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ABSTRACT

The Belleplaine test site, located in the island of Guadeloupe (French Lesser

Antilles) includes a 3 accelerometers vertical array, designed for liquefaction stud-

ies. The seismic response of the soil column at the test site is computed using

three methods: the spectral ratio method using the vertical array data, a numeri-

cal method using the geotechnical properties of the soil column and an operative

modal analysis method (Frequency Domain Decomposition).The Belleplaine test

site is characterized by a mangrove layer overlaid by a stiff sandy deposit. This

configuration is widely found at the border-coast of the Caribbean region, which is

exposed to high seismic hazard. We show that the buried mangrove layer plays the

role of an isolation system equivalent to those usually employed in earthquake en-

gineering aimed at reducing the seismic shear forces by reducing the internal stress

within the structure. In our case, the flexibility of the mangrove layer reduces the

distortion and the stress in the sandy upper layer, and consequently reduces the

potential of liquefaction of the site.
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1. Introduction

The near surface geological condition is one of the critical factors in controlling

the seismic ground motion variability and its amplification, with a high impact

on the variability of the damage pattern from large earthquakes. Main contri-

butions to the amplification of motion are the body wave trapping effects due

to the impedance contrast between horizontally layered sediments and underlying

bedrock for a 1D medium (Aki and Richards, 2002), and lateral trapping of surface

waves in 2D and/or 3D geometries (Cornou et al., 2003). In both cases, site effects

lead to a frequency-dependent amplification of the seismic ground motion. Site

effects analysis are primarily carried out on surface recordings (Borchedt, 1970;

Lachet et al.,1996; Gueguen et al., 1998; 2000). Another option for estimating

the soil response is to use vertical arrays which has provided advances in the un-

derstanding of shallow layer seismic responses, including non-linear behavior of

the soil column (Satoh et al., 1995; 2001), downgoing waves producing destructive

interferences (Bonilla et al., 2002) and wave attenuation in sediments (Archuleta

et al., 1992; Abercrombie, 1997). Soil profiles are mostly characterized by shear-

wave velocities increasing with depth but irregular velocity profile, which occur

more infrequently, may provide peculiar site responses with consequences on the

seismic ground motion estimates and on the post-seismic damage pattern. This is

the case of sea shore regions in Caribbean islands often characterized by reverse
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velocity profiles such as the Guadeloupe Island (French lesser Antilles) (e.g., Gag-

nepain et al., 1995; Roulle and Bernardi, 2010). These site effects are mainly due

to the presence of mangrove swamps filled with limestone from the surrounding

hills (Roulle and Bernardi, 2010).

We have shown that the presence of a buried mangrove layer plays the role of

a seismic isolation device by reducing the seismic deformation in the upper and

stiffer layer. Passive seismic isolation techniques are usually employed to reduce

the deformation in the building by adding a soft layer between the soil and the

building, most often made of rubber bearings. In the case of a stiff structure with

respect to the isolating system, the building oscillates as a rigid body at the nat-

ural frequency of the bearings (Buckle and Mayes, 1990). With suitable isolating

systems, the seismic deformation produced by the horizontal seismic ground mo-

tion is supported by the rubber bearings, implying deformations rather limited in

the structure.

To improve the assessment of the seismic deformation of the soil column, we applied

a non parametric Operative Modal Analysis (OMA), which consists of extracting

physical parameters of the system using in-situ recordings without any assumption

on the model. Such techniques, commonly employed by the engineering commu-

nity, are used in order to characterize the dynamic response of a system and to

detect changes due to non-linearity by comparing the shape of the physical modes

(He and Fu, 2001; Carden and Fanning, 2004; Cunha and Caetano, 2005). The
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main goal of this paper is to compare the seismic response of the soil column at

the Belleplaine test site obtained by a standard method based on spectral ratios

with the OMA method, and to show the usefulness of the modal analysis method

for detecting the seismic deformation and non-linear effects during earthquakes.

After describing the vertical array and the geotechnical cross section of the Belle-

plaine test site, the seismic response using the spectral ratio technique is analyzed.

Modal analysis is then performed using earthquake data recorded in the borehole

and the experimental mode shape is finally compared to linear and nonlinear 1D

modal responses of the soil profile.

2. The Belleplaine experimental site

The Belleplaine vertical array test-site is located in the Guadeloupe Island

(French Antilles) close to the Caribbean subduction zone (Figure 1A). The site

was designed in the framework of the Belleplaine French National project (ANR-

06-CATT-003) for liquefaction analysis in the case of sea shore sediment materials,

including extensive in-situ geotechnical and geophysical surveys (drilling boreholes

and laboratory testing on sample, SASW, H/V seismic noise ratio survey, seismic

piezocone), pore pressure measurements and accelerometric ground motion sen-

sors. The velocity model at the top 35 meters is known from synthesis of borehole

drillings and downhole seismic piezocone penetrometer (Santruckova, 2008; Foray

et al., 2011) summarized in Figure 1B. Five cone penetration tests with additional

pore pressure measurements (CPTU) were carried out using seismic piezocones
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penetrometers. As the aim of these tests was to quantify the properties of the

superficial liquefiable layer, only the first 14m were investigated. The five penetra-

tion tests were located close to the two instrumented boreholes (50 m between the

two accelerometric boreholes) and their results were remarkably similar, showing

a good homogeneity of the stratigraphy of the site (Santruckova, 2008; Foray et

al., 2011).

The soil structure is composed of a shallow 1 m-thick layer with an S-wave veloc-

ity β1 = 200m/s, overlying a 4 m-thick stiff sandy layer (β2=470 m/s) below which

is found a soft and consolidated mangrove layer (33 m thick) with an S-wave ve-

locity β3 = 220m/s. The bedrock is GL-38m and it is characterized by reef coral

limestone for which no S-wave velocity information are available. The vertical

array is composed of three synchronized triaxial accelerometers (EST Shallow-

Borehole Episensor) placed at GL-0m, GL-15m and GL-39m, where GL means

”ground level” (Figure 1B). The GL-15m sensor is located within the mangrove

layer, 10 m below the mangrove/sand interface. The GL-39m sensor is inserted in

the bedrock layer, immediately under the mangrove/bedrock interface.

The set of records used in this study corresponds to local and regional events

(Figure 1A), localized by the Guadeloupe Observatory (OVSG). It consists of

recordings from 62 earthquakes, with ML between 2 and 6.4 and epicentral dis-

tance ranging between 20 and 450 km. During the installation, the horizontal



7

components of the instruments placed at GL-15m and GL-39m deviate 85 and 81

degrees in clockwise direction, respectively, as estimated using long period seis-

mic waves from the most distant event (ML=6.4 at 450 km). Before analysis, the

horizontal components are corrected, applying a rotation of 81o and 85o in the

counterclockwise direction. Because of the high dynamic range of the acquisition

system and the broad-band nature of the accelerometric sensors, no pre-processing

algorithms are applied to the data, except for the offset correction. Figure 2 dis-

plays the accelerometric ground motion recorded by the vertical array at the three

sensors for the most distant event: in the time domain, we clearly observe the am-

plification of the seismic ground motion due to the soil column, i.e. between the

amplitudes at different depths. The maximal horizontal peak ground acceleration

(PGA) recorded at GL-0m is 5 cm/s2 which corresponds to a weak ground motion

(Idriss, 1990), i.e. only linear seismic response is expected here. The comparison

of the motion recorded at the surface and in depth (Figure 3) shows that horizon-

tal PGA at the bottom (GL-39m) are approximately two times smaller than at

the surface (GL-0m) and at intermediate depth (GL-15m), even though GL-15m

sensor is at equal distance from the two others. We observe similar characteristics

on the accelerometric response spectra Sa at 1s period (Figure 3, upper row). The

response spectra confirm that the accelerometric ground motion is mainly con-

trolled by the ground motion at 1s, while at lower frequency (i.e., Sa at 3s period,

Figure 3, middle row) the ground motion is not modified by the soil profile.
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3. Processing

We analyze the seismic response of the soil column using the spectral ratio

method (Aguirre and Irikura, 1997). For all the data, we select three portions of

the accelerograms: (1) a 60-sec window containing the P and S wave part of the

record, (2) a 10-sec window centered on the S-wave arrival time, and (3) a 50-sec

window of the coda at the end of the record. Fast Fourier Spectra are computed for

each horizontal component at the GL-0m, GL-15m and GL-39m stations. As sug-

gested by Field and Jacobs [1995], the spectral ratios are computed for frequencies

having a signal-to-noise ratio above 3. After smoothing the spectral amplitudes

according to the Konno-Ohmachi window (Konno and Ohmachi, 1998) (b=30),

the spectral ratios GL-0m/GL-39m, GL-0m/GL-15m and GL-15m/GL-39m are

computed and averaged over all the recorded data, separately for the E-W and N-

S components, and plotted with the standard deviation (Figure 4). Amplification

is observed at 1.3 Hz (Figure 4) for the GL-0m/GL-39m and GL-15m/GL-39m

spectral ratio, corresponding to the resonance frequency of the site. We also esti-

mated the resonance frequency by the analytical Rayleigh method (Dobry et al.,

1976). The fundamental frequency of the soil profile only depends on the S-wave

velocity β3 and thickness H of the soft mangrove layer, derived from the oversim-

plified 1D relationship fo = β3/4H(= 1.5Hz).The 1D response assumption is also

confirmed by comparable spectral ratios at the fundamental frequency of the soil
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column considering the two horizontal ground accelerations (Figure 4).

Below 2 Hz, the GL-0m/GL-15m ratio (Figure 4) is approximately constant,

also inferred by the comparable Sa values at 1s computed at GL-0m and GL-15m

(Figure 3). The ground motion at the fundamental frequency of the site (1.3Hz) is

almost the same at GL-0m and GL-15m, the two levels moving in phase and with

the same amplitude. This observation indicates that the soil column between GL-

0m and GL-15m moves as a stiff layer, without any internal deformation. At 2.3

Hz, the spectral ratio is influenced by the downgoing wave effects. This phenome-

non was studied by several authors (e.g., Bonilla et al., 2002; Aguirre and Irikura,

1997): at any depth, the ground motion contains the incident waves and the wave

reflected at the surface, with opposite phase for same frequencies. The result is

a destructive interaction of body waves producing a hole in the spectral ratio curve.

To better understand the observation, we compute the 1D theoretical transfer

function using the R/T coefficient method (Kennett, 1974). As the quality factors

in the sediments (Qp and Qs) are not directly known, we used the oversimplified

empirical relationships Qs = β(m/s)/10 and Qp = 2Qs (e.g. Olsen et al., 2003;

Abercrombie, 1997). While the 1D resonance frequency is only a function of the

thickness and of the S-wave velocity in sediments, the amplification factor is de-

pendent on the S-wave velocity contrast, i. e. in our case the contrast between the
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soft mangrove layer and the deep limestone bedrock (GL-38). As the S-wave veloc-

ity in the bedrock β4 is not directly known, we tested three S-wave velocity for this

medium: 1000m/s, 1500 m/s and 2000 m/s. Once the transfer function computed

at GL-0m and GL-15m, we convolved all the GL-39m horizontal recordings with

the calculated transfer functions computed at GL-0m (GL-0m) and GL-15m (GL-

15m) receivers and the same spectral ratio procedure is applied as for the observed

data. Because of the likeness of the North-South to the East-West component at

the fundamental frequency of the soil profile, only spectral ratios observed in the

North-South direction are displayed in Figure 5. The synthetic spectral ratios

reproduce well not only the 1.3 Hz frequency peak values but also its amplitude

using the β4 =1500 m/s assumption. For this value of β4, the synthetic ratio re-

produces both the GL-0m/GL-39m and GL-15m/GL-39m frequency peak around

1.3 Hz and the amplification factor. In addition, the downgoing effect is also re-

produced on the GL-0m/GL-15m ratios, with some frequency shift of the inverted

peak, and some differences between data and synthetic spectral ratios above 2Hz.

The misfit at high frequencies and at 2.3 Hz may be due to the smoothed velocity

profile inferred from seismic piezocone penetrometer. Indeed, the smoothing of

the soil profile does not account for the transition zone of the properties between

each layer.
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4. Modal analysis of the soil column

For stratified 1D soil profiles, simplified procedures exist for estimating the fun-

damental period and mode shape of a linear model of soil profiles (Dobry et al.,

1976). One approximate method is based on the modal analysis considering the

soil profile as a continuous shear-beam. As only the first mode of the system is

discussed here, the Rayleigh procedure is used in this paper. This algorithm is

based on the exact solution obtained by equalizing the total maximum kinetic and

potential energies of the free-oscillating response of the system at the fundamental

mode. By introducing the equilibrium between inertia and elastic forces at any

level z, the equation of the first mode is given by the equation (1):

(1) X(z) =

∫
z

0

dzi
ρ(zi)β2(zi)

∫
H

zi

ρ(zi+1)X(zi+1)dzi+1

whereX(z)=X(zi+1) is the first mode shape, z the depth of the interface between

layer i and layer i+ 1, H the thickness of layer i, β the S-wave velocity and ρ the

density, and i and i+1 the layer indexes under the assumption that the first mode

shape of the soil column is composed of n cosine curves, one for each layer. The

origin of the coordinate axis z is defined at the bottom of the deposit, i.e. at the

GL-38m level in our case. An approximate solution of the Rayleigh solution can

also be used, considering a constant density with depth (ρ(z) = ρ). The resulting

expression derived from Equation (1) becomes:
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(2) Xi+1 = Xi +
H − zmi

β2
i

Hi

where Xi and Xi+1 are the estimate of the fundamental mode shape at lower

and upper boundaries of layer i, Hi the thickness of layer i and H − zim the depth

of the middle of layer i.

Recently, several new algorithms have been provided from engineering commu-

nity for processing ambient vibrations with operational modal analysis finalities

(He and Fu, 2001; Carden and Fanning, 2004; Cunha and Caetano, 2005). Among

them, the Frequency Domain Decomposition (FDD) method was selected in this

study (Brincker et al., 2001; Michel et al., 2008; Michel et al., 2010). As it is a

non-parametric method, no a priori model is needed for processing the data. It

allows the estimate of the eigenvalues of the system (mode shapes and frequencies)

by diagonalizing the Power Spectra Density (PSD) matrix, i.e. by computing the

Fourier spectra of the cross-correlation matrix obtained by simultaneous recordings

done in the system. Brincker et al. (2001) showed that the PSD can be decom-

posed into singular vectors and scalar singular values. Ventura et al. (2003) and

Michel et al. (2008) also applied this method with success using earthquake data

recorded in building under the assumption of white noise spectra in the frequency

range of the seismic data.

When a single mode is dominating, the first singular vector is an estimate of the

mode shape φ. At a resonance frequency, the first singular value exhibits a peak
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and the corresponding singular vector is an estimate of the mode shape. By com-

paring the mode shape at the peak to the mode shapes at neighboring frequencies,

it is possible to select the bell of the mode in the singular values, using the Modal

Assurance Criterion (MAC) (Allemang and Brown, 1982).

One possible way to estimate variations of the mechanical characteristics of the

system (e.g. due to non-linear effects) is to compare the variations of the modal

parameters. For example, Wu et al. (2009) showed a shift of the resonance fre-

quency of a soil column during strong motion and Allemang and Brown (1982)

discussed the variation of the shapes of the modes during non-linear processes. To

identify if such variations may be present at the Belleplaine site, the experimental

mode shape is computed for three sets of data, selected as a function of the value of

the horizontal PGA (N-S and E-W components) at the GL-0m sensor (Figure 6).

The small variations of the shape of the first mode versus the PGA range whatever

the direction is in favor of an 1D elastic response assumption of the soil column, as

mentioned in the previous sections. Moreover, we observe a very good fit between

the two numerical estimates of the mode shape (exact and approximated Rayleigh

method) and the median value of the mode using the three (i.e., very weak, weak

and moderate ground motion) sets of data (Figure 6). As suggested also by the

spectral ratio technique, the seismic response of the soil column is mainly con-

trolled by the buried soft layer (mangrove), the deformation in the upper sandy
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layer being rather limited at this mode (i.e., at 1.3 Hz).

Ground motion at the Belleplaine site are clearly too weak to go to non-linear

behavior. Consequently, the seismic modal analysis is only representative of the

elastic domain. As recently and experimentally confirmed by Wu et al. (2009), the

site response parameters (i.e., frequency and damping) may temporarily change

as function of the level of the ground motion, and can be used to quantify the

non-linear seismic response. Moreover, whatever the vibrating system, the shape

of the modes is also sensitive to nonlinear processes and therefore sensitive to the

damaging process within the system (e.g., Allemang and Brown, 1982).

We simulate the nonlinear seismic response of the Belleplaine test site using the

Cyclic1D free software (Elgamal et al., 2002). The FEM model was developed to

simulate the cyclic mobility response mechanism and the pattern of the shear strain

accumulation in two-phases materials (solid-liquid). In our case, we considered a

three layers soil profile, composed of a topmost stiff sand layer (8m thick), an

intermediate-depth layer made of a cohesive and soft layer (clay layer, 32 m thick)

overlying rigid bedrock. The input motion corresponds to a 0.2 g sinusoidal motion,

having 10 cycles and applied at the bottom of the soil column. The accelerometric

time histories are computed at a regular depth sampling (Figure 7A) and the

modal analysis is performed using the synthetics and applying the FDD method

described above (Figure 7B). The nonlinear effect implies a change in the shape
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of the fundamental mode, essentially due to the temporal change of the physical

properties of the soil. As for the linear behavior, we observe that the majority of

the distortion is supported by the intermediate-depth soft layer while the topmost

layer has no clear internal distortion. This interpretation must be confirmed by

future seismic strong ground motion recorded at the Belleplaine test site. However,

we observe that experimental modal analysis may be of great interest for analyzing

the effect of nonlinearity at depth and to assess the modal seismic response of a

natural system.

5. Discussion and conclusion

Seismic base-isolation of structures has been applied throughout the world since

the middle of the XXth century. One worldwide device (passive) consists of decou-

pling the structure from earthquake induced ground motion, via a flexible support

intercalated between the ground and the structure. One classical system is com-

posed by rubber elastomeric bearings which provide a reduction in the stiffness

or spring constant between the structure and the ground. With suitable flexible

supports, the main philosophy of such as a device is to provide only limited inter-

nal stress in the structure under severe shaking by shifting the frequency response

away from the frequency of the maximal shaking energy. Such systems have two

important functions (Buckle and Mayes, 1990): (1) the frequency of the isolated

structure is decreased to a value beyond dominant frequencies for typical earth-

quakes and (2) the displacement is controlled by the addition of an appropriate
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amount of damping. An equivalent rheological model is usually proposed as a

non-deformable mass resting on the ground through the flexible support.

The Belleplaine test site presents a comparable behavior. Since a very soft

layer (mangrove) is overlain by stiff soil (sand), we are in the same configuration

as the seismic base isolation system used for earthquake engineering. The seis-

mic response of the soil column is mainly controlled by the properties of the soft

layer (flexible support) which supports the maximum part of the seismic distor-

tion. By this way, the strain and the distortion in the uppermost sandy layer (i.e.

non-deformable mass) is rather limited. The ability of the sand layer to produce

liquefaction is then reduced, even if the primarily in-situ investigation highlighted

risk of liquefaction at the Belleplaine site.

Moreover, the advantage of the Belleplaine configuration is to reduce the vari-

ability of the maximal seismic ground motion since the maximal seismic energy

is controlled by the seismic response of the soft mangrove layer. This observation

may have many implications for reducing the effects of ground shaking on in-

frastructure. Firstly, a lot of sub-tropical regions exposed to seismic hazard have

coasts constituted by a soil column similar to the Belleplaine site and are therefore

expected to reduce the seismic risk as compared to standard estimates. Secondly,

the seismic hazard at such sites may be controlled by the frequency response of
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the mangrove which is characterized by an almost constant value of the dominant

frequency, independently of the frequency of the input motion. By reducing the

variability (in frequency) of the seismic ground motion, one of the crucial point

for predicting hazard and damage to structures, it should therefore be feasible to

adapt a cheap building design by avoiding the resonance of the soil column. This

point may be of great interest for countries located in the sub-tropical regions.

The OMA approach used in this paper is relevant for (1) defining the deforma-

tion of the soil column during earthquakes and (2) detecting the variations of the

mode shapes during strong motion due to non-linear processes. This technique,

commonly employed by the engineering community, is used to characterize the

dynamic response of a system and to detect changes due to non-linearity by com-

paring the shape of the physical modes. Experimental mode shapes may therefore

give deeper insight to where, in depth, the maximum deformation would take place

as well as potential locations of non-linear behavior, these two may not coincide.

The experimental analysis requires ”expensive” data provided by vertical array.

The monitoring of the site could be designed for specific infrastructures sensitive

to seismic non-linear effects.
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8. Figure caption

Figure 1: A) Epicenters of the earthquakes recorded at the Belleplaine test site

and used in this study. B) Description of the soil profile and position of the ac-

celerometric sensors.

Figure 2: Example of N-S recordings at the three GL sensors (ML=6.4 at 80 km).

Figure 3: Seismic ground motion recorded at GL-39m (open squares) and at

GL-15m (filled squares) as a function of surface ground motion (GL-0m) for ver-

tical (left), North-South (middle) and East-West (right) components. Upper row:

Accelerometric response spectra at 1s - Middle row: Accelerometric response spec-

tra at 3s - Lower row: Peak ground acceleration (PGA).

Figure 4: Average spectral ratio of GL-0m/GL-39m (upper row), GL-0m/GL-

15m (middle row) and GL-15/GL-39m (lower row) for N-S (right) and E-W (left)

components for the frequencies with a Signal-to-Noise ratio over 3. The black

continuous line shows the average ratio (+/- standard deviation in dotted line)

for the time window including P and S waves. Superimposed gray lines show the

average ratio for time windows including only S waves or Coda waves.
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Figure 5: Comparison between the observed North-South spectral ratio (black)

and computed (red) at the vertical array (Belleplaine test site) using the Ken-

nett (1974) method: GL-0m/GL-39m (top, left), GL-0m/GL-15m (top, right)/GL-

15/GL-39m (bottom, left), using three values of S-wave velocities in the bedrock

layer.

Figure 6: Experimental first mode in the North-South (left) and East-West

(right) directions, using the FDD method and for three ranges of peak ground

acceleration (moderate: PGA> 0.35 cm/s2; weak: 0.15 < PGA < 0.35 cm/s2;

very weak: PGA< 0.15 cm/s2).

Figure 7: A) Synthetics of seismic ground motion in the Belleplaine soil profile

using the Cyclic1D FEM software developed by (Elgamal et al., 2002). The red

signal is the input motion corresponding to a 0.2 g sinusoidal motion, with 10

cycles and applied at the bottom of the soil column. B) Comparison between the

average experimental first mode (N-S direction) with the complete (1) and simpli-

fied (2) Rayleigh method, and with the nonlinear mode shape at the Belleplaine

test site computed using Cyclic1D.
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