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ABSTRACT

Joint demosaicking and denoising consists in reconstructing

a color image from the noisy raw data output by the sen-

sor of a digital camera. We adopt a variational formulation

in which the reconstructed image has minimal total variation

under the constraint of consistency with the available mea-

surements. This way, the recovered color image has smooth

chrominance but the sharp edges are maintained and the noise

is transferred to the luminance channel. This channel is de-

noised subsequently.

Index Terms— Demosaicking, denoising, Bayer color

filter array, frequency selection, spatio-spectral sampling

1. INTRODUCTION

Color images are acquired in digital cameras by means of a

single sensor on which the Bayer color filter array (CFA) is

overlaid [1]. In order to reconstruct a full-color image from

the raw data delivered by the sensor, an interpolation process

called demosaicking is performed. There is an abundant liter-

ature on demosaicking and we direct the readers to the good

survey by Menon [2]. However, most demosaicking methods

are developed under the unrealistic assumption of noise-free

data. In the presence of noise, the performances of the al-

gorithms degrade drastically, since their sophisticated nonlin-

ear mechanisms are generally not robust to noise. Moreover,

denoising after demosaicking is untractable, because demo-

saicking distorts the characteristics of the noise in a complex

and hardly computable form. Thus, demosaicking and de-

noising have to be handled jointly. We refer to the introduc-

tion of [3] for a survey of the relevant literature.

To formulate the problem, let us first introduce some no-

tations. Boldface letters denote vectors, e.g. a = [a1, a2]
T ∈

C2 with norm |a| =
√

|a1|2 + |a2|2. We define the color im-

age u = (u[k])k∈Z2 as the ground-truth to be estimated. For

every k, u[k] =
[

uR[k], uG[k], uB[k]
]T

is the color of the

pixel of u at location k, in the canonical R, G, B (red, green,

blue) basis. In this paper, we adopt an additive white Gaus-

sian noise (AWGN) model; that is, we have at our disposal
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Fig. 1. (a) The Bayer CFA and (b) schematic representation of

the spectrum of a mosaicked image, with the spectrum of the

luminance uL in the baseband and the replicas of the spectra

of chrominance with hatched fill.

the noisy mosaicked image v such that

v[k] = uX[k][k] + ε[k], ∀k ∈ Z2, (1)

where X [k] ∈ {R, G, B} is the color of the filter in the Bayer

pattern at location k (see Fig. 1a), ε[k] ∼ N (0, σ2) for ev-

ery k and σ2 is the noise variance. Then, the problem is

to reconstruct a color image d from v, which is a good es-

timate of u. In real conditions, the AWGN assumption is not

met; real noise is more accurately modeled by the sum of a

Gaussian and a Poissonian components [4]. Moreover, the

observed values are photon counts, which have to be tone

mapped/gamma corrected. However, variance stabilization

techniques can be efficiently employed [5], so that the prob-

lem can be recast in the AWGN context.

The article is organized as follows. In sect. 2, we recall the

properties of the joint demosaicking and denoising approach

by frequency selection we proposed in [3]. To improve upon

this method, we formulate a new optimization problem us-

ing total variation and we propose an algorithm to solve it in

sect. 3. The approach is validated by experiments in sect. 4.

2. SPATIO-SPECTRAL MODEL OF SAMPLING AND

DEMOSAICKING BY FREQUENCY SELECTION

It is well known that the R, G, B components of natu-

ral images are strongly correlated [1]. That is why we



define the components of luminance, green/magenta and

red/blue chrominances of a color image a as aL = 〈a,L〉,
aG/M = 〈a,CG/M 〉, and aR/B = 〈a,CR/B〉, respectively,

using the orthonormal basis L = 1√
3
[1, 1, 1]T,CG/M =

1√
6
[−1, 2,−1]T,CR/B = 1√

2
[1, 0,−1]T. In first approxi-

mation, the luminance and chrominance channels of natural

images in this basis are statistically decorrelated. A major

contribution of Alleysson et al. [6] consisted in showing that

the basis L, C
G/M , C

R/B is appropriate to characterize the

Bayer CFA and that the mosaicked image is the sum of the

modulated luminance and chrominance components of u:

v̂(ω) = 1√
3
ûL(ω) + 1√

24
ûG/M (ω) +

√
6

4 ûG/M (ω−[π, π]T)

+
√

2
4 ûR/B(ω−[0, π]T) −

√
2

4 ûR/B(ω−[π, 0]T) + ε̂(ω),
(2)

for every ω ∈ R2, where the Fourier transform â(ω) of an

image a is defined as â(ω) =
∑

k∈Z2 a[k]e−jω
T
k and an

image with finite support is implicitely extended to an infinite

one by zero-padding.

This frequency analysis of the spatio-spectral sampling

induced by the Bayer CFA, illustrated in Fig. 1b, sheds an

interesting light on the problem: it aims at separating the

three images uL, uR/B and uG/M from their noisy mixing in

v. This is exactly what demosaicking by frequency selection

does in the noise-free case, as proposed by Dubois [7]. We

extended the method to the noisy case in our last paper [3]. In

short, the approach consists in estimating uR/B and uG/M by

modulation and lowpass filtering. Then, the residual in v is

known to be an estimate of 1√
3
uL + ε, from eqn. (2). Thus, in

first approximation, the noise is completely contained in the

luminance channel of the demosaicked image and this chan-

nel can be subsequently denoised using any method adapted

to grayscale images and AWGN. This approach yields state-

of-the-art results but, due to the estimation of the chrominance

using very selective lowpass filters, the sharp color edges are

blurred. So, there is still room for improvement over the

method of [3], which motivates this work.

In [8], we have shown that, with minor modifications,

in the noise-free case, demosaicking by frequency selection

yields the solution of the following variational problem con-

sidered in [9]:

d = argmin
a

µ‖∇aL‖2
ℓ2 + ‖∇aG/M‖2

ℓ2 + ‖∇aR/B‖2
ℓ2 (3)

subject to a
X[k][k] = v[k], ∀k ∈ Z2,

where we introduce the discrete gradient vector using finite

differences as

∇a[k] =
[

a[k] − a[k1 − 1, k2], a[k] − a[k1, k2 − 1]
]T

, (4)

for every k ∈ Z2, using Neumann boundary conditions; that

is, a finite difference is set to zero when it involves a pixel

value outside the image domain. We also introduce the dis-

crete divergence operator div = −∇∗ as

div a[k] = a1[k1+1, k2]−a1[k]+a2[k1, k2+1]−a2[k]. (5)

The parameter µ in (3) plays a crucial role; it controls the

balance between the smoothness of the luminance and of the

chrominance in the reconstructed image. If µ is close to zero,

then d will be close to a monochrome image, since all the high

frequency energy of v will be assigned to dL. On the con-

trary, for µ = 1, the regularization functional is diagonal in

the R, G, B basis and the process amounts to reconstructing

the R, G, B channels independently by interpolation, a naive

solution which yields bad results. Consequently, µ should be

chosen relatively small in order to get a smooth hue [9]. This

way, the inter-correlations between color channels in natural

images are automatically taken into account.

In the noisy case, by further reducing µ and keeping exact

consistency with v, we reconstruct an image d with almost all

the noise of v assigned to the luminance band dL. However,

when decreasing µ, the high frequencies of chrominance are

mistakenly assigned to the luminance channel. Thus, at sharp

color transitions, the edges are over-smoothed and zipper arti-

facts appear in the luminance. This motivates a formulation of

the problem using non-quadratic regularization, namely total

variation, whose superiority in restoration problems in keep-

ing sharp edges is well known.

3. A VARIATIONAL FORMULATION BASED ON

TOTAL VARIATION MINIMIZATION

First, we remark that the regularization in (3) is invariant with

respect to a rotation in every iso-luminance color plane; that

is, there is no privileged color axis and the problem formu-

lation is independent on the choice of the chrominance basis

C
G/M , CR/B . We have the equality

‖∇aG/M‖2
ℓ2 + ‖∇aR/B‖2

ℓ2 = ‖∇aC‖2
ℓ2 (6)

where aC = aG/M + j.aR/B and j is the complex square

root of −1. In this work, we propose a new formulation of the

total variation (TV) of a color image:

‖a‖TV = µ‖∇aL‖ℓ1 + ‖∇aC‖ℓ1 (7)

for some parameter µ > 0, where the ℓ1 norm of a vector-

valued image a is ‖a‖ℓ1 =
∑

k∈Z2

√

a[k]Ha[k] and ·H indi-

cates the complex conjugate of the transpose of a vector.

Then, we formulate demosaicking as the following opti-

mization problem, for some parameter 0 < µ < 1 to choose:

d = argmin
a

‖a‖TV s. t. a
X[k][k] = v[k], ∀k ∈ Z2.

(8)

Note the difference with usual variational formulations in

which we trade the fit to the data and the smoothness of the



solution. Here we keep the exact consistency with the data, so

that the noise is not removed but is transfered to the luminance

channel dL.

Minimizing a quadratic penalty like in (3) boils down to

solving a linear system and a direct implementation can be

designed [3, 8]. With the non-quadratic TV, there is no direct

way to obtain the solution and an iterative method has to be

designed. Note that the TV is convex so that the problem (8)

is well posed. However, the TV is not differentiable so that

conventional smooth optimization techniques are not applica-

ble. Actually, very few methods are available to minimize the

TV under an affine constraint, see [10] and references therein.

Very recently, a breakthrough in the field has appeared under

the form of new primal-dual methods proposed independently

by several authors [11, 12, 13]. In this work, we apply the al-

gorithm of [11] to our problem. This yields the following

implementation:

Demosaicking Algorithm

1. Choose the initial estimate d(0) and the constant α > 0

2. n := 0; b(0) := d(0); β := 1/(8.01 α);

∀k ∈ Z2, ∀X ∈ {R, G, B},aX
(0)[k] := [0, 0]T

3. Repeat until stopping criterion is met

4. ∀X ∈ {R, G, B}, a
X
(n+1) := a

X
(n) + α∇bX

(n)

5. ∀k ∈ Z2, a
L
(n+1)[k] :=

a
L
(n+1)[k]

max(1, |aL
(n+1)[k]|/µ)

6. ∀k ∈ Z2, a
C
(n+1)[k] :=

a
C
(n+1)[k]

max(1, |aC
(n+1)[k]|)

7. ∀X ∈ {R, G, B}, dX
(n+1) := dX

(n) + β div a
X
(n+1)

8. ∀k ∈ Z2, d
X[k]
(n+1)[k] := v[k]

9. b(n+1) := 2d(n+1) − d(n)

10. n := n + 1

It can be shown [11, Theorem 1] that this algorithm con-

verges to the solution d of (8).

4. EXPERIMENTAL VALIDATION

In [3], different methods of the literature were compared and

the method proposed in [3] was shown to be significantly bet-

ter than every other method. Therefore, by lack of space,

we only compare the proposed TV approach to the method

of [3]. The 24 color images of the classical Kodak test set1

1The vertical images were first rotated by 90o counterclockwise to simu-

late an acquisition with a digital camera whose sensor is aligned horizontally.

� σ 1 5 10 20

Method � µ 0.5 0.45 0.4 0.35

[3] 38.49 35.35 32.56 29.57

[3]+mosaicking+[15] 39.42 35.66 32.73 29.68

proposed 38.41 35.36 32.63 29.70

prop.+mosaicking+[15] 39.43 35.70 32.80 29.78

Table 1. Average CPSNR (in dB) over the 24 images of the

Kodak test set for different demosaicking+denoising methods.

were mosaicked2 with the Bayer CFA and corrupted with dif-

ferent noise levels. 50 iterations of the proposed algorithm

were run, α was set to 0.1 and the initial guess d(0) was

set as the result of the method of [3]. The state-of-the-art

BM3D denoising method [14] was used to denoise the lumi-

nance image dL. In Tab. 1, we report the CPSNR3 between

u and d, averaged over the 24 images. We also propose an

extended variant of our approach in which the reconstructed

image is mosaicked again and then demosaicked using the

method of [15]. Indeed, the re-mosaicked image is relatively

free of noise and a classical demosaicking method can be ap-

plied to it. From the numerical results in Tab. 1, we see that

the proposed approach is only slightly better than the method

of [3]. However, as shown in Fig. 2, the proposed TV-based

method yields cleaner edges. The extended variant provides a

significant gain for low noise levels, where the denoising pro-

cess has a negligible effect and the nonlinear demosaicking

methods can show their superiority. This gain vanishes as the

noise level increases.

5. CONCLUSION

In this work, we proposed a new expression of the total vari-

ation of a color image and a new primal-dual algorithm to

minimize it under a consistency constraint. Applied to the ill-

posed inverse problem of demosaicking noisy data, the pro-

posed variational approach yields even better results that the

state-of-the-art method of [3], with sharp color edges free of

noticeable artifacts. Moreover, our method is generic and can

be applied to images acquired with an arbitrary CFA [16]. A

Matlab implementation of our approach is available online.
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