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Introduction 3

1 Introduction

In this report we describe contributions for the 2D/3D codec architecture developed
for the task 5 within the PERSEE project.

The target of the task 5 is to provide all partners with a new video codec integrating
their contributions. These contributions are core technologies identified as relevant in
the other tasks (i.e tasks 1 to 4). These contributions will be integrated in a common
software platform. This platform is described at the figure 1. This software has been
initiated with a state-of-the-art 2D codec and its architecture will evolved in order to
take into account contributions. The most promising resulting video codecs will be
used to encode/decode selected videos that will be used for perceptual and subjective
assessments during the task 6.

The programme of this task provided a preliminary description of the common test
conditions (i.e the corpus of selected 2D and 3D videos, their description and their
content classification, and the coding conditions) which has been performed during
the first 6 months.

In this new deliverable, a description of relevant contributions for the codec archi-
tecture is done. The document is organized as follows:

• Section 2 is about the retained formats for the 3D videos:

– Section 2.1 describes the multiple-views-plus-depth format;

– Section 2.2 describes the Layered Depth Image format.

• Section 3 presents the specific contributions for the 3D codec. In particular, we
have:

– Section 3.1 presents contributions dense disparity field estimation;

– Sections 3.2 and 3.3 present contributions for the coding of the depth maps;

– Section 3.5 presents contributions for the synthesis of the virtual views;

– Section 3.6 presents a way to increase the QoE of 3DTV.

• Finally, Section 4 presents the tests protocol:

– Sections 4.1 presents the purpose of the MPEG normalization context;

– Section 4.2 describes the video sequences to be used to perform the tests;

– Section 4.3 deals with the test conditions;

– Section 4.4 depicts the subjective tets;

– Section 4.5 presents the performance tests of synthesis view systems;

– Section 4.6 deals with the problem of the quality of experience for an au-
tostereoscopic display.

The intended codec structure is shown in Fig. 1. The input to this encoder is a
multiview video, made up by N views, acquired by a camera array. A further input
can be the ensemble of depth maps associated to these view. This is represented as
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Figure 1: Common software platform of the project.

“Z sensor” input in the figure, since the depth information is often indicated as “Z
data”. As an alternative, the depth information can be computed from the multiple
views: this problem is one of the subjects of task 4. The proposed solutions for this
problem are described in Section 3.1. Once we have the views and the depths, we have
to decide which data representation to use. Two main candidates have been retained:
multiple views plus depth (MVD) described in section 2.1 and layered depth image
(LDI), described in section 2.2. In this second case, a further joint processing of views
and depths is needed, and it is called “builder representation” ’ in Fig. 1.

Then we have the actual codec block. The problems related to this block are ad-
dressed in taks 1 to 4 of the project. Standard based solutions such as MVC and
Simulcast (e.g. with HEVC) can be considered as a reference (cf. Fig.2.1). We aim
to propose a backward-compatible encoder. This means that it should be easy to ex-
tract from the encoded stream a substream describing a single view and hence easily
decodable by a standard 2D decoder. This can be obtained by encoding one view with
a standard (or nearly standard) method, and then encoding the other information
(other views, depth) with novel methods. The proposed methods here should take
into account the visual quality of the encoded video.

At the decoder side, we have the problem of view synthesis. This means that we
want create an artificial point of view, which did not exist in the orginal data set. This
method is necessary to implement such services as free viewpoint TV. Methods for
view synthesis include the standard VSRS software and the solutions proposed in this
project (task 4). While the rendering part is not a subject of research in this project,
it is necessary to proceed to the last part of the scheme, that is the subjective quality
assessment of the encoded video, which is the target of task 6 of the project.

Codec architecture D5.2
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2 Data format for multiview and 2D/3D compatibility

2.1 Multiple views plus depth

One of the most popular representations of multiview video and arguably the most
adapted to free-viewpoint television [29] is the so-called multiple-views-plus-depth
(MVD) format [21, 24]. When MVD is used, for each view we dispose of a texture
video sequence and of a depth map sequence, representing, for each temporal instant,
the distance of the current pixel from the point of observation. An example of MVD
video is shown in Fig. 2.

T = 1 T = 2 T = 3 T = 4

View 0, color

View 0, depth

View 4, color

View 4, depth

Figure 2: Example of multiple-view-plus-depth video.

MVD is extremely demanding in terms of storage space and transmission bandwidth,
therefore compression is mandatory in order to manage this representation. Several
approaches exist for MVD compression [34]. A simple, first one, is to independently
compress each texture and depth sequence from each view. This approach is commonly
referred to as Simulcast, see Fig. 2.1(a). Simulcast has the advantage of being simply
implementable, backward compatible, and of allowing to decode immediately a single
view for 2D screens. It has been chosen as reference in the Call for Proposal issued by
the MPEG committee for the standardization of MVD [2]. Of course, one expects that
more sophisticated schemes, taking into account the redundancy between views and
between texture and depth, would achieve far better compression performance than the
multicast scheme (this is actually the rationale behind the CfP). For example, as shown
in Fig. 2.1(b), one can apply H.264/MVC [11] over texture sequences and (separately)
over depth maps. Since depth and texture have very different content, no coding gain
is expected by jointly coding texture and depth with H.264/MVC. Nevertheless, some
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Single View
Video Coder

Single View
Video Coder

Single View
Video Coder

Single View
Video Coder

View 1

View 2

Color

Depth

Depth

Color

Simulcast coding

MVC
Video Coder

MVC
Video Coder

View 1

View 2

Color

Depth

Depth

Color

Coding via MVC

(a) (b)

Figure 3: Reference MVD coding methods: (a) Simulcast; (b) MVC of texture and
depths.

redundancy between texture and depth does exist, and this scheme does not exploit
it. For example they partially share movement and disparity information, and above
all, rate allocation between them should be jointly performed. However the latter is
a quite difficult issue, and one of the key problems to be solved in order to achieve
efficient coding [17].

The schemes shown in Fig. 2.1 allow a certain backward compatibility with respect
to the 2D video. For example, in the Simulcast case, a user interested to the 2D video
can acces only one texture stream and decode it with a single view video decoder such
as AVC. In the case where MVC is used for coding all the views, it is often possible
to extract a single view from the encoded stream without a complete transcoding.
When more complex coding algorithms are used, a particular attention must be paied
to assure backward compatibility. In the proposed architecture this will be obtained
by allowing to extract a single view from the encoded stream with a very simple data
processing, and without transcoding.

2.2 Layered depth image (LDI) representation

When dealing with the compression of multi-view content, two main approaches can
be envisaged: either coding the MVD (Multi-view plus Depth) input data directly
using a solution in the same vein as MVC (Multi-View Video Coding, see Del D4.1)
or either first constructing an intermediate representation, such as the LDI (Layered
Depth Image) Representation (see Del D4.1) which will first aim at getting rid of the
redundancy between views. The LDI is thus formed of several layers, the first layer
containing the color data of a reference view and the other layers are sparse and contain
color data seen from the other cameras and not seen from the reference camera. The
two approaches have been investigated in the project and tools compatible with these
two approaches are presented below.

MVC coding is backward compatible with teh H.264 2D video codec, in the sense
that the reference view is encoded with this solution. The other views are then en-
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coded in a predictive manner taking the reference view to predict, with the help of
disparity information, the other input views. Similarly, in the case one constructs
an intermediate LDI-based representation, the different layers can be encoded either
using standalone 2D video codecs or using the MVC codec, after padding the layers
by propagating the pixel values from one layer to the adjacent one. This allows using
classical 2D video codecs, the information propagated from one layer to the next being
then removed by the inter-layer prediction modes of the MVC codec.

3 3D-specific conding tools

3.1 Disparity field estimation

In this section we describe a method for dense (i.e. one vector per pixel) disparity
field estimation. Even though dense disparity fields cannot be directly used for com-
pression because of their huge coding cost, we can use them to derive an R-D efficient
representation of the disparity field, taking advantage of the global formulation of the
disparity estimation problem. In other word we are able to produce a disparity field
that standard approach would not take in consideration given their local and causal
approach to the estimation problem. We have proved the effectiveness of this approach
for multiple view video coding (without depth) in a previous work [15]. In the present
paper we want to extend this concept to the MVD case and moreover to explore the
critical issue of parameter tuning for the dense disparity estimation (DDE). At this
end, it is necessary to recall the main ideas of DDE, which is the objective of this
section.

Let Int be the rectified frame taken by the n-th camera at time t. Therefore the
disparity vectors can only have a the horizontal component, which we call d. Dense
disparity estimation has the target of finding the disparity field d(p) = d(x, y) (that
is the disparity vector for any pixel position p = (x, y)) which best matches pixel p
in current frame Int in view n with pixel p + d(p) in the reference frame Imt in view
m. This is a typical example of inverse problem, which needs suitable regularization
to be solved. In the following, for the sake of simplicity, we will consider only the case
m = n− 1.

At the basis of the estimation methods, there is the hypothesis that the image
intensity is roughly constant once one has compensated for the disparity. As a con-
sequence, a common method to estimate d is to minimize a cost function such as the
sum of squared differences between the current image and the one compensated by
disparity.

d∗(·) = argmin
d∈Ω

∑

(x,y)∈P

[Int (x, y)− In−1
t (x+ d(x, y), y)]2 (1)

where P is the picture support and Ω is the range of candidate disparity fields. However
this criterion is hardly if ever useful, since any disparity field linking equally luminous
pixels would make it equal to zero. In order to find a significant solution, we have to
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inject into the criterion other constraints, accounting for known characteristics of the
solution (a priori information). This is the regularization needed to solve the problem.

However, before introducing regularization, we want to simplify the criterion. If we
assume that an initial coarse estimate d̄ of d is available (e.g. thanks to block-matching
method), and that the difference between d̄ and d is small, the warped image can be
approximated as:

In−1
t (x + d, y) '

In−1
t (x+ d̄, y) + (d− d̄)

∂

∂x
In−1
t (x+ d̄, y) (2)

This linearization allows to rewrite the criterion J [d(·] as a quadratic convex functional:

J [d(·)] =
∑

p∈P

[r(p) − L(p) d(p)]2 (3)

where
L(p) = ∂

∂x
In−1
t (x+ d̄(p), y)

r(p) = Int (p)− In−1
t (x + d̄(p), y) + d̄(p) L(p)

As pointed out before, the minimization of J is an ill-posed problem, demanding for
additional constraints, which reflect the a priori knowledge about the disparity.

This problem can be solved in the context of the set theory. We introduce M

constraints. The m-th of them is represented by a closed convex set Sm in a Hilbert
space H. We call S the intersection of all the M sets Sm. Then, S is the set of
candidate solutions [25], i.e. the set where we have to look for the field minimizing J :

d∗(·) = argmin
d∈

⋂
M
m=1

Sm

J(d) (4)

This formulation is useful, since the constraints can be described as level sets of suitable
continuous convex real functions {fm}m∈{1,...,M}:

∀m ∈ {1, . . . ,M}, Sm = {d ∈ H | fm(d) ≤ δm} (5)

where (δm)1≤m≤M are real-valued parameters such that S =
⋂M

m=1 Sm 6= ∅.
Now we shall define the constraints. We consider two simple but effective constraints.

The first one specifies the range of values of the disparity field [dmin, dmax], and can
be expressed by the constraint set S1:

S1 = {d ∈ H | dmin ≤ d ≤ dmax} (6)

The second imposes the regularity of the disparity field, limiting the amount of
variability of d. This can be achieved by limiting the total variation of the disparity
field. The total variation tv(d) is defined as the sum over P of the norm of the (discrete)
spatial gradient of d [27]. As a conclusion, the total-variation based regularization
constraint amounts to impose an upper bound τ on tv:

S2 = {d ∈ H | tv(d) ≤ τ} (7)

Codec architecture D5.2
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The total variation limit τ depends on the characteristics of the scene and of the
camera configuration: therefore finding an optimal value for it can be an hard task [13].
One of the contribution of this work is to explore the relationship between this param-
eter and the quantization parameters of the compressed. MVD sequence.

We introduce a last regularization term, which penalizes solutions too much different
from the initial one. This is accounted for by a weight α. In conclusion, the criterion
to minimize becomes:

J(d) =
∑

p∈P

[r(p) − L(p) d(p)]2 + α||d − d̄||2 (8)

In our implementation, described in [15], we used the efficient constrained quadratic
minimization technique developed in [12, 25] which is adapted to problems with quadratic
convex objective functions.

3.2 Depth-map coding techniques

Multivi-view data require efficient compression schemes, because of the large amount
of data to process. Up to now, proposed methods were inspired from state-of-the-art
2D imaging compression methods. In other words, those 2D compression methods
were meant to minimize visible artifacts in 2D and favour visual comfort. Proposed
optimization tools are consequently based on visual perception criteria.

Depth maps are not real images. The depth data are gray-scales images and are
considered as a monochromatic signal. Each pixel of a depth image, also called depth
map, indicates the distance of the corresponding 3D-point from the camera.Depth
maps consist of homogeneous regions, and sharp edges. The whiter the region, the
closer it is to the camera.

As a solution for depth maps compression issues, suggestions consisted in applying
state-of-the-art 2D compression methods to depth data. However, as highlighted pre-
viously, depth maps are not actual images.There is a chance 2D optimization choices
are not suited for depth maps.

Second, a recurrent issue concerns the bit-rate allocation that optimize synthesized
views visual quality, from decoded texture and depth data. Considering the monochro-
matic nature of depth map, suggestions consisted in applying severe compression to
depth information. However, depth maps involve specific properties that are essential
for intermediate view synthesis quality. Coarse compression may lead to artifacts in
depth map, that may be destructive on the synthesized views.

As part of PERSEE project, studies were led to answer the problem of depth com-
pression, by using new tools that preserve depth maps properties and that optimize
visual quality of synthesized views. These studies led to publications. The following
sections present at the end of these studies.

Codec architecture D5.2
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3.2.1 Bit-rate allocation between depth and texture in the context of MVD data
compression

These studies led to the following publications:[5] and [6]. This work evaluates the
impact of bit-rate allocation for texture and depth data relying on the quality of an
intermediate synthesized view, in the context of multi-view-plus-depth (MVD) com-
pression. The results show that depending on the acquisition configuration, the synthe-
sized views require a different ratio between the depth and texture bit-rate: between
40% and 60% of the total bit-rate should be allocated to depth.

The experimental protocol, Figure 3.2.1, consists in varying the bit-rate ratio and the
total bit-rate: the quantization parameter QP varies from 20 to 44 for both depth and
texture coding. Multiview Video Coding (MVC) reference software, JMVM 8.0 (Joint
Multiview Video Model) was used to encode three views(texture and depth separately),
as a realistic simulation of a 3DTV use.Then, from the three decompressed views (left,
central and right), the intermediate view between the central view and the right one
was computed, by using the reference software: VSRS, version 3.5, provided by MPEG.
Synthesized views quality was evaluated through PSNR scores, with acquired views as
a reference.

Figure 4: Experimental protocol

Bit-rate ratio between texture and depth determines final quality of synthesized
views. For a given total bit-rate, 13 Mbit/s, Figure 5shows synthesized views from
("Ballet", Microsoft Research), but with different ratios between texture and depth.
They have been computed through VSRS, from MVC-decompressed texture and depth
data.

Figure 6 presents the results. The average PSNR of the synthesized sequence are
plotted over the bit-rate percentage assigned to depth. The different curves corre-
spond to interpolation of the measured points for different ranges of bit-rate. We

Codec architecture D5.2
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(a) PSNR = 30.0dB; Depth
rate = 3%

(b) PSNR = 33.8dB; Depth
rate = 60%

(c) PSNR = 30.8dB; Depth
rate = 95%

Figure 5: Synthesized images from MVD data, with different bit-rate ratios between
texture and depth.

observe that for a given sequence, no matter the bit-rate, the ratio that provides the
best quality is the same: it seems to be around 60% for Ballet, and around 40% for
Book Arrival. This suggests that the required depth information that enables a good
reconstruction quality, in terms of PSNR depends on the content. Future work aims
at determining the correct ratio between depth and texture for a given sequence, by
analyzing automatically its properties.

(a) Ballet (b) Book Arrival

Figure 6: Interpolated rate-distortion curves of synthesized views.
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3.2.2 Reliability of an objective metric for the evaluation of views synthesized
from decompressed depth maps

This study led to the following publications: [9] et[10]. The investigation concerns a
very commonly used metric when assessing compression methods performances: PSNR
(Peak-Signal-to-Noise-Ratio). This work questions its reliability in the case of 3D
compression methods performance evaluation.

The experiment consists of encoding depth frames from two viewpoints, by either
LAR compression[18], or H.264/MVC[22] intra mode. We have used the very first
frame of views 2, and 4 from "Breakdancers" sequence (provided by Microsoft Re-
search). Decoded depth map of views 2 and 4 were then used to synthesize view 3 and
compute the PSNR score, with respect to the original color image from view 3. Only
depth maps were encoded while texture data remain original. View 3 was synthesized
through VSRS.

Figure 7 and Figure 8 show the results. In Figure 7, the PSNR values are plotted
over the bit-rate. According to the PSNR scores, the H.264/AVC compression method
outperforms the LAR compression method: the gap between H.264/AVC and LAR
regarding the quality of depth map decoded frames is significant. However, scores
differ from only 0.5dB concerning the quality evaluation of the synthesized view. This
confirms our assumption that the LAR compression preserves essential depth infor-
mation. Figure 8 shows a comparison of rendered views from encoded depth maps
at different bit rates, with either H.264/AVC (intra-coding) or LAR. In Figure 8, the
three presented areas show that although LAR provides lower PSNR than H.264/AVC
intra-coding, the rendering quality evaluation suggests that LAR method achieves a
rendering quality very close to H.264/AVC intra-coding or better, at the same bit-rates.

Then, the results show that for low PSNR scores, conclusions over 3D compression
methods can hardly be argued without an additional visual analysis.

(a) (b)

Figure 7: Rate-distortion curves for the "Breakdancers" (a) depth images, and (b)
synthesized images, for LAR algorithm and H.264.
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H.264 LAR

(a) (b)

(c) (d)

PSNR : 36.56dB PSNR : 35.93dB

Figure 8: Synthesized images.

3.2.3 Conclusion

The last studies offer new options for depth maps compression.
They proved a correct compression method should preserve and consider sequences

properties, that can be different depending on configuration parameters, content etc.
The results suggested an optimal ratio between texture and depth, depending on the
sequence.However, these observations concerned H.264/MVC codec, and they could
differ with some other method.

Besides, studies also showed one of the most commonly used metric, namely PSNR,
is not suited for assessing quality of views synthesized from decoded depth maps.

Future work aims at proposing a new joint texture-depth compression method. Fu-
ture work should also investigate scenes complexity and its relationship with synthe-
sized views quality.

3.3 RD segmentation of dense disparity fields

Another proposed coding scheme for MVD is based on a previous work [15], on which
we build in order to take into account the depth maps.

The basic encoder allows to use a dense disparity field for efficiently encoding a
multiple view video (without depth) with a standard encoder. For the sake of sim-
plicity, the description will refer only to the stereo case (i.e., two views). However the
encoding schemes are promptly extended to the case of more than two views.

The reference encoder workflow is the following. First, a dense disparity field (DDF)
is computed for the color sequence. This DDF is then segmented into 16×16 blocks,
corresponding to the H.264 macroblocks (MBs). Then, for each MB we start from
the 256 candidate vectors of the dense field, and we have to chose one, in order to
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RD−segm
MV coder

DDE

DDE

Disparity
compensated

coder

View 1

View 2

Color

Depth

Color

Depth

Proposed

Figure 9: Proposed MVD coding methods.

represent the current block as it was an ordinary INTER block: we will encode the
chosen vector and the corresponding motion-compensated residual. The representative
vector is chosen with an RD criterion, from a set made up by the average vector of
the 256 candidates, the median (in the sense of the norm) vector, and the 4 closest to
the median vector.

This process is repeated for all the possible partition of an H.264 macroblock. This
means that for smooth disparity regions the RD choice will tend to favor large parti-
tions, while for “active” regions (i.e. those where the disparity varies significantly, like
across object contours) small partitions will be more likely. Therefore we end up with
a RD-driven segmentation of the disparity map, that allows to efficiently encode the
stereo pair.

3.3.1 Proposed scheme for MVD coding

The proposed scheme takes advantage of the dense disparity estimation algorithm
described in Section 3.1 and of the RD-driven segmentation-based multiview (RD-
MV) coder described in Section 3.3. This coder is firstly used to encode the color
sequences. In this case we set the values for the parameters (α, τ , dmin and dmax

using the results of our previous work [15]. Then we use the same RD-MV coder to
represent the depth maps. However, in order to save bit-rate taking advantage from
the correlation between texture and depth, the depths disparity is computed using
color images. In this way, we do not need to send the dense disparity map to the
decoder, which instead can compute it from the compressed color sequence, and on
the other hand, we take benefit from a dense disparity map, that is used to perform a
disparity-compensated coding of the depth. Then, the compressed left depth map and
the compressed residual of the disparity-compensated right depth map are sent to the
output.

One of the key steps of the implementation of this algorithm is the choice of the DDE
parameters for depths, in particular the amount of total variation τ . It is intuitive that
they depend on the quality of the compressed color sequence. In particular, for high-
quality color images, we expect that all small details are represented, and therefore
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Figure 10: Effect of τ (normalized over the number of image pixels) on the disparity
quality, for several values of the quantization step
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Figure 11: Best normalized τ values in function of QP. The best fitting first order
polynomial is shown as well.

the corresponding disparity field can have a higher total variation. On the contrary,
heavily quantized images are much smoother, and we should allow a smaller variation
of the disparity field. This intuition is confirmed by the experiments, as shown in the
next section.

3.3.2 Experimental results

In a first set of experiments, we looked for the optimal value of the total variation
parameter τ . In particular, the intuition suggests that the best value for τ should
depend on the quantization step of the color images used for the estimation. Therefore
we ran the following experiment. We considered the multiview video sequence “break
dance”and “ballet”, compressed with QPs in the range Q = {31, 34, 37, 40}. For each
QP value, we ran the DDE algorithm using the compressed images from several couples
of views, using several values of τ . Then we used the resulting dense field to compute
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a disparity-compensated prediction of the depth map, and finally we compute the
PSNR of this prediction with respect to the actual depth map. The results are shown
in Fig. 10, where we report, for each QP, the PSNR as a function of the normalized
value of τ (the normalization is computed with respect to the number of pixels). In
this graph, we also point out the best value of normalized τ , i.e., the one maximizing
the PSNR. We refer to this values as τ∗. We remark that these values are strongly
correlated to the QP. We compute the sample correlation coefficient obtaining:

r =
1

n− 1

n
∑

i=1

(

QPi −QP

σQP

)(

τ∗i − τ∗

στ∗

)

= −0.9987

where, as usual, the bar represents the (sample) mean and σ represents the (sample)
standard deviation. Finally we computed the least square linear fitting of QP and τ∗.
We found the following regression equation:

τ∗ = −0.0101QP + 0.6587 (9)

In Fig. 11 we show at the same time the experimental points and the least square
linear fit. As expected, we obtained a very good match, and so Eq. (9) can be used
in the proposed encoder in order to quickly find a good value for τ , at least in the
considered range of QP values.

In a second set of experiments, we evaluated the performance of the disparity-
compensated depth map coder, using the optimized values of total variation for the
disparity field estimation. We encoded the first depth map as an ordinary video se-
quence, while for the second one, we considered the disparity-compensated residual.
The disparity field rate was not take into account since this field is available at the
decoder side as well. The resulting RD performances are compare to those of the ref-
erence schemes (Simulcast and MVC, see Fig. 2.1). We remark a non-negligible rate
reduction (computed using the Bjontegaard metric [4]) with respect to the reference,
estimated to 3% less than MVC and 17% less than Simulcast over the test sequences.

Global compression performance were misurated as well. Cumulating the gains
obtained by the RD-segmentation driven encoder on the texture and those of the
presented encoder for the depth maps, we register an average rate reduction of 11%
with respect to an MVC-based scheme as the one shown in Fig. 2.1(b).

3.4 LDI coding

LDI representations can then be compressed using the Multi-view Video Codec (MVC)
which is applied to both texture and depth information. The MVC codec, an amend-
ment to H.264/MPEG-4 AVC video compression standard, is DCT-based and exploits
temporal, spatial and inter-layer correlations. However, MVC does not deal with un-
defined regions on LDI layers. To produce complete layers, each layer is filled in with
pixels from the other layer, at the same position, This duplicated information is de-
tected by the MVC algorithm thanks to the disparity-based inter view coding tools so
that this duplication does not have a significant impact on the bit rate.
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3.5 Inpaiting-based virtual view synthesis

This section describes a depth-based inpainting algorithm which efficiently handles
disocclusion occurring on virtual viewpoint rendering. A single reference view and a
set of depth maps are used in the proposed approach. The method not only deals with
small disocclusion filling related to small camera baseline, but also manages to fill in
larger disocclusions in distant synthesized views. This relies on a coherent tensor-based
color and geometry structure propagation. The depth is used to drive the filling order,
while enforcing the structure diffusion from similar candidate-patches. By acting on
patch prioritization, selection and combination, the completion of distant synthesized
views allows a consistent and realistic rendering of virtual viewpoints.

3.5.1 Problem introduction

3DTV and FTV are promising technologies for the next generation of home and enter-
tainment services. Depth Image Based Rendering (DIBR) are key-solutions for virtual
view synthesis on multistereoscopic display from any subset of stereo or multiview
plus depth (MVD) videos. Classical methods use depth image based representations
(MVD, LDV [28]) to synthesize intermediate views by mutual projection of two views.
Then, disoccluded areas due to the projection of the first view to the new one could
be filled in with the remaining one.

However, in freeviewpoint video (FVV) applications, larger baseline (distance or an-
gle between cameras) involves larger disoccluded areas. Traditional inpainting methods
are not sufficient to complete these gaps. To face this issue the depth information can
help to guide the completion process. The use of depth to aid the inpainting process
has already been considered in the literature. Oh et al. [26] based their method on
depth thresholds and boundary region inversion. The foreground boundaries are re-
placed by the background one located on the opposite side of the hole. Despite the
use of two image projections, their algorithm relies on an assumption of connexity
between disoccluded and foreground regions, which may not be verified for high cam-
era baseline configurations. Indeed, upon a certain angle and depth, the foreground
object does not border the disoccluded part anymore. Daribo et al. [16] proposed an
extension to the Criminisi’s [14] algorithm by including the depth in a regularization
term for priority and patch distance calculation. A prior inpainting of the depth map
was performed.

Our approach relies on the same idea. However, our contributions are threefold. The
relevance of patch prioritization is improved by first using the depth as a coherence cue
through a 3D tensor, and then by using a directional term preventing the propagation
from the foreground. A combination of the K-nearest neighbor candidates is finally
performed to fill in the target patch.

We present in Section 2 contributions to this priority calculation, based on tensor
and then on depth, before describing depth-based patch matching. Section 3 describes
the implementation of the method in a MVD context. Results are given in Section 4,
as well as a comparison with existing approaches. Conclusions are drawn in Section 5.

Codec architecture D5.2



3D-specific conding tools 18

Figure 12: Illustration of principle. On (a) a warped view, (b) a zoom on the dis-
occluded area behind the person on the right, with the different elements
overlaid.

3.5.2 Algorithm

The motivation to use a Criminisi-based algorithm resides in its capacity to organize
the filling process in a deterministic way. As seen in fig.12, this technique propagates
similar texture elements Ψq̂ to complete patches Ψp along the structure directions,
namely the isophotes. Their algorithm basically works in two steps. The first step
defines the higher order patch priorities along the borders δΩ. The idea is to start
from where the structure is the strongest (in term of local intensity, with D(p)) and
from patches containing the highest number of known pixels, C(p). The priority is
then expressed as P (p) = D(p)× C(p). The second step consists in searching for the
best candidate in the remaining known image in decreasing priority order.

In the context of view synthesis, some constraints can be added to perform the
inpainting and improve the natural aspect of the final rendering. The projection in
one view will be along the horizontal direction. For a toward-right camera movement
the disoccluded parts will appear on the right of their previously occluding foreground
(Fig.12a), and oppositely for a toward-left camera movement.

Whatever camera’s movement, these disoccluded areas should always be filled in
with pixels from the background rather than the foreground. Based on this a priori
knowledge, we propose a depth-based image completion method for view synthesis
based on robust structure propagation. In the following, D(p) is described.

Tensor-based priority First, the data term D(p) of the inpainting method pro-
posed by [14] involving the color structure gradient is replaced with a more robust
structure tensor. This term is inspired by partial differential equation (PDE) regu-
larization methods on multivalued images and provides a more coherent local vector
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orientation [30]. The Di Zenzo matrix [19] is given by:

J =
∑

l=R,G,B

∇Il∇ITl =
∑

l=R,G,B

(

∂Il
∂x

2 ∂Il
∂x

∂Il
∂y

∂Il
∂x

∂Il
∂y

∂Il
∂y

2

)

with ∇Il the local spatial gradient over a 3x3 window. This tensor can also be
smoothed with a gaussian kernel Gσ to give robustness to outliers, without suffering
from cancellation effects. We call it Jσ = J ∗Gσ. Finally, the local vector orientation
is computed from the structure tensor Jσ. Its eigenvalues λ1,2 reflect the amount of
structure variation, while its eigenvectors v1,2 define an oriented orthogonal basis. Of
particular interest is v2 the preferred local orientation and its “force” λ2. Based on the
coherence norm proposed in [32], the data term D(p) is then defined as:

D(p) = α+ (1− α)exp

(

−C

(λ1− λ2)2

)

with C a constant positive value and α ∈ [0, 1]. Flat regions (when λ1 ≈ λ2) do not
favor any direction, it is isotropic, while with strong edges (λ1 >> λ2) the propagation
begins along the isophote.

Depth-aided and direction-aided priority The priority computation has been
further improved by exploiting the depth information, first by defining a 3D tensor
product, secondly by constraining the side from where to start inpainting.

3D tensor
The 3D tensor allows the diffusion of structure not only along color but also along

depth information. It is critical to jointly favor color structure as well as geometric
structure. The depth-aided structure tensor is extended with the depth map taken as
an additional image component Z:

J =
∑

l=R,G,B,Z

∇Il∇ITl

One side only priority
The second improvement calculates the traditional priority term along the contour in

only one direction. Intuitively, for a camera moving to the right, the disocclusion holes
will appear to the right of foreground objects, while out-of-field area will be on the left
of the former left border (in orange in Fig.12a). We then want to prevent structure
propagation from foreground by supporting the directional background propagation,
as illustrated in Fig.12b with the blue arrows.

The patch priority is calculated along this border, the rest of the top, bottom and
left patches being set to zero. Then for disocclused areas, the left border possibly
connex to foreground will be filled at the very end of the process. For out-of-field
areas, even if left borders are unknown, we will ensure to begin from the right border
rather than possible top and bottom ones.

These two proposals have been included in the prioritization step.
Patch matching Once we precisely know from where to start in a given projected

image, it is important to favor the best matching candidates in the background only.
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Nevertheless, starting from a non-foreground patch does not prevent it from choosing a
candidate among the foreground, whatever the distance metric used. Thus, it is crucial
to restrict the search to the same depth level in a local window: the background. We
simply favor candidates in the same depth range by integrating the depth information
in the commonly used similarity metric, the SSD (Square Sum of Differences):

Ψq̂ = arg min
Ψq∈Φ

d(Ψp̂,Ψq) with d =
∑

p,q∈Ψp,q∩Φ

αl ‖Ψp̂ −Ψq‖
2

The depth channel is chosen to be as important as the color one (l ∈ R,G,B,Z with
αR,G,B = 1 and αZ = 3). Then it will not prevent the search in foreground patches,
but will seriously penalize and unrank the ones having a depth difference above, i.e in
front of the background target patch.

As proposed by [33], a combination of the best candidates to fill in the target patch
shows more robustness than just duplicating one. We use a weighted combination
of the K-best patches depending on their exponential SSD distances to the original
patch. (K = 5 in our experiments).

3.5.3 Implementation

Experiments are performed on an unrectified Multiview Video-plus-Depth (MVD) se-
quence “Ballet” from Microsoft [34]. The depth maps are estimated through a color
segmentation algorithm [34] and are supplied with their camera parameters. The choice
of this sequence is motivated by the wide baseline unrectified camera configuration as
well as its highly depth-and-color contrast resulting in distinct foreground-background.
This makes the completion even more visible and the issue even more challenging.

First, the central view 5 is warped in different views. Standard cracks (unique
vacant pixels) are filled in with an average filter. We then suppress certain ghosting
effects present on the borders of disoccluded area in the background: the background
ghosting. Indeed, as we start the filling process by searching from the border, it is
of importance to delete ghostings containing inadequate foreground color values. A
Canny edge detection on the original depth map, followed by a deletion of color pixels
located behind that dilated border successfully removes this ghosting.

Finally, our inpainting method is applied on each warped image, using the depth
of the final view. The depth inpainting issue is out of the scope of this paper, but
encouraging methods are proposed in the literature [16]. In the context of MVD
applications, it is realistic to consider a separate transmission of depth information
through geometric representation (currently under investigation).

3.5.4 Results

Fig.13 illustrates the results obtained with the proposed method, comparatively with
methods from the literature [14], [16], when rendering views located at varying dis-
tances from the reference viewpoint. The three versions take in input the same color
and depth information, except for the approach in [14] using color only. Our method
not only preserves the contour of foreground persons, but also successfully reconstructs

Codec architecture D5.2



3D-specific conding tools 21

the structure of missing elements of the disoccluded area (i.e. edges of the curtains
and bars behind the person on the right, background wall behind the left one).

Thanks to our combination term, we can even extend the synthesis to very distant
views, without suffering of aliasing effects. As illustrated, the view 5 is projected to
view 2 (V5→2) and the out-of-field blank areas occupying one quarter width of the
warped image are reconstructed. The counterpart of the patch combination is the
smoothing effect appearing on the bottom part of this area. By taking different num-
bers of patches for combination, it is possible to limit this effect. We encourage people
to refer to additional results available on our webpage1 with videos illustrating the
priority-based progressive inpainting principle. The results can indeed be essentially
address visually, as argued by [23].

3.5.5 Conclusion and perspectives

A robust depth based completion method for view synthesis has been presented. We
address the disocclusion issue by going beyond the limitations of scene warping. To
start inpainting, coherent depth and color structures are favored along contour through
a robust tensor-based isophote calculation while directional inhibition prevents to start
from foreground borders. For target patch propagation, a combination of closest geo-
metric and photoconsistent candidates manages effective natural filling. Future works
will focus on completion of synthesized views extremely far from the reference view.
The natural aspect of this filling in situation, i.e for video, will also be investigated.

3.6 A way to increase the Quality of Experience of 3DTV

The influence of a monocular depth cue, blur, on the apparent depth of stereoscopic
scenes was studied [31]. Recently, stereoscopic image and video production is gaining
an increasing amount of attention. The displays nowadays used to show these 3D
productions are usually planar so that binocular disparity on the display plane becomes
a pre-eminent depth cue enabling viewers to perceive depth. As a binocular cue,
disparity is stable, but on the current planar displays, it induces a conflict between
accommodation and vergence of the eyes. This conflict is usually considered as one
main reason for visual discomfort, especially when the disparity is large. If we decrease
this binocular cue, disparity, to limit the visual discomfort, the apparent depth also
decreases.

Several other depth cues besides binocular disparity affect also the apparent depth.
We proposed decrease the (binocular) disparity of 3D presentations, and to reinforce
(monocular) cues to compensate the loss of perceived depth and keep an unaltered
apparent depth.

The limitation of depth-of-field of human eyes causes blur in the retinal image which
is known as an important monocular depth cue. Some previous investigations have
shown clear contributions of blur to depth perception, while others showed that blur
has either no effect or only some qualitative effects on perceived depth ordering. In
our study, we conducted the subjective experiment using a state-of-art stereoscopic

1http://www.irisa.fr/temics/staff/gautier/inpainting

Codec architecture D5.2



3D-specific conding tools 22

(a) V5→4 after warping and back-
ground antighosting

(b) V5→2 after warping and back-
ground antighosting

(c) V5→4 inpainted with Criminisi’s
method

(d) V5→2 inpainted with Criminisi’s
method

(e) V5→4 inpainted with Daribo’s
method

(f) V5→2 inpainted with Daribo’s
method

(g) V5→4 inpainted with our
method

(h) V5→2 inpainted with our
method

Figure 13: Illustration of different methods of inpainting. Our approach relying on 3D
tensor and directional prioritization shows efficient filling.
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display system. The stimuli used in the experiment contained a background plane and
a single object in the foreground, both of which were chosen closer to natural content
compared to the stimuli used in previous publications. The image of a butterfly was
used as the foreground object, since it is spatially complex enough, containing regions
with both low and high frequency.

In our experimental observations, observers viewed stimuli in a two alternative forced
choice (2AFC) task, being required to select the stimulus with largest depth interval
between foreground and background. Two sources of perceived depth are used: dispar-
ity and blur. The perceived depth from disparity stems from the difference of disparity
between the foreground object and the background. The perceived depth from blur
stems from the amount of blur introduced to the background by convolution with a
Gaussian kernel. Both the absolute position and relative distance between the fore-
ground and background stay as a free parameter. This setup is able to evaluate how
the combination of disparity and blur affects the perceived depth of objects located at
different distance. By fitting the result to a psychometric function, we obtained points
of subjective equality in terms of disparity.

We found that when blur is added to the background of the image, the viewer can
perceive larger depth comparing to the images without any blur in the background.
The increase of perceived depth can be considered as a function of the relative distance
between the foreground and background, while it is insensitive to the distance between
the viewer and the depth plane at which the blur is added.The feasibility of enhancing
the perceived depth by reinforcing a monocular cue, namely defocus blur, provides an
interesting way to deal with the conflict between accommodation and vergence when
3D images are shown on a planar stereoscopic display.

Generally, the foreground object popping out of the screen is the most important
object in the scene, while the large disparity of the object may lead to visual discomfort
when it is actually fixated by the observer. Our results show that it is feasible to
decrease the disparity of this object without losing its pop-out effect by adding some
blur on its background. This result suggests a possible way to increase the QoE
(Quality of Experience) of 3DTV.

4 Performance evaluation system

4.1 Purpose of Mpeg-3DV CFP

In march 2011, the MPEG-3DV group has issued a call for proposal for compression
of MVD (Multi-view plus Depth) data in the context of 3DTV. Candidate methods
are planed to be evaluated in november and december 2011. The Call For Proposal
(document ISO/IEC JTC1/SC29/WG11/MPEG2011/N12036) describes the evalua-
tion protocol that will be used. In order to compare methods and algorithms devel-
opped in the PERSEE project to state-of-the-art methods such as the ones that will
be proposed to standardization, the same protocol may be used. In this section we
present an overview of test conditions described in the Mpeg-3DV Call For Proposal,
both for objective and subjective tests while the next section 4.5 presents subjective
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Figure 14: Test Material

tests that have already been performed in the PERSEE project.
The primary goal of the MPEG-3DV Call For Proposal is to define a data format

and associated compression technology to enable the high-quality reconstruction of
synthesized views for 3D displays. It is recognized that technology for depth estimation
and view synthesis, as well as the data format itself, has a significant impact on the
reconstruction capability and quality of reconstructed views. Therefore, contributions
on such technology are also expected by Mpeg.

4.2 Test Material, Coding Classes and Anchors

4.2.1 Test Material

The data sets for 2 test classes, namely Class A and Class C, as displayed in Figure
4.2.1 will be used for evaluation. All data sets have a linear camera arrangement and
the data sets are rectified . The depth data and camera parameters for view synthesis
and rendering are provided. The depth maps have the same pixel resolution and bit-
depth as the video data. Depth maps generated by other depth estimation algorithms
are not permitted by Mpeg as additional input to the encoder.
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4.2.2 Data format

In order to evaluate the benefits of a proposed data format and corresponding com-
pression technology, video data and associated depth maps are provided as input. The
proposed data format shall be reconstructed from a bitstream as an output of a decod-
ing process. The reconstructed data format is then used by a view synthesis algorithm
to generate the synthesized views. Proponents may use the VSRS reference software
that is provided or a view synthesis algorithm that is optimized for the proposed data
format.

The output of the view synthesis will be evaluated by objective and subjective
evaluation. The objective quality of the reconstructed video of the decoder will be
measured as an indication of overall compression efficiency according to the PSNR of
each individual view relative to the input video. In the subjective tests, synthesized
views that are provided by the proponents will be fed into 3D displays in order to
assess the combined merits of the proposed data format, compression technology and
view synthesis algorithm. The submissions will be evaluated on both stereoscopic as
well as autostereoscopic displays.

4.2.3 Anchors

Anchors have been generated by encoding the above sequences using an MVC encoder
(JMVC 8.3.1) and HEVC encoder with the high efficiency and random access encoder
configuration (HM 2.0).

For anchor coding in the AVC-Compatible test category, MVC is used for video
data and separately for depth data. For anchor coding in the HEVC-Compatible test
category, HEVC is applied independently to the video data and depth data.

Anchor bit streams, decoders, the view synthesis tool (VSRS), all necessary configu-
ration files and utilities are provided at the 3DV-CFP ftp-site ftp://ftp.merl.com/pub/avetro/3dv-
cfp/ for all test classes and scenarios.

4.3 Test conditions

4.3.1 Input data

The input data for all submissions includes both video data and depth data as sup-
plementary data for multiple views. The input views for both the 2-view and 3-view
test scenarios are provided in Table 1.

4.3.2 Test scenarios and coding conditions

The following test scenarios and test categories are defined.

• Test Scenarios

– 2-view: refers to the 2-view input configuration

– 3-view: refers to the 3-view input configuration
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• Test Categories

– AVC-Compatible: refers to submissions in which the compressed data for-
mat satisfy the requirement on forward compatibility with AVC

– HEVC-Compatible & Unconstrained: refers to submissions in which the
compressed data formats satisfy the requirement on forward compatibility
with HEVC, or submissions without any compatibility constraints

Rate points are listed in Table 2 for AVC-Compatible test category, and Table 3
for the HEVC-Compatible test category. It is not required by the CFP that the bit
stream for the 2-view test scenario is a subset of the bit stream for the 3-view test
scenario.

4.3.3 Rendering Conditions (View Synthesis)

Submissions shall produce synthesized views using a view synthesis algorithm, which
may be either the VSRS software or their own method, for all sequences in all classes
and all test scenarios, based on the decoded output. The views to be synthesized for
both stereoscopic and autostereoscopic displays are specified in Table 4 (no missing or
duplicate views).

The VSRS configuration files that are used for the anchors for each sequence, as
well as the corresponding camera parameter files are provided on the 3DV-CFP ftp
site. The camera parameters are provided for each sequence along with the anchors
with 5-digit floating point precision. The synthesized views shall represent the scene
as if the cameras were positioned according to the views indicated in Table 4.
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4.4 Subjective tests

For subjetive tests, the Double Stimulus Impairment Scale (DSIS), variant II, test
method will be used with 11 quality levels, where 10 indicates the highest quality and
0 indicates the lowest quality. The tests will be carried out with naïve viewers.

The 2-view test scenario will be evaluated on a stereo display, while the 3-view
test scenario will be evaluated on both an autostereoscopic display as well as a stereo
display.

• Monitor for stereo display: Hyundai 46" stereo display (interlaced stereo IF)
with passive glasses. (Model: S465D)

• Monitor for auto-stereo display: Dimenco 52" auto-stereoscopic display with no
glasses (Model: BDL5231V3D)

In the 2-view test scenario, the stereo pair is formed with one of the decoded views
among the input views and the synthesized view as specified in Table 4. In this case,
there is always one decoded view and one synthesized view.

In the 3-view test scenario, a stereo pair is formed from two distinct viewpoints
within the range of the input views specified in Table 1. The two viewpoints shall be
selected so they are comfortable to view. The baseline distance for the stereo pairs
to be viewed will be fixed for each sequence. Two stereo pairs will be selected: one
that is centered around the center input view specified in Table 1, and another that
is randomly with the same baseline distance between left and right views. In contrast
to the 2-view test scenario, both views in this test scenario may be synthesized.

For autostereoscopic viewing tests, 28 views generated from each data set are se-
lected. The 28 views are formed from the set of views including the decoded views and
the synthesized views specified in Table 4. The 28 viewpoints are selected so that they
are comfortable to view and provide a sufficient depth range, i.e., there is a sufficiently
wide baseline distance between the 1st view and the 28th view.

It is expected that the results of the stereoscopic viewing produce the most mean-
ingful results in terms of overall evaluation of proposals.
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4.5 Perceptual test methodology

As part of PERSEE project, a study aimed at determining the reliability of 2D com-
monly used evaluation porotocols (subjective as objective) in the context of 3D video.
This study led to submissions, currently under review: [7] et [8]. Experimental proto-
col consists in assessing seven different view synthesis algorithms through subjective
and objective measurements. Three MVD sequences were used: (Book Arrival, Love-
bird et Newspaper). For each sequence, four intermediate viewpoints are generated
from three reference viewpoints.

Objective measures were computed through MeTriX MuX Visual Quality Assess-
ment Package [1]. Subjective sessions were handled at IRCCyN and involved tow
protocols: Absolute categorical rating (ACR) and Paired comparisons (PC) were used
to collect perceived quality scores. ACR consists in presenting items to observers that
score the test item according to a discrete category rating scale (from 1 to 5). Ob-
servers opinion scores are then averaged by computing a mean opinion score (MOS).
PC consists in presenting the observers a pair of images. Then observers select the
one that best satisfies the specified judgment criterion, i.e. the best image quality.

Results show that usual metrics are not sufficient for assessing 3D synthesized views,
since they do not correctly express human judgment. Synthesized views contain specific
artifacts located around the disoccluded areas, but usual metrics seem not to be able
to express the ratio of perceived annoyance in the whole image.

In the following, the seven tested algortihms are noted A1 to A7.
The following tables show the results. Table 6 shows that the objective metrics are

correlated to each other, in our experiment. Table 5 gives the algorithms rankings
according tho the different measures. Subjective-based rankings point A1 as the best
out of the seven algorithms. But objective-based rankings judge it as the worst. This
point underlines the difference between subjective and objective assessments. Besides,
table 7 shows the correlation bewteen objective measurements and subjective mea-
surements: none of the tested metric is 50% close to human judgment when assessing
synthesized views.

Tables 8 et9 show the results of the Student’s t-test performed over the MOS scores,
and over the PC scores for each algorithm. This is meant to provide a knowledge on the
statistical equivalence of the algorithms. In the case of PC test, most of the algorithms
can be statistically distinguish with less than 24 participants. However, in the case
of ACR results, the final distinction seems stable when 32 observers participate. This
suggests that less observers are needed for a PC based subjective assessment. These
observeations are very important in order to set up 3D appropriate subjective tests
protocols. Indeed, number of parrticipants and lenght of sessions are set by VQEG.
These results suggest a reconsideration of the current protocols for the case of 3D
video.

Statistical analyses show that less observers were required for Paired comparisons
tests to establish the algorithms distinctions. However, this is a time-consuming
method, often avoided by researchers. Concerning the objective metrics, the results
show that usual objective assessments hardly correlate subjective assessments. Rank-
ings of algorithms from objective metrics are not reliable, regarding the subjective
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A1 A2 A3 A4 A5 A6 A7

MOS 2.388 2.234 1.994 2.250 2.345 2.169 1.126

Classement 1 4 6 3 2 5 7

PC 1.4038 0.5081 0.2073 0.5311 0.9363 0.4540 -2.0547

Classement 1 4 6 3 2 5 7

PSNR 18.752 24.998 23.180 26.117 26.171 26.177 20.307

Classement 7 4 5 3 2 1 6

SSIM 0.638 0.843 0.786 0.859 0.859 0.858 0.821

Classement 7 4 6 1 1 3 5

MSSIM 0.648 0.932 0.826 0.950 0.949 0.949 0.883

Classement 7 4 6 1 2 2 5

VSNR 13.135 20.530 18.901 22.004 22.247 22.195 21.055

Classement 7 5 6 3 1 2 4

VIF 0.124 0.394 0.314 0.425 0.425 0.426 0.397

Classement 7 5 6 2 2 1 4

VIFP 0.147 0.416 0.344 0.448 0.448 0.448 0.420

Classement 7 5 6 1 1 1 4

UQI 0.237 0.556 0.474 0.577 0.576 0.577 0.558

Classement 7 5 6 1 3 1 4

IFC 0.757 2.420 1.959 2.587 2.586 2.591 2.423

Classement 7 5 6 2 3 1 4

NQM 8.713 16.334 13.645 17.074 17.198 17.201 10.291

Classement 7 4 5 3 2 1 6

WSNR 13.817 20.593 18.517 21.597 21.697 21.716 15.588

Classement 7 4 5 3 2 1 6

PSNR HSVM 13.772 19.959 18.362 21.428 21.458 21.491 15.714

Classement 7 4 5 3 2 1 6

PSNR HSV 13.530 19.512 17.953 20.938 20.958 20.987 15.407

Classement 7 4 5 3 2 1 6

Table 5: Rankings according to measurements.
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PSNRSSIM MSSIMVSNRVIFVIFPUQIIFCNQMWSNRPSNR hsvmPSNR hsv

PSNR 83.9 79.6 87.3 77.0 70.6 53.671.6 95.2 98.2 99.2 99.0
SSIM 83.9 96.7 93.9 93.4 92.4 81.592.9 84.9 83.7 83.2 83.5

MSSIM 79.6 96.7 89.7 88.8 90.2 86.389.4 85.6 81.1 77.9 78.3
VSNR 87.3 93.9 89.7 87.9 83.3 71.984.0 85.3 85.5 86.1 85.8
VIF 77.0 93.4 88.8 87.9 97.5 75.298.7 74.4 78.1 79.4 80.2

VIFP 70.6 92.4 90.2 83.3 97.5 85.999.2 73.6 75.0 72.2 72.9
UQI 53.6 81.5 86.3 71.9 75.2 85.9 81.9 70.2 61.8 50.9 50.8
IFC 71.6 92.9 89.4 84.0 98.7 99.2 81.9 72.8 74.4 73.5 74.4

NQM 95.2 84.9 85.6 85.3 74.4 73.6 70.272.8 97.1 92.3 91.8
WSNR 98.2 83.7 81.1 85.5 78.1 75.0 61.874.4 97.1 97.4 97.1

PSNR hsvm 99.2 83.2 77.9 86.1 79.4 72.2 50.973.5 92.3 97.4 99.9
PSNR hsv 99.0 83.5 78.3 85.8 80.2 72.9 50.874.4 91.8 97.1 99.9

Table 6: Correlation coefficients between objective metrics in percentage.

PSNRSSIM MSSIM VSNRVIFVIFPUQIIFCNQMWSNRPSNR HVSMPSNR HVS

CCMOS 38.6 21.9 16.1 25.8 19.3 19.2 20.219.0 38.6 42.3 38.1 37.3
CCPC 40.0 23.8 34.9 19.7 16.2 22.0 32.920.1 37.8 36.9 42.2 41.9

Table 7: Correlation coefficients between subjective and objective scores in percentage.

results.
New methods are required for assessing virtual synthesized views as pixel-based and

perceptual-based metrics fail. Depth should be taken into account in such a metric
as recently proposed in [20], because view synthesis produces geometric distorsions.
Registration process according to the original view coupled with weighted critical areas
could be investigated in future work to build a new metric.

4.6 Quality of experience for an autostereoscopic display

In recent years, considerable effort has been made to propose 3D television as one of
the next milestones in broadcast applications. For displaying the multiview content,
an autostereoscopic multiview display is very well suited. It does not require the user
to wear anaglyph, polarized, or shutter glasses and the motion parallax effect can
be exercised by several observers simultaneously. Currently, most autostereoscopic
displays are lenticular displays which use a tilted lens array in front of a TFT screen to
project the different views. This leads to a significant reduction in image resolution and
the displays also suffer from a considerable amount of crosstalk between the individual
views. One of the most prominent displays in this category is the Philips 42-inch
3D display which is used for our experiments[3]. It features nine different views that
are internally generated from the 2D texture and additional depth information at its
input.

The measurement of subjective quality on a conventional 2D display has been stan-
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A1 A2 A3 A4 A5 A6 A7
A1 ↑(32) ↑(<24) ↑(32) o (>43) ↑(30) ↑(<24)
A2 ↓(32) ↑(<24)o (>43)o (>43)o (>43) ↑(<24)
A3 ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↓(<24) ↑(<24)
A4 ↓(32) o(>43)↑(<24) o(>43) o(>43) ↑(<24)
A5o(>43)o(>43)↑(<24) o(>43) ↑(28) ↑(<24)
A6 ↓(30) o(>43)↑(<24)o (>43) ↓(28) ↑(<24)
A7 ↓(<24) ↓(<24) ↓(<24) ↓ (<24) ↓(<24) ↓(<24)

Table 8: Results of Student’s t-test with ACR results. Legend:↑: superior, ↓: inferior,
o: statistically equivalent. Reading: Line"1" is statistically superior to column "2".
Distinction is stable when "32" observers participate.

A1 A2 A3 A4 A5 A6 A7
A1 ↑(<24) ↑(<24)↑(<24)↑(<24) ↑(<24) ↑(<24)
A2↓(<24) ↑(28) o(<24)↓(<24)o(>43)↑(<24)
A3↓(<24) ↓(28) ↓(<24)↓(<24) ↓(<24) ↑(<24)
A4↓(<24)o(>43)↑(<24) ↓(<24) ↑(43) ↑(<24)
A5↓(<24) ↑(<24) ↑(<24)↑(<24) ↑(<24) ↑(<24)
A6↓(<24)o(>43)↑(<24)↓(<24)↓(<24) ↑(<24)
A7↓(<24) ↓(<24) ↓(<24)↓(<24)↓(<24) ↓(<24)

Table 9: Results of Student’s t-test with Paired comparisons results. Legend:↑: superior,
↓: inferior, o: statistically equivalent. Reading: Line"1" is statistically superior to
column "2". Distinction is stable when "less than 24" observers participate.
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dardized for many different scenarios, e.g. standard definition television or multimedia.
For three dimensional presentations, the assessment is more difficult because most ob-
servers are only used to two dimensional presentations. The experience of having
different views for each eye and the perception of depth is exciting for the viewer at
first but the effect on the individual quality of experience is usually not normalized.
When the subjects are asked to rate the video quality in a single stimulus test on an
absolute scale they often only rate the 2D video quality.

In our work, a different approach is used. The observers compare two presentations
side by side and they decide whether they prefer left or right in terms of quality
of experience. Preliminary experiments demonstrated that the displayed 3D image
appeared to be blurred compared to the texture information at its input, i.e., relative
to the 2D presentation. Thus, even if there was no additional distortion in the texture
or in the depth map, the 3D presentation is affected. The degradation is correlated
with the values of the depth map at the corresponding spatial location. When the
depth plane corresponded to the display plane, such that the content did not appear
to be either in front or behind the display, the effect was minimized. The influence
of the depth induced blur effect on the quality of experience has been analyzed in a
subjective test. Several different protocols have been used and compared in order to
learn about their suitability for the measurement of quality of experience as opposed
to quality of 2D video presentation.

Exactly three different subjective test protocols were used. The first protocol was
a “Pair Comparison” which can be expected to give the most precise results in terms
of preference on the quality of experience scale. The second protocol can be termed
“search for equal quality of experience”. The subjects are asked to select one sequence
out of a set of sequences which were distorted along a certain axis of degradations. Two
different axes were used, the reduction of the image resolution and the introduction
of coding artifacts. Although the participants were asked to rate on the quality of
experience scale, an indication was found that some participants may rate along the
provided axis of degradations. In this study, the degradations were only introduced
in the texture part and the added value of depth may not have been taken fully into
account. The third protocol uses the “search for best quality of experience”. The
participants chose the best sequence out of a set of sequences with increasing 3D
effect. The split-screen setup provided a 2D presentation as a reference so they could
base their decision on the comparison of preference over 2D.

The results of the experiments led to several conclusions in line with our goal to
characterize the effect of the depth rendering technology. The first experiment demon-
strated that the rendering of the depth for a sequence introduced distortions in a way
that about 70 % observers preferred the 2D presentation without depth information
on the same display. In the second experiment, the amount of this degradation was
compared to a reduction of the resolution of the 2D presentation and it was shown
that an equivalence is reached if the 2D sequence is downsampled by a factor of about
2.3 in both horizontal and vertical direction. In the third experiment, we evaluated the
effect of the blur induced by the depth rendering on the perception of coding artifacts.
The result is that a significantly higher bitrate may be necessary for the texture of 3D
presentations in order to compensate for the depth rendering distortions.
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These results differ between the various types of content included in the subjective
test. Only one sequence out of the six sequences tested in experiment 1 provided a
better quality when displayed in 3D. Starting from an analysis of this sequence it was
concluded that a reduction of the depth map variation and moving the mean value of
the depth map may lead to an improved 3D quality. In the fourth subjective experi-
ment the viewers could choose the best 3D presentation from a set of four sequences.
A setting for the depth range parameter was found for each sequence such that nearly
all of the viewers preferred 3D to 2D presentation.

The next step would be to automatically adjust the depth range in order to maximize
the quality of experience on the autostereoscopic display. Towards this goal, further
investigations in the depth map rendering process and in the content dependency are
necessary.
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