ̇
(

τ − ξ

2

)

+ψ̇
(

τ +
ξ

2

)

χ
(

τ +
ξ

2

)

ψ̇
(

τ − ξ

2

)

χ
(

τ − ξ

2

)}

dτ dξ. (14)

Auto-correlation functions may be defined as

〈ψ
(

τ +
ξ

2

)

ψ
(

τ − ξ

2

)

〉 = 〈ψ2(τ )〉Rψ(ξ) = R(ξ), (15)

such that

〈ψ̇
(

τ +
ξ

2

)

ψ̇
(

τ − ξ

2

)

〉 ≈ ω2

c 〈ψ2(τ )〉Rψ(ξ) = ω2

cR(ξ), (16)

with similar expressions forχ. Then the expectation of the square of the numerator of (11) is:

〈n2〉 ≈ 2µ2

[
∫

(

τ 2 − ξ2

4

)

ω2

c R
2(ξ) dτ dξ

]

≈ 2 µ2 ω2

c

[
∫

τ 2dτ

][
∫

R2(ξ)dξ

]

. (17)

The first integral is merely(t32 − t31)/3. The second requires knowing something of the spectra ofψ andχ, so we take these to be
Gaussian and identical:∼ exp(−(ω−ωc)

2T 2) + exp(−(ω+ ωc)
2T 2). T may be identified by noting that the -10 dB points are atωc plus

or minusln 10/T . In this caseR is related to the inverse Fourier transform of the power spectrum:R(ξ) = cos(ωc ξ) exp(ξ
2/4T 2). Then

the second integral in (17) is identified asT
√

π/2.
Application of equations (11), (12), (17) requires that we also estimate theµ. The quantityµ is related to the maximum of the waveform

dilation-correlation coefficient

X(0, µ) =
N(0, µ)

D(µ)
=

∫

ψ(t)2 − µ2χ(t)2dt
√

[∫

ψ2 + µ2χ2dt
]

2 − 4µ2

[∫

χ ψ dt
]

2

(18)

As χ andψ are statistically independent, one estimates the following relation between the maximum of the dilation correlation coefficient
and the parameterµ:

X =
1− µ2

1 + µ2
(19)

Finally, the root mean square of the practitioner’s (erroneous) estimate for the relative dilation betweenφ1 andφ2 is

rms ǫ =
〈n2〉1/2

d
=

√
1− X2

2X

√

6
√

π
2
T

ω2
c (t3

2
− t3

1
)

(20)

We recall thatT is the inverse of the frequency bandwidth,t1 and t2 are begin and end time of the processed time-window in the coda,
respectively, andωc is the central pulsation. This expression scales inverselywith the duration of the correlation waveform in units of the
period, and inversely with the square root of the duration inunits of the inverse bandwidth. In practice Eq. (20) can be very small. The
quantityω(t2 − t1) represents the available time where coda waves are significantly larger than the noise; the duration of the waveform is
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Figure 1. Experimental setup with ultrasound. An air-gel mixture mimics a multiple scattering medium. Coda waves sensed by the receivers (see Fig. 2) are
processed like ambient seismic noise : they are autocorrelated and compared from one date to another.

in units of the period. The quantityT is the amount of time for one bit of information to be delivered, and corresponds roughly to the time
of the initial source (Derode et al. 1999). Thus Eq. (20) can be recognized as scaling inversely the available time in the coda (this time is
related to coda-Q), and inversely with the square root of theamount of information. It also may be recognized that smallX corresponding to
waveformsφ1 andφ2 that are very different, permits the practitioners erroneous estimate of dilation to be large. It may be that lengthening
the considered time intervalt2 − t1 would increase the precision, however it could also diminishX: in principle there are trade-offs.

Application of Eq. (20) is straightforward. A practitioner’s estimate of the relative dilationǫ between two waveformsφ1 andφ2 may be
compared to Eq. (20). Values in excess of Eq. (20) are consistent with the inference that the observed dilation is real. Changes in waveform
source or other character should not generate apparent dilations in excess of Eq. (20). Furthermore, in absence of any actual dilation, estimates
of ǫ of the order Eq. (20) will nevertheless be generated in practice. Such should be regarded as un-meaningful.

4 COMPARISON WITH EXPERIMENT

The prediction Eq. (20) has been compared to waveform dilation measurements in a laboratory ultrasonic experiment (Hadziioannou et al.
2009). For practical reasons, we mimicked here ambient noise correlation with diffuse waves correlation. Several piezoelectric sensors and
sources were applied to a multiply scattering air-bubble filled gel (see Fig. 1). Sources and receivers were placed on opposite sides, 64 mm
apart. Multiple scattering was strong: received waveformsfsr(t) from sourcess to receiversr were coda-like, with envelopes that resembled
the solution of a diffusion equation (fig. 2). The auto-correlation of eachfsr(t) was windowed between lapse times of 12.5 to 50µsec,
to yield the waveforms which we callgsr(τ ) (see fig. 3). Details of the experimental set-up are described in Hadziioannou et al (2009).
The details are, however, unimportant here, as the present theory applies to any pair of coda-like waveformsφ1 andφ2. The typicalgsr is
stationary over this interval and has a power spectrum centered on 2.35 MHz with -10 dB points at 1.7 and 3.0 MHz.

The tables below are formed by maximizing the dilation correlation coefficientX between sumsφ =
∑

s
gsr over different sets of

sources{s}. Note that theφ are not Green’s functionsGrr, as the fieldsfsr(t) used to compose them were not fully equipartitioned. The
excellent impedance match between the gel and the receiversprevented the field to be reflected back to the medium. The noise field thus
lacked any components traveling from receiver to receiver.All tests were conducted at fixed temperature, the actual relative temporal dilation
is therefore zero. Also, to mimic signals acquired at different date, we averaged correlations over different set of sources to eventually
compare them. The addition of different sources results in an additional noiseχ(t) in the correlations. The goal of the test is to measure the
dilation induced by the difference in waveform due to a different source distribution.

Autocorrelation waveforms, like that illustrated in figure3, in the interval from 12.5 to 50µsec appear stationary. Thus we taket1=12.5
µsec,t2 = 50µsec,ωc = 15 rad/µsec; andT = 0.56µsec and conclude from (20),
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Figure 2. A typical signalfsr(t) in the gel resembles noise, under an envelope which is a solution of a diffusion equation.
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Figure 3. A typical autocorrelationgsr , of the signal from one of the sources to one of the receivers.The interval from 12.5 to 50µsec was selected for dilation
coefficient evaluation.
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X for seven receivers and three different choices for the set of sources

Sources 1 to 11 & 12 0.9312 0.9169 0.8893 0.8458 0.8226 0.88520.8683
Sources 1 to 11 & 13 0.9394 0.8833 0.9083 0.8464 0.8872 0.86310.8928
Sources 1 to 11 & 14 0.9458 0.9009 0.8730 0.7942 0.8322 0.83960.7979

The dilationǫ (×10−3) as obtained by maximizingX for each of these cases

Sources 1 to 11 & 12 0.06 0.04 -0.16 0.08 -0.04 -0.10 0.18
Sources 1 to 11 & 13 -0.04 -0.04 -0.08 0.06 -0.14 -0.08 0.10
Sources 1 to 11 & 14 -0.16 0.08 -0.12 0.00 -0.14 -0.24 -0.12

Experimental root mean square dilationǫ (×10−3)

all sets 0.1013 0.0566 0.1244 0.0577 0.1166 0.1571 0.1376

Theoretical root mean square (×10−3) from Eq. (21)

all sets 0.07 0.09 0.09 0.12 0.11 0.10 0.11

Table 1. Comparison of best-fit waveform dilationsǫ with the predictions of equation (21). A maximum value ofX and theǫ at which thatX is maximum,
are constructed for each of seven receivers (the seven columns) and the three choices for the set of sources described in the text (the three rows). The root mean
square of thoseǫ is compared with the predictions of theory. ThatX is of order 90% is consistent with one source in ten having changed.

rms ǫ = 4× 10−4

√
1− X2

2X
(21)

Tables 1 and 2 show two case studies. In the first case, autocorrelations calculated from the signals at a receiverr, as produced by eleven
distinct sourcess, were summed over to generate the reference waveformφ1 =

∑

s
gsr. For each of three comparison waveformsφ2, the

same sum was done, keeping the first ten sources unchanged. Inorder to deliberately change the waveform without dilation, the eleventh
source is replaced with sources number twelve, thirteen andfourteen respectively. This was repeated for each of seven receivers. In each case
we compare three waveformsφ2 with the referenceφ1 and evaluateX(ǫ). The table shows the maximum value ofX(ǫ), and the value ofǫ
that did this, for each of the 21 cases. For each of the seven receivers we calculate thermsof these threeǫ. If the only changes were to the
source of the noise field, and not the medium, one would expectno dilation, orǫ = 0. Nevertheless, the differences in sources do generate
apparent (feeble but noticeable) dilations∼ ǫ. Theoretical and experimentalrms(ε) are of the same order of magnitude. Theory, especially
in light of the approximate modeling of the spectrum, may be said to have done a good job predicting the fluctuations.

In the second study (Tab. 2), four sources were held constant, and two were varied. Here the reference waveform was constructed from
a sum over six sources

∑

s
gsr; each of the other three waveforms was constructed by replacing sources number five and six in that sum with

two others. Again theory may be said to have done a good job: the rms theoretical predictions accurately fit the actual experimental errors
within 40%. This means that Eq. 20 properly predicts the order of magnitude of the error.

X for seven receivers and three different choices for the set of sources

Sources 1 to 4 & 5-6 0.6181 0.7864 0.7143 0.8400 0.7149 0.84580.7863
Sources 1 to 4 & 7-8 0.6359 0.7340 0.7011 0.8451 0.8020 0.82850.8194
Sources 1 to 4 & 9-10 0.5948 0.7397 0.5837 0.8165 0.8294 0.8451 0.8745

The dilationǫ (×10−3) as obtained by maximizingX for each of these cases

Sources 1 to 4 & 5-6 -0.0800 0.0400 0.4600 -0.0200 0.1400 0.0400 0.1600
Sources 1 to 4 & 7-8 -0.0200 0.0400 0.0400 -0.3400 -0.0800 -0.1400 0.0800
Sources 1 to 4 & 9-10 -0.4600 0.1600 0.5600 -0.0400 0.0800 -0.0400 0.0400

Experimental root mean square dilationǫ (×10−3)

all sets 0.27 0.098 0.419 0.198 0.104 0.087 0.106

Theoretical root mean square (×10−3) from Eq. (21)

all sets 0.19 0.14 0.17 0.12 0.14 0.12 0.11

Table 2. As in table 1, but for sources that differ by more: fewer sources are kept fixed (four) and more sources are changing (two). This results in as maller
values ofX and a larger value of error (uncertainty).
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Figure 4. Map of the seismic stations used in our study. They are part ofthe High Resolution Seismic Network operated by the Berkeley Seismological
Laboratory.

5 COMPARISON WITH SEISMIC DATA FROM PARKFIELD

We also analyze data from seismic measurements near Parkfield, California. Brenguier et al. (2008) showed that correlation waveforms
obtained from ambient seismic noise over a period of five years from 2002 to 2007 changed in a manner consistent with a decrease of the
seismic velocity after the earthquake of 2004 (Fig. 4). Thisdecreased velocity then relaxed likelog(t) after the earthquake. While they used
the doublet technique, we have re-analyzed their data usingthe dilation coefficient (see Eq. 1). For each of 78 receiver pairs, we compared
the 1550-day average correlation waveform with the correlation waveforms constructed from each of 1546 overlapping 5-day segments. The
whitening operation before correlation ensures that the spectrum of the correlations is constant. Note that direct arrivals are never processed.
A representative correlation waveform is shown in figure 5. Each such waveform was windowed between -50 and -20 seconds, and again
from 20 to 50 seconds (thus excluding direct Rayleigh arrivals and emphasizing the multiply scattered diffuse part of the signal for which the
theory was developed). As in the previous section, the details of the measurements are available elsewhere (Brenguier,Campillo et al. 2008)
but are unimportant for the present purposes. AnX and anǫ were deduced for each day. Power spectra were centered on 0.5Hz, with -10dB
shoulders at 0.1 and 0.9 Hz. These numbers permit the evaluation of (20):

rms ǫ = 2, 4× 10−3

√
1− X2

2X
(22)

Figures 6 (top and bottom) show the mean (over the 78 receiverpairs) values ofX andǫ between each of the 1546 overlapping 5-day
correlation waveforms,φ1, and the correlation waveformφ2 as obtained by averaging over the entire 5 year period. Except for the two events
on days 152 and 437, and the slow relaxation after the latter,the dilation appears constant, with daily random fluctuations of order10−4. A
correlation coefficientX of 0.8 predicts arms fluctuation of10−3 (Eq. (22)). On averaging over 78 pairs, this prediction is reduced by a
factor

√
78, to 1.1 × 10−4, consistent with the observed fluctuations inǫ. In light of the approximations, in particular that of modeling the

spectrum as Gaussian and the waveform as stationary, we count this as excellent agreement.
The discontinuities inǫ at December 22, 2003 and September 28, 2004 are of particularinterest. The latter is coincident with the

Parkfield earthquake. Jumps in dilation on those dates by∼ 0.8 × 10−3 were interpreted (Brenguier, Campillo et al. 2008) as decrease of
local seismic wavespeed. But one might wish to entertain thehypothesis that these jumps are due to a change in the source of the noise.
To examine the question, we evaluatedX andǫ using correlation waveformsφ1 as averaged over a 70-day period before each event as a
reference and correlation waveformsφ2 obtained over a series of 5 day spans after the events. The relative dilation across the events are the
same as seen in figure 6 (top), of order5× 10−4. The values ofX for these pairs of waveforms varied between 60% and 70%. According to
equation (22) divided by

√
78, the value ofX would have had to be below 33% if this large and apparent dilation were to be due to a random

function with no actual dilation. The relative dilation between correlation waveforms before and after the event is therefore due to changes
in seismic Green’s function, and not to changes in the sourceof the waves.
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Figure 5. A typical daily correlation waveform from the Parkfield dataset. Dilations were constructed by comparing waveforms like this as windowed from
50 to +50 seconds, with the direct signal from 20 to +20 omitted.

6 SUMMARY

Waveforms constructed by noise correlation can be extraordinarily sensitive to changes in material properties. Such waveforms are in principle
affected by both changes in noise sources and changes in the acoustic properties of the medium in which the waves propagate. It has been
shown here that long-duration diffuse waveforms permit changes in the source of the noise to be distinguished with high precision from
changes due to a temporal dilation.

An expression was derived for thermsof the apparent dilationǫ measured on two waveforms, when there is no actual dilation between
the two. This apparent dilation can be an effect ofe.g.a change in noise sources. Therms value thus allows us to distinguish between an
erroneous dilation measurement due to waveform change, anda physical wavespeed change in the medium.

We have tested the validity of thermsvalue using data from laboratory experiments, and we find that the theory predicts errors well.
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