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Ma and Sonka proposed a fully parallel 3D thinning algorithm which does not always preserve topology. We propose an algorithm based on P -simple points which automatically corrects Ma and Sonka's Algorithm. As far as we know, our algorithm is the only fully parallel curve thinning algorithm which preserves topology.

Introduction

In the image processing field, thinning is a technique which extracts skeletons from objects. Such a representation has the advantage of being compact while conserving important features of objects like topology and geometry. Thinning has many applications such as compression, analysis and recognition [START_REF] Sauret | Semi-automated tabulation of the 3D topology and morphology of branching networks using CT: application to the airway tree[END_REF].

Thinning can be achieved by different approaches. For instance, in the field of digital topology, we find thinning algorithms based on parallel deletion of voxels [START_REF] Ma | A 3D fully parallel thinning algorithm for generating medial faces[END_REF][START_REF] Ma | A fully parallel 3D thinning algorithm and its applications[END_REF][START_REF] Palágyi | A 3D 6-subiteration thinning algorithm for extracting medial lines[END_REF][START_REF]A hybrid thinning algorithm for 3D medical images[END_REF][START_REF]A parallel 3D 12-subiteration thinning algorithm[END_REF][START_REF] Manzanera | A unified mathematical framework for a compact and fully parallel n-D skeletonization procedure[END_REF][START_REF] Lohou | A 3D 12-subiteration thinning algorithm based on P -simple points[END_REF][START_REF]A 3D 6-subiteration curve thinning algorithm based on P -simple points[END_REF][START_REF]Two symmetrical thinning algorithms for 3D binary images, based on P -simple points[END_REF][START_REF] Wang | A note on 'a fully parallel 3D thinning algorithm and its applications[END_REF], or of surfels [START_REF] Burguet | Strong thinning and polyhedric approximation of the surface of a voxel object[END_REF], or guided by the notion of distance [START_REF] Pudney | Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images[END_REF][START_REF] Borgefors | Computing skeletons in three dimensions[END_REF][START_REF] Svensson | Curve skeletonization of surface-like objects in 3D images guided by voxel classification[END_REF]. In the field of algorithmical geometry, we find thinning algorithms based on Delaunay triangulation and Voronoï diagram notions [START_REF] Berg | Computational Geometry -Algorithms and Applications[END_REF]. In the field of mathematical morphology, we find thinning algorithms based on erosion or skeleton by influence zones notions [START_REF] Serra | Image Analysis and mathematical morphology[END_REF]. In the field of algebraical topology, we find works based on cellular complexes [START_REF] Kovalevsky | Finite topology as applied to image analysis[END_REF], homotopy chains [START_REF] Rocío González-Díaz | On the cohomology of 3D digital images[END_REF], or critical kernels [START_REF] Bertrand | Two-dimensional thinning algorithms based on critical kernels[END_REF]. In this paper, we only deal with thinning algorithms for 3D binary images by parallel deletions of voxels, in the case of digital topology.

In a binary image, objects are represented by black points. The complement is represented by white points. Thinning consists in deleting black points i.e. changing black points to white. It is generally done in successive iterations of deletions. Removing a point should preserve certain properties such as topology. This leads to the essential notion of a simple point: a simple point is a point which can be removed without changing topology [START_REF] Kong | Digital topology: Introduction and survey[END_REF]. We may notice that a 3 × 3 × 3 neighborhood of a point x is necessary and sufficient to decide whether x is simple or not. Since we consider parallel algorithms, we face a major problem: the simultaneous removal of simple points may change the topology of an object. This is the case, for example, of an object constituted of two adjacent voxels.

To solve this problem, three different solutions may be considered:

• giving a set of 3 × 3 × 3 masks or templates (a 3 × 3 × 3 neighborhood centered around a considered point) to determine whether a point is deletable. In other words, all points matching at least one of the templates are removed. Note that the templates should be conceived in such a way that the algorithm preserves topology. This leads to algorithms performing deletion iterations. Each iteration is divided into several subiterations based, for example, on directions [START_REF] Palágyi | A 3D 6-subiteration thinning algorithm for extracting medial lines[END_REF][START_REF]A hybrid thinning algorithm for 3D medical images[END_REF][START_REF]A parallel 3D 12-subiteration thinning algorithm[END_REF][START_REF] Tsao | A parallel thinning algorithm for 3D pictures[END_REF][START_REF] Gong | A simple parallel 3D thinning algorithm[END_REF][START_REF] Rolland | 3D medial surfaces and 3D skeletons[END_REF] or on subgrids [START_REF]A hybrid thinning algorithm for 3D medical images[END_REF][START_REF] Bertrand | A three-dimensional thinning algorithm using subfields[END_REF][START_REF] Ma | Three-dimensional topology preserving reduction on the 4-subfields[END_REF];

• accessing an extended neighborhood (i.e. a neighborhood which strictly includes the 3×3×3 neighborhood) to obtain more information. Such a strategy may lead to fully parallel thinning algorithms [START_REF] Ma | A 3D fully parallel thinning algorithm for generating medial faces[END_REF][START_REF] Ma | A fully parallel 3D thinning algorithm and its applications[END_REF] (which use specific directions) or to symmetrical thinning algorithms [START_REF] Manzanera | A unified mathematical framework for a compact and fully parallel n-D skeletonization procedure[END_REF] (which are isometrically invariant);

• using another class of points that ensures that the deletion of all points of the class does not affect topology. This is what P -simple points accomplish [START_REF] Bertrand | On P -simple points[END_REF]. In fact, this notion is very general and leads to different thinning schemes according to different strategies [START_REF]P -simple points: A solution for parallel thinning[END_REF], for example, directional [START_REF] Lohou | A 3D 12-subiteration thinning algorithm based on P -simple points[END_REF][START_REF]A 3D 6-subiteration curve thinning algorithm based on P -simple points[END_REF][START_REF] Burguet | Strong thinning and polyhedric approximation of the surface of a voxel object[END_REF][START_REF] Bertrand | On P -simple points[END_REF][START_REF] Malgouyres | Strong surfaces, surface skeletons and image superposition[END_REF] or symmetrical [START_REF]Two symmetrical thinning algorithms for 3D binary images, based on P -simple points[END_REF] (in this case, since the deleting process is symmetrical, skeleton centering is automatic therefore the notion of distance is not required).

In [START_REF] Ma | A fully parallel 3D thinning algorithm and its applications[END_REF], Ma and Sonka propose a fully parallel thinning algorithm based on 38 templates. In [START_REF] Lohou | Contribution à l'analyse topologique des images : étude d'algorithmes de squelettisation pour images 2D et 3D selon une approche topologie digitale ou topologie discrète[END_REF], Lohou gives an object whose topology is not preserved by Ma and Sonka's algorithm. In [START_REF] Chaturvedi | Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals[END_REF], Chaturvedi and Lee found that Ma and Sonka's algorithm disconnects some objects. In [START_REF] Wang | A note on ´A fully parallel 3D thinning algorithm and its applications´[END_REF], Wang and Basu propose a correction of Ma and Sonka's algorithm. Their correction consists in changing 12 templates of the original algorithm by 36 new templates. However, this correction makes the algorithm more difficult to implement and to analyse. Furthermore, the topology of the object given in [START_REF] Lohou | Contribution à l'analyse topologique des images : étude d'algorithmes de squelettisation pour images 2D et 3D selon une approche topologie digitale ou topologie discrète[END_REF] is still not preserved by the algorithm. Topology preservation of the previous parallel thinning algorithms is not automatic and has to be proven, which is difficult. On the contrary, parallel thinning algorithms removing P -simple points have the property of preserving topology. In this paper, we propose a correction of a templates-based parallel thinning algorithm using P -simple points, which automatically ensures topology preservation.

This paper is organized as follows. Section 2 gives some basic notions of digital topology and presents Psimple points. Section 3 recalls Ma and Sonka's thinning algorithm. Section 4 shows how to use P -simple points in a thinning algorithm. In Section 5, we propose such an algorithm correcting Ma and Sonka's algorithm. Section 6 gives some results and Section 7 concludes.

2 Basic notions of digital topology 2.1 Neighborhoods, connected components and holes

A point x ∈ Z 3 is defined by (x 1 , x 2 , x 3 ) with x i ∈ Z.
We consider the three neighborhoods:

N 26 (x) = {x ′ ∈ Z 3 : M ax[|x 1 -x ′ 1 |, |x 2 -x ′ 2 |, |x 3 -x ′ 3 |] ≤ 1}, N 6 (x) = {x ′ ∈ Z 3 : |x 1 -x ′ 1 | + |x 2 -x ′ 2 | + |x 3 -x ′ 3 | ≤ 1}, and N 18 (x) = {x ′ ∈ Z 3 : |x 1 -x ′ 1 | + |x 2 -x ′ 2 | + |x 3 -x ′ 3 | ≤ 2} ∩ N 26 (x). We define N * n (x) = N n (x) \ {x}. We call respectively 6-, 18-, 26-neighbors of x the points of N * 6 (x), N * 18 (x) \ N * 6 (x), N * 26 (x) \ N * 18 (
x), such points are represented in Fig. 1 (a). The 6-neighbors of x determine six major directions (Fig. 1 (b)). The points belonging to X (resp. X) are called black points (resp. white points).

Two points x and y are said to be n-adjacent if y ∈ N * n (x) (n = 6, 18, 26). An n-path is a sequence of points x 0 , . . . , x k , with x i n-adjacent to x i-1 for any 1 ≤ i ≤ k. If x 0 = x k , the path is closed. Let X ⊆ Z 3 . Two points x ∈ X and y ∈ X are n-connected in X if they can be linked by an n-path included in X. The equivalence classes relative to this relation are the n-connected components of X. In order to have a correspondence between the topology of X and that of X, we have to consider two different kinds of adjacency for X and for X [START_REF] Kong | Digital topology: Introduction and survey[END_REF]: if we use an n-adjacency for X, we have to use another n-adjacency for X. In this paper, we only consider (n, n) = [START_REF] Ma | Three-dimensional topology preserving reduction on the 4-subfields[END_REF][START_REF]A parallel 3D 12-subiteration thinning algorithm[END_REF].

Let X ⊂ Z 3 . A hole (sometimes called a tunnel [START_REF] Kong | Digital topology: Introduction and survey[END_REF][START_REF] Ma | On topology preservation in 3D thinning[END_REF]) in X is detected when there is a closed path in X which cannot be deformed in X into a single point (see [START_REF] Kong | Digital topology: Introduction and survey[END_REF][START_REF] Kong | A digital fundamental group[END_REF][START_REF] Bertrand | Simple points, topological numbers and geodesic neighborhoods in cubic grids[END_REF] for further details).

Simple points and topological numbers

Let X ⊆ Z 3 . A point x ∈ X is said to be simple if its removal does not "change the topology" of the image, in the sense that there is a one-to-one correspondence between the components, the holes of X (resp. X) and the components, the holes of X \ {x} (resp. X ∪ {x}), see [START_REF] Kong | A digital fundamental group[END_REF] for a precise definition.

The set composed of all n-connected components of X which are n-adjacent to a point x is denoted by C x n (X). Let #X denote the number of elements which belong to X. The topological numbers relative to X and x are the two numbers [START_REF] Bertrand | Simple points, topological numbers and geodesic neighborhoods in cubic grids[END_REF]:

T 6 (x, X) = #C x 6 [N * 18 (x) ∩ X] and T 26 (x, X) = #C x 26 [N * 26 (x) ∩ X].
These numbers lead to a very concise characterization of 3D simple points [START_REF] Bertrand | A new characterization of three-dimensional simple points[END_REF]:

x ∈ X is simple for X if and only if T 26 (x, X) = 1 and T 6 (x, X) = 1.
For example, in Fig. 2 (a), the points y and z both belong to N * 18 (x) ∩ X but there is no 6-path of white points included in N * 18 (x) ∩ X which joins them. Thus, T 26 (x, X) = 1 and T 6 (x, X) = 2 therefore x is not simple. In Fig. 2 (b), there is a single black 26-connected component in N * 26 (x) ∩ X therefore T 26 (x, X) = 1; w does not belong to N * 18 (x) ∩ X therefore T 6 (x, X) = 1; thus x is simple.

P-simple points

In the following, we consider a subset X of Z 3 , a subset P of X, and a point x of P . The point x is P -simple for X if for each subset S of P \ {x}, x is simple for X \ S. A subset of X is P -simple if it is composed of solely P -simple points. We have the property that any algorithm removing only P -simple subsets is guaranteed to keep the topology unchanged [START_REF] Bertrand | On P -simple points[END_REF].

We give a local characterization of a P -simple point [START_REF] Bertrand | Sufficient conditions for 3D parallel thinning algorithms[END_REF]. Let R denote the set X \ P . The point x is Psimple for X if and only if:

               T 26 (x, R) = 1; T 6 (x, X) = 1; ∀y ∈ N *
26 (x) ∩ P, ∃z ∈ R such that z is 26-adjacent to x and to y; ∀y ∈ N * 6 (x) ∩ P, ∃z ∈ X and ∃t ∈ X such that {x, y, z, t} is a unit square. For example, in Fig. 2 (c), N * 26 (x) ∩ P = {y 1 , y 2 }, there is no point of R which is 26-adjacent to both x and y 1 therefore the third condition is not verified and x is not P -simple. In Fig. 2 (d), all conditions are verified for x therefore x is P -simple. For convenience sake, points of X are not represented.
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Ma and Sonka's algorithm

Ma and Sonka's algorithm (denoted by MS96 in the following) is a fully parallel curve thinning algorithm, based on templates requiring access to up to 50 points to decide whether a point is deletable or not [START_REF] Ma | A fully parallel 3D thinning algorithm and its applications[END_REF] (see below). The templates can be obtained from four given subsets of template cores (classes A, B, C and D) and additional directional conditions. The template cores are depicted in Fig. 3. The deleting templates are the set of all reflections and all 90 • rotations around any one of the three major axes of the four template cores. Thus, a point satisfies a template if it matches at least one of the deleting templates T i and verifies all the conditions (see Fig. 1 (b) for directions):

1. if T i is isomorphic to any template core A, B or C:

(a) s(x) is black in T i ⇒ s(s(x)) is black; (b) w(x) is black in T i ⇒ w(w(x)) is black; (c) d(x) is black in T i ⇒ d(d(x)) is black.
2. if T i is isomorphic to the template core D:

(a) x is a simple point;

(b) y = s(u(x)) is black in T i ⇒ at least one of s(s(x)), s(y), s(u(y)), u(y) and u(u(x)) is black; (e) y = s(w(x)) is black in T i ⇒ at least one of s(s(x)), s(y), s(w(y)), w(y) and w(w(x)) is black;

(c) y = s(d(x)) is black in T i ⇒ at least one of s(s(x)), s (y), s(d(y) 
(f) y = w(u(x)) is black in T i ⇒ at least one of w(w(x)), w(y), w(u(y)), u(y) and u(u(x)) is black;

(g) y = w(d(x)) is black in T i ⇒ at least one of w(w(x)), w(y), w(d(y)), d(y) and d(d(x)) is black. Now, we give additional definitions and describe MS96. Let x be a black point of a 3D image, then • x is a line-end point if x is 26-adjacent to exactly a single point of the object;

• x is a near-line-end point if x is 26-adjacent to exactly two points of the object which are:

either s(x) and e(x), or s(x) and u(x) but not both;

either n(x) and w(x), or u(x) and w(x) but not both;

or n(x) and d(x), or e(x) and d(x) but not both.

• x is called a tail point if it is either a line-end point or a near-line-end point; otherwise it is called a nontail point. parallel delete every nontail object point which satisfies at least one deleting template of classes A, B, C or D 3: until no points are deleted It has been showed that MS96 does not always preserve topology. Indeed, let us consider the object studied in [START_REF] Lohou | Contribution à l'analyse topologique des images : étude d'algorithmes de squelettisation pour images 2D et 3D selon une approche topologie digitale ou topologie discrète[END_REF] and depicted in Fig. 4. Applying MS96 to this object only removes x and y (they match templates of class D), which disconnects the object i.e. changes its topology.

As mentioned before, in [START_REF] Wang | A note on ´A fully parallel 3D thinning algorithm and its applications´[END_REF], Wang and Basu proposed a correction of MS96 by changing several templates. However, applying their algorithm (denoted by WB07 in the following) to the previous object also removes x and y (x satisfies template D11.3 and y satisfies template D12.2, notations given in [START_REF] Wang | A note on ´A fully parallel 3D thinning algorithm and its applications´[END_REF]) therefore changes the topology too.

Thinning algorithms based on P -simple points

Now, let us consider an algorithm which removes P -simple points in parallel, in successive iterations. A skeleton is obtained when no more points can be removed. Since removing P -simple sets is guaranteed to keep the topology unchanged [START_REF] Bertrand | On P -simple points[END_REF], this algorithm is a topology-preserving thinning algorithm. Such an algorithm is given below:

Thin(X: object, C: condition) → X: object

1: repeat 2:
{parallel labelling of points which belong to P } 3:

P ← ∅ 4:
for each point x in X, in parallel, do 5:

if C(x, X) then end for 9:

{parallel deletion of P -simple points} 10:

X ′ ← X 11:
for each point x in P , in parallel, do 12:

if x is P -simple for X ′ then end for 16: until no points are deleted where C denotes the condition a point of an object should satisfy to belong to P (intuitively, the set of candidate points to deletion). Each iteration is composed of two passes. Thanks to P -simple points, the algorithm can examine points in parallel. Furthermore, using the local characterization of P -simple points given in Section 2.3, the algorithm can consider limited neighborhoods. It is thus well-suited for parallel machines.

The major difficulty of such an algorithm is to provide an appropriate condition C to determine P , the set of candidate points to deletion. On the one hand, if P contains a few points, only a few points may be P -simple therefore deleted. On the other hand, if P contains a lot of points, each point of P has very little chance to be P -simple therefore deleted.

P -simple points have already been used by Lohou and Bertrand to conceive thinning algorithms. In [START_REF] Lohou | A 3D 12-subiteration thinning algorithm based on P -simple points[END_REF], they take Palagyi and Kuba's 12-subiteration surface thinning algorithm (PaKu12) [START_REF]A parallel 3D 12-subiteration thinning algorithm[END_REF] to derive a 12subiteration surface thinning algorithm based on Psimple points. Their algorithm deletes at least the same points as PaKu12 therefore their algorithm is more powerful than PaKu12 (in the sense that, for a given object, it deletes at least all points deleted by PaKu12 during the first deleting iteration). Moreover, this automatically proves that PaKu12 preserves towell. In [START_REF]A 3D 6-subiteration curve thinning algorithm based on P -simple points[END_REF], Lohou and Bertrand proposed a 6subiteration curve thinning algorithm based on Palagyi and Kuba's 6-subiteration curve thinning algorithm [START_REF] Palágyi | A 3D 6-subiteration thinning algorithm for extracting medial lines[END_REF]. Here, the aim was to show that their method can be applied to different kinds of algorithms, for instance, a thinning algorithm which preserves curves. Finally, in [START_REF]Two symmetrical thinning algorithms for 3D binary images, based on P -simple points[END_REF], they proposed a curve thinning algorithm and a surface thinning algorithm by using two different conditions of end points. This study did not aim to enhance a given algorithm but to propose isometric-invariant thinning algorithms, also classified as symmetrical.

In the current study, the objective is completely different and is new in the literature: using P -simple points to automatically correct a failing algorithm. Thus, the obtained algorithm is ensured to preserve topology. No deep examination of templates is required.

A correction of Ma and Sonka's algorithm

To correct Ma and Sonka's algorithm, we propose to parallely remove P -simple points in successive iterations where P is the set of points which would be deleted by Ma and Sonka's algorithm. This algorithm (denoted by LD MS96 in the following) can be described as:

LD MS96(X: object) → X: object 1: X ← Thin(X,C MS96)
where:

C MS96(x: point, X: object) → b: boolean 1: if x is a nontail point which satisfies at least one template of classes A, B, C or D in X (Fig. 3) then b ← false 5: end if Thus, during an iteration, LD MS96 deletes the points which are removed by MS96 such that the parallel deletion of any subset of these points does not affect topology. Any point deleted by LD MS96 is also deleted by MS96. Since the characterization of P -simple points is linear [START_REF] Bertrand | On P -simple points[END_REF], any iteration is bounded by O(N ) where N is the size of the image (number of points).

By the definition of P -simple points, there is no ambiguity: once P is defined, any algorithm which deletes in parallel P -simple points is ensured to preserve topology. The main interest of our present work is to precisely define P as the set of points deleted by Ma and Sonka's algorithm. Thus, since LD MS96 deletes only P -simple points where P is defined as mentioned previously, it automatically preserves topology. Neither additional proof nor deep template examination is required.

Let us consider again the object depicted in Fig. 4. This time, LD MS96 states that P = {x, y} therefore neither x nor y is P -simple (the first condition is not verified for x and y). Therefore, no points are deleted and the topology is well preserved.

We may notice that LD MS96 brings us many questions. For example, does the use of P -simple points make the simplicity condition of the class D templates unnecessary? If we change the place of the tail point evaluation, can we obtain a more efficient or powerful algorithm? What can we expect of using other tail point conditions? All these questions are beyond the scope of this paper and are part of our current work [START_REF] Dehos | Analysis of algorithms derived from Ma and Sonka's thinning algorithm[END_REF].

Results and analysis

We compared MS96, WB07 and LD MS96 using various objects. Some of these objects and their skeletons (obtained with MS96, WB07 and LD MS96) are depicted Fig. 5. Note that the letterD object is used by Ma and Sonka in [START_REF] Ma | A fully parallel 3D thinning algorithm and its applications[END_REF] to illustrate MS96. We applied LD MS96 (and WB07) to this object and found exactly the same results as with MS96. Among our 7 objects, MS96 disconnects all the objects but let-terD. In the same way, WB07 disconnects three objects (bull , knot and vertebra). On the contrary, LD MS96 preserves the topology of all the 7 objects, which agrees with the topology preservation property of any thinning algorithms based on P -simple point deletion and illustrates the relevance of our method. Note that LD MS96 produces thin and centered skeletons and therefore is a pertinent thinning algorithm. Some statistics concerning our results are given in Table 1. We found that during the first iteration, MS96 and LD MS96 delete the same number of points. In fact, by its conception, LD MS96 cannot delete, during the first iteration, more points of a given object than MS96. Indeed, P is the set of points deleted by MS96 and the set of P -simple points (which is deleted by LD MS96) is included into P . However, we can prove nothing else from this because even if both algorithms are applied to the same initial object, an iteration may come where LD MS96 removes fewer points than MS96. Thus, the next iteration happens on different objects which makes final results (deleted points, iterations) difficult to predict. For example, the number of iterations performed by MS96 can be less (bull and vertebra), equal (dolphin, knot, letterD and venus) or greater (3L) than the one performed by LD MS96.

Since the templates of WB07 are more restrictive than the templates of MS96, we verify that, during the first iteration, the number of points deleted by WB07 is less or equal than the number of points deleted by MS96. On the other hand, the number of iterations performed by WB07 is greater or equal to the number of iterations performed by MS96.

Conclusion

Using P -simple points, a thinning algorithm is guaranteed to preserve topology. Ma and Sonka proposed a templates-based curve thinning algorithm which fails to preserve topology. In this paper, we have proposed an automatic correction of this algorithm, using Psimple points. We tested and compared our algorithm with the original algorithm of Ma and Sonka and with the correction proposed by Wang and Basu. Our algorithm also extracts curve skeletons therefore it can be used for the same applications as the original algorithm. Since our algorithm preserves topology, it can make these applications more reliable. As far as we know, our algorithm is the only fully parallel curve thinning algorithm which preserves topology.

Symmetrical thinning algorithms using distance yield well centered but thick skeletons. On the contrary, other approaches results in thin but non-centered skeletons. The initial idea of Ma and Sonka is to use directions without performing subiteration to give a proof of topology preservation. In fact, their algorithm is a good compromise to obtain well centered as well as thin curve skeletons therefore was worth correction. 
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 1 Figure 1: (a) The 6-, 18-, and 26-neighbors of x are respectively represented by black triangles, black squares, and black discs. (b) The six major directions: up (u), down (d), north (n), south (s), west (w) and east (e).
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 234 Figure 2: In (a) and (b), points belonging to X and X are respectively represented by black discs and white discs. In (c) and (d), points belonging to R, P and X are respectively represented by black discs, black stars and white discs.

  ), d(y) and d(d(x)) is black; (d) y = s(e(x)) is black in T i ⇒ at least one of s(s(x)), s(y), s(e(y)), e(y) and e(e(x)) is black;
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 5 Figure 5: Some of the objects used for our tests and the obtained skeletons.

Table 1 :

 1 Comparison between MS96, WB07 and LD MS96 applied to the 7 objects depicted in Fig.5.

	Object	Initial	Deleted points during		Deleted points			Iterations
		black	the first iteration						
		points	MS96/LD MS96	WB07	MS96	WB07	LD MS96	MS96	WB07	LD MS96
	3L	2 050	1 131	1 131	2 009	1 996	2 000	11	15	10
	bull	424 346	24 231	24 230	423 821	423 739	423 645	70	97	82
	dolphin	1 202 772	43 699	43 696	1 201 818	1 201 946	1 201 758	102	129	102
	knot	231 239	26 114	26 114	230 493	230 456	230 443	20	22	20
	letterD	2 079	1 281	1 281	2 020	2 020	2 020	4	4	4
	venus	973 861	32 667	32 667	973 727	973 727	973 725	58	58	58
	vertebra	180 161	19 036	19 036	179 513	178 133	179 423	56	115	61
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