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ABSTRACT

Joint demosaicking and denoising consists in reconstructing
a color image from the noisy raw data output by the sen-
sor of a digital camera. We adopt a variational formulation
in which the reconstructed image has minimal total variation
under the constraint of consistency with the available mea-
surements. This way, the recovered color image has smooth
chrominance but the sharp edges are maintained and the noise
is transferred to the luminance channel. This channel is de-
noised subsequently.

Index Terms— Demosaicking, denoising, Bayer color
filter array, frequency selection, spatio-spectral sampling

1. INTRODUCTION

Color images are acquired in digital cameras by means of a
single sensor on which the Bayer color filter array (CFA) is
overlaid [1]. In order to reconstruct a full-color image from
the raw data delivered by the sensor, an interpolation process
called demosaicking is performed. There is an abundant liter-
ature on demosaicking and we direct the readers to the good
survey by Menon [2]. However, most demosaicking methods
are developed under the unrealistic assumption of noise-free
data. In the presence of noise, the performances of the al-
gorithms degrade drastically, since their sophisticated nonlin-
ear mechanisms are generally not robust to noise. Moreover,
denoising after demosaicking is untractable, because demo-
saicking distorts the characteristics of the noise in a complex
and hardly computable form. Thus, demosaicking and de-
noising have to be handled jointly. We refer to the introduc-
tion of [3] for a survey of the relevant literature.

To formulate the problem, let us first introduce some no-
tations. Boldface letters denote vectors, e.g.a = [a1, a2]

T ∈
C2 with norm|a| =

√

|a1|2 + |a2|2. We define the color im-
ageu = (u[k])k∈Z2 as the ground-truth to be estimated. For

everyk, u[k] =
[

uR[k], uG[k], uB[k]
]T

is the color of the
pixel ofu at locationk, in the canonicalR, G, B (red, green,
blue) basis. In this paper, we adopt an additive white Gaus-
sian noise (AWGN) model; that is, we have at our disposal
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Fig. 1. (a) The Bayer CFA and (b) schematic representation of
the spectrum of a mosaicked image, with the spectrum of the
luminanceuL in the baseband and the replicas of the spectra of
chrominance with hatched fill.

the noisy mosaicked imagev such that

v[k] = uX[k][k] + ε[k], ∀k ∈ Z2, (1)

whereX [k] ∈ {R, G, B} is the color of the filter in the Bayer
pattern at locationk (see Fig. 1a),ε[k] ∼ N (0, σ2) for ev-
ery k and σ2 is the noise variance. Then, the problem is
to reconstruct a color imaged from v, which is a good es-
timate ofu. In real conditions, the AWGN assumption is not
met; real noise is more accurately modeled by the sum of a
Gaussian and a Poissonian components [4]. Moreover, the
observed values are photon counts, which have to be tone
mapped/gamma corrected. However, variance stabilization
techniques can be efficiently employed [5], so that the prob-
lem can be recast in the AWGN context.

The article is organized as follows. In sect. 2, we recall the
properties of the joint demosaicking and denoising approach
by frequency selection we proposed in [3]. To improve upon
this method, we formulate a new optimization problem us-
ing total variation and we propose an algorithm to solve it in
sect. 3. The approach is validated by experiments in sect. 4.

2. SPATIO-SPECTRAL MODEL OF SAMPLING AND
DEMOSAICKING BY FREQUENCY SELECTION

It is well known that the R, G, B components of natu-
ral images are strongly correlated [1]. That is why we



define the components of luminance, green/magenta and
red/blue chrominances of a color imagea asaL = 〈a,L〉,
aG/M = 〈a,CG/M 〉, andaR/B = 〈a,CR/B〉, respectively,
using the orthonormal basisL = 1√

3
[1, 1, 1]T,CG/M =

1√
6
[−1, 2,−1]T,CR/B = 1√

2
[1, 0,−1]T. In first approxi-

mation, the luminance and chrominance channels of natural
images in this basis are statistically decorrelated. A major
contribution of Alleyssonet al. [6] consisted in showing that
the basisL, C

G/M , C
R/B is appropriate to characterize the

Bayer CFA and that the mosaicked image is the sum of the
modulated luminance and chrominance components ofu:

v̂(ω) = 1√
3
ûL(ω) + 1√

24
ûG/M (ω) +

√
6

4 ûG/M (ω − [π, π]T)

+
√

2
4 ûR/B(ω − [0, π]T) −

√
2

4 ûR/B(ω − [π, 0]T) + ε̂(ω),
(2)

for everyω ∈ R2, where the Fourier transform̂a(ω) of an
imagea is defined aŝa(ω) =

∑

k∈Z2 a[k]e−jω
T
k and an

image with finite support is implicitely extended to an infinite
one by zero-padding.

This frequency analysis of the spatio-spectral sampling
induced by the Bayer CFA, illustrated in Fig. 1b, sheds an
interesting light on the problem: it aims at separating the
three imagesuL, uR/B anduG/M from their noisy mixing in
v. This is exactly what demosaicking by frequency selection
does in the noise-free case, as proposed by Dubois [7]. We
extended the method to the noisy case in our last paper [3]. In
short, the approach consists in estimatinguR/B anduG/M by
modulation and lowpass filtering. Then, the residual inv is
known to be an estimate of1√

3
uL + ε, from eqn. (2). Thus, in

first approximation, the noise is completely contained in the
luminance channel of the demosaicked image and this chan-
nel can be subsequently denoised using any method adapted
to grayscale images and AWGN. This approach yields state-
of-the-art results but, due to the estimation of the chrominance
using very lowpass filters, the sharp color edges are blurred.
So, there is still room for improvement over the method of [3],
which motivates this work.

In [8], we have shown that, with minor modifications,
in the noise-free case, demosaicking by frequency selection
yields the solution of the following variational problem con-
sidered in [9]:

d = argmin
a

µ‖∇aL‖2
ℓ2 + ‖∇aG/M‖2

ℓ2 + ‖∇aR/B‖2
ℓ2 (3)

subject toa
X[k][k] = v[k], ∀k ∈ Z2,

where we introduce the discrete gradient vector using finite
differences as

∇a[k] =
[

a[k] − a[k1 − 1, k2], a[k] − a[k1, k2 − 1]
]T

, (4)

for everyk ∈ Z2, using Neumann boundary conditions; that
is, a finite difference is set to zero when it involves a pixel

value outside the image domain. We also introduce the dis-
crete divergence operatordiv = −∇∗ as

div a[k] = a1[k1+1, k2]−a1[k]+a2[k1, k2+1]−a2[k]. (5)

The parameterµ in (3) plays a crucial role; it controls the
balance between the smoothness of the luminance and of the
chrominance in the reconstructed image. Ifµ is close to zero,
thend will be close to a monochrome image, since all the high
frequency energy ofv will be assigned todL. On the con-
trary, for µ = 1, the regularization functional is diagonal in
theR, G, B basis and the process amounts to reconstructing
the R, G, B channels independently by interpolation, a naive
solution which yields bad results. Consequently,µ should be
chosen relatively small in order to get a smooth hue [9]. This
way, the inter-correlations between color channels in natural
images are automatically taken into account.

In the noisy case, by further reducingµ and keeping exact
consistency withv, we reconstruct an imaged with almost all
the noise ofv assigned to the luminance banddL. However,
when decreasingµ, the high frequencies of chrominance are
mistakenly assigned to the luminance channel. Thus, at sharp
color transitions, the edges are over-smoothed and zipper ar-
tifacts appear in the luminance. This motivates a formulation
of the problem using a non-quadratic regularization, namely
total variation, whose superiority in restoration problems in
keeping sharp edges is well known.

3. A VARIATIONAL FORMULATION BASED ON
TOTAL VARIATION MINIMIZATION

First, we remark that the regularization in (3) is invariantwith
respect to a rotation in every iso-luminance color plane; that
is, there is no privileged color axis and the problem formu-
lation is independent on the choice of the chrominance basis
C

G/M , CR/B. We have the equality

‖∇aG/M‖2
ℓ2 + ‖∇aR/B‖2

ℓ2 = ‖∇aC‖2
ℓ2 (6)

whereaC = aG/M + j.aR/B andj is the complex square
root of−1. In this work, we propose a new formulation of the
total variation (TV) of a color image:

‖a‖TV = µ‖∇aL‖ℓ1 + ‖∇aC‖ℓ1 (7)

for some parameterµ > 0, where theℓ1 norm of a vector-
valued imagea is ‖a‖ℓ1 =

∑

k∈Z2

√

a[k]Ha[k] and·H indi-
cates the complex conjugate of the transpose of a vector.

Then, we formulate demosaicking as the following opti-
mization problem, for some parameter0 < µ < 1 to choose,

d = argmin
a

‖a‖TV s. t. a
X[k][k] = v[k], ∀k ∈ Z2.

(8)
Note the difference with usual variational formulations in

which we trade the fit to the data and the smoothness of the



solution. Here we keep the exact consistency with the data, so
that the noise is not removed but is transfered to the luminance
channeldL.

Minimizing a quadratic penalty like in (3) boils down to
solving a linear system and a direct implementation can be
designed [3, 8]. With the non-quadratic TV, there is no direct
way to obtain the solution and an iterative method has to be
designed. Note that the TV is convex so that the problem (8)
is well posed. However, the TV is not differentiable so that
conventional smooth optimization techniques are not applica-
ble. Actually, very few methods are available to minimize the
TV under an affine constraint, see [10] and references therein.
Very recently, a breakthrough in the field has appeared under
the form of new primal-dual methods proposed independently
by several authors [11, 12, 13]. In this work, we apply the al-
gorithm of [11] to our problem. This yields the following
implementation:

Demosaicking Algorithm

1. Choose the initial estimated(0) and the constantα > 0

2. n := 0; b(0) := d(0); β := 1/(8.01 α);

∀k ∈ Z2, ∀X ∈ {R, G, B},aX
(0)[k] := [0, 0]T

3. Repeat until stopping criterion is met

4. ∀X ∈ {R, G, B}, a
X
(n+1) := a

X
(n) + α∇bX

(n)

5. ∀k ∈ Z2, a
L
(n+1)[k] :=

a
L
(n+1)[k]

max(1, |aL
(n+1)[k]|/µ)

6. ∀k ∈ Z2, a
C
(n+1)[k] :=

a
C
(n+1)[k]

max(1, |aC
(n+1)[k]|)

7. ∀X ∈ {R, G, B}, dX
(n+1) := dX

(n) + β div a
X
(n+1)

8. ∀k ∈ Z2, d
X[k]
(n+1)[k] := v[k]

9. b(n+1) := 2d(n+1) − d(n)

10. n := n + 1

It can be shown [11, Theorem 1] that the algorithm con-
verges to the solutiond of (8) with a convergence speed in
O(1/n), which is optimal for this class of problems [11].

4. EXPERIMENTAL VALIDATION

In [3], different methods of the literature were compared and
the method proposed in [3] was shown to be significantly bet-
ter than every other method. therefore, by lack of space, we
only compare the proposed TV approach to the method of [3].
The 24 color images of the classical Kodak test set1 were

1The vertical images were first rotated by90o counterclockwise to simu-
late an acquisition with a digital camera whose sensor is aligned horizontally.

� σ 1 5 10 20
Method � µ 0.5 0.45 0.4 0.35

[3] 38.49 35.35 32.56 29.57
[3]+mosaicking+ [15] 39.42 35.66 32.73 29.68

proposed 38.41 35.36 32.63 29.70
prop.+mosaicking+ [15] 39.43 35.70 32.80 29.78

Table 1. Average CPSNR (in dB) over the 24 images of the
Kodak test set for different denoisaicking methods.

mosaicked2 with the Bayer CFA and corrupted with different
noise levels. 50 iterations of the proposed algorithm were run,
α was set to0.1 and the initial guessd(0) was set as the result
of the method of [3]. The state-of-the-art BM3D denoising
method [14] was used to denoise the luminance imagedL. In
Tab. 1, we report the CPSNR3 betweenu andd, averaged
over the 24 images. We also propose an extended variant of
our approach in which the denoisaicked image is mosaicked
again and then demosaicked using the method of [15]. In-
deed, the re-mosaicked image is relatively free of noise anda
classical demosaicking method can be applied to it. From the
numerical results in Tab. 1, we see that the proposed approach
is only slightly better than the method of [3]. However, as
shown in Fig. 2, the proposed TV-based method yields cleaner
edges. The extended variant provides a significant gain for
low noise levels, where the denoising process has a negligible
effect and the nonlinear demosaicking methods can show their
superiority. This gain vanishes as the noise level increases.

5. CONCLUSION

In this work, we proposed a new expression of the total vari-
ation of a color image and a new primal-dual algorithm to
minimize it under a consistency constraint. Applied to the ill-
posed inverse problem of demosaicking noisy data, the pro-
posed variational approach yields even better results thatthe
state-of-the-art method of [3], with sharp color edges freeof
noticeable artifacts. Moreover, our method is generic and can
be applied to images acquired with an arbitrary CFA [16]. A
Matlab implementation of our approach is available online.
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