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Abstract. We review the derivation of fixed-metric, relativistic smooth particle
hydrodynamics (SPH) from the Lagrangian of an ideal fluid. Combining the Euler-
Lagrange equations with the first law of thermodynamics, we explicitely derive
evolution equations for the canonical momentum and energy. This new set of SPH
equations also accounts for corrective terms that result from derivatives of the SPH
smoothing kernel and that are called “grad-h” terms in non-relativistic SPH. The new
equations differ from earlier formulations with respect to these corrective terms and
the symmetries in the SPH particle indices while being identical in the gravitational
terms.
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1. Introduction

Relativity is a crucial ingredient in a variety of astrophysical phenomena, both due

to velocities approaching the speed of light, as for example in AGN jets, and due

to strong gravity shaping space-time geometry, say, near a black hole. In the recent

past, substantial progress has been made in the development of special- and general

relativistic numerical tools [1, 2, 3] that can tackle a variety of pressing astrophysical

problems. While most work on numerical relativistic gas dynamics has been performed

in a Eulerian framework, a couple of Lagrangian smooth particle hydrodynamics (SPH)

approaches exist.

The first relativistic SPH formulations were developed by Kheyfets et al. [4] and Mann

[5, 6]. Shortly after, Laguna et al. [7] developed a 3D, general-relativistic SPH code that

was subsequently applied to the tidal disruption of stars by massive black holes [8]. Their

SPH formulation is complicated by several issues: the continuity equation contains a

gravitational source term that requires SPH kernels for curved space-times. Moreover,

owing to their choice of variables, the equations contain time derivatives of Lorentz

factors that are treated by finite difference approximations and restrict the ability to

handle shocks to only moderate Lorentz factors. The Laguna et al. formulation has

recently been extended by Rantsiou et al. [9] and applied to neutron star black hole

binaries. In a separate approach, Chow and Monaghan [10] obtained accurate special-

relativistic test results even for flow problems with large Lorentz factors. They evolve

the total energy rather than the thermal energy and by applying an artificial viscosity

scheme that borrows concepts from Riemann solvers [11]. More recently, Siegler and

Riffert [12] and Siegler [13] have presented a set of equations for both the special- and

general-relativistic case. Based on the conservative form of Lagrangian hydrodynamics

their choice of variables bypassed many of the complications that have plagued earlier

relativistic SPH formulations. They were able to simulate accurately some test problems

with very large Lorentz factors.

An elegant approach that is based on the discretized Lagrangian of a perfect fluid

was suggested in Monaghan and Price [14]. Provided that the discretized Lagrangian

posseses the correct symmetries, in such an approach nature’s conservation laws are

hard-wired into the resulting SPH equations. Moreover, the Euler-Lagrange equations

determine the evolution of the fluid and do not leave much room for arbitrariness in the

derivation. We are not aware of existing numerical implementations of these equations,

but a different derivation that lead to a similar equation set has been tested in [15].

All of the above approaches used a fixed background metric and it was only recently that

SPH has been applied to the study of flows with strong self-gravity. In these approaches

Post-Newtonian approximations were used[16, 17, 18, 19], and, more recently, the

conformal flatness approximation [20, 21] has been implemented [22, 23, 24, 25].

In this paper we will review the derivation of the general-relativistic SPH equations

from a Lagrangian, similar to the work presented in [14]. Extending this work, we also

account for corrective extra terms due to kernel derivatives, that are called “grad-h”



Relativistic SPH 3

terms in non-relativistic SPH [26, 27].

2. Relativistic SPH from a variational principle

Several authors [28, 29, 26, 27] have derived non-relativistic SPH equations from a

variational principle. Recently, such a variational approach has also been applied to

the general-relativistic case assuming a given background space-time metric [14]. In the

following review we will adhere to a similar strategy, but also account for the general-

relativistic “grad-h”-terms.

We assume that a prescribed metric gµν is known as a function of the coordinates and

that the perturbations that the fluid induces to the space-time geometry can be safely

neglected. We further use units in which the speed of light is equal to unity, c = 1,

we adopt a metric with signature (-,+,+,+). We reserve greek letters for space-time

indices from 0...3 with 0 being the temporal component, while i and j refer to spatial

components and SPH particles are labeled by a, b and k. Contravariant spatial indices

of a vector quantity w at particle a are denoted as wi
a, while covariant ones will be

written as (wi)a. The line element and proper time are given by ds2 = gµνdxµdxν and

dτ 2 = −ds2 and the proper time is related to a coordinate time t by

Θdτ = dt, (1)

where we have introduced a generalization of the Lorentz-factor

Θ ≡ 1
√−gµνvµvν

with vα =
dxα

dt
. (2)

This relates to the four-velocity Uν by

vµ =
dxµ

dt
=

dxµ

dτ

dτ

dt
=

Uµ

Θ
=

Uµ

U0
, (3)

which is normalized to UµUµ = −1.

2.1. The relativistic fluid Lagrangian

The Lagrangian of a relativistic fluid is given by [30]

L = −
∫

T µνUµUν

√
−gdV, (4)

where g = det(gµν) and T µν denotes the energy-momentum tensor of an ideal fluid

without viscosity and conductivity

T µν = (ρ + P )UµUν + Pgµν. (5)

Here ρ is the energy density of the fluid as measured in the local rest frame and P is

the fluid pressure. For clarity, we will write out explicity factors of c in the following

lines. The energy density can be split up in a term associated with the rest mass and

one given by the thermal energy contribution:

ρ = ρrest + uρrest/c
2 = nm0c

2(1 + u/c2) (6)
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Here n is the baryon number density in the local fluid rest frame, m0 is the baryon mass‡
and u = u(n, s) the specific energy, with s being the specific entropy. From now on, we

will measure all energies in units of m0c
2 (and use again c = 1). With this convention

the energy momentum tensor reads

T µν = {n(1 + u) + P}UµUν + Pgµν. (7)

With the normalization of the four-velocity the Lagrangian can be written as

L = −
∫

n(1 + u)
√
−gdV . (8)

2.2. The SPH discretization

In the following we apply the reasoning and principles behind modern SPH formulations

to the general-relativistic, fixed-metric case. For a detailed account on modern SPH we

refer the interested reader to a recent review [31]. To perform practical simulations we

give up general covariance and choose a particular frame (“computing frame”) in which

the computations are carried out. This requires a suitable transformation between

computing frame quantities and quantities that are evaluated in the local rest frame of

a fluid particle.

To find a SPH discretization in terms of a suitable density variable, we follow an

approach similar to [12]. Local baryon number conservation, (Uµn);µ = 0, can be

expressed as

∂µ(
√
−gUµn) = 0, (9)

or, more explicitely, as

∂t(N) + ∂i(Nvi) = 0, (10)

where we have made use of Eq. (3) and have introduced the computing frame number

density

N =
√
−gΘn. (11)

The total conserved baryon number can then be expressed as a sum over fluid parcels

with volume ∆Vb located at ~rb, where each parcel carries a baryon number νb

N =
∫

NdV '
∑

b

Nb∆Vb =
∑

b

νb. (12)

Eq. (10) looks like the Newtonian continuity equation and we will use it for the SPH

discretization process. Similar to standard SPH, one can approximate the continuum

by fluid parcels (“particles”), so that a quantity f can be approximated as by

f̃(~r) '
∑

b

fb
νb

Nb
W (~r − ~rb, h), (13)

where the subscript b indicates that a quantity is evaluated at a position ~rb and W is a

suitable smoothing kernel whose width is determined by the so-called smoothing length

‡ The appropriate baryon mass depends on the neutron to proton ratio, i.e. on the nuclear composition
of the considered fluid.



Relativistic SPH 5

h. If we keep all νb constant in time, exact baryon number conservation is guaranteed

and no continuity equation needs to be solved (this can be done, though, if desired).

For the kernel W , we assume that it has a compact support, so that sums only contain

a local set of particles, and that it is radial, i.e. W (~r − ~rb, h) = W (|~r − ~rb|, h), so that

∂W (|~r − ~rb|, h)/∂~r = −∂W (|~r − ~rb|, h)/∂~rb.

If Eq. (13) is applied to the baryon number density N , one finds §

Na = N(~ra) =
∑

b

νbW (~ra − ~rb, ha), (14)

where we have chosen to evaluate the density estimate at ~ra with the local smoothing

length ha. Note that we are evaluating locally smoothed quantities with flat-space

kernels which assumes that the local space-time curvature radius is large in comparison

to the local fluid resolution length. Such an approach is very convenient, but (more

involved) alternatives to this approach also exist in the literature [4, 7]. The Newtonian

mass density estimate can be recovered by the replacements Nb → ρb and νb → mb.

It is usually desirable to adjust the smoothing length locally to fully exploit the natural

adaptivity of a particle method. One convenient way to do so by using the local density

is

ha =
η

N
1/3
a

, (15)

where the parameter η controls how many neighbor particles are taken into account for

density estimates. Since Eqs. (15) and (14) mutually depend on each other, an iteration

is required at each time step to obtain consistent values for both.

For later use in the evolution equations we also provide the derivatives of the computing

frame number density (with the notation ~rbk = ~rb − ~rk, rbk = |~rbk| and Wbk(h) =

W (|~rb − ~rk|, h)):

∂Nb

∂xi
a

=
∑

k

νk

{
∂Wbk(hb)

∂rbk

∂rbk

∂xi
a

+
∂Wbk(hb)

∂hb

∂hb

∂Nb

∂Nb

∂xi
a

}
. (16)

Collecting the ∂Nb/∂xi
a terms on both sides one obtains

∂Nb

∂xi
a

=
1

Ωb

∑

k

νk
∂Wbk(hb)

∂rbk

∂rbk

∂xi
a

=
1

Ωb

∑

k

νk
∂Wkb(hb)

∂xi
b

(δba − δka), (17)

where

Ωb = 1 − ∂hb

∂Nb

∑

k

νk
∂Wbk(hb)

∂hb
(18)

is a corrective term of order unity, often called “grad-h”-term in a non-relativistic

context. In a similar way, one finds the time derivative

dNb

dt
=

1

Ωb

∑

k

νkv
i
bk

∂Wbk(hb)

∂xi
b

, (19)

§ From now on we are dropping the distinction between “original” and approximated quantities.
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where ~vbk = ~vb − ~vk.

Motivated by Eqs. (11) and (12), we can re-write the fluid Lagrangian, Eq. (8), in terms

of our computing frame number density N ,

L = −
∫

1 + u

Θ
NdV, (20)

which leads to the general-relativistic, discretized SPH-Lagrangian

LSPH = −
∑

b

νb

(
1 + u

Θ

)

b
. (21)

2.3. The momentum equation

In the following we use the Euler-Lagrange equations

d

dt

∂L

∂vi
a

− ∂L

∂xi
a

= 0, (22)

to derive evolution equations for the canonical momentum and the canonical energy per

baryon. The canonical momentum is

(pi)a ≡ ∂L

∂vi
a

= − ∂

∂vi
a

∑

b

νb

(
1 + u

Θ

)

b
, (23)

where the velocity dependence enters directly via the generalized Lorentz-factor Θ and

via
∂ub

∂vi
a

=
∂ub

∂nb

∂nb

∂vi
a

=
Pb

n2
b

Nb√
−gb

∂

∂vi
a

(
1

Θ

)

b
, (24)

where we have used the first law of thermodynamics, ∂ub/∂nb = Pb/n
2
b , and the relation

between computing frame and local rest-frame density, Eq. (11). With

∂

∂vi
a

(
1

Θb

)
= −Θb(giµvµ)aδab (25)

one finds the canonical momentum per baryon

(Si)a ≡ 1

νa

∂L

∂vi
a

= Θa

(
1 + ua +

Pa

na

)
(giµvµ)a =

(
1 + ua +

Pa

na

)
(Ui)a. (26)

We now need ∂L/∂xi
a to obtain, via Eq. (22), an evolution equation for (Si)a. The

resulting terms can be split up into “hydrodynamics terms” which contain density

gradients and “gravitational terms” which are proportional to gradients of the metric.

To evaluate ∂[(1 + ub)/Θb]/∂xi
a one uses

∂

∂xi
a

(
1

Θb

)
= −

(
UµUν

2Θ

∂gµν

∂xi

)

b

δab (27)

and applies once more the first law of thermodynamics together with Eq. (11). The

hydrodynamic contribution then becomes
(

∂L

∂xi
a

)

hydro

= −
∑

b

νb
Pb

√
−gb

N2
b

∂Nb

∂xi
a

= − νa

∑

b

νb

{
Pa

√
−ga

ΩaN2
a

∂Wab(ha)

∂xi
a

+
Pb

√
−gb

ΩbN2
b

∂Wab(hb)

∂xi
a

}
,(28)
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where we have applied Eq. (17) and the kernel property ∂Wba(hb)/∂xi
b =

−∂Wab(hb)/∂xi
a. The remaining gravity terms simplify on use of Eqs. (11) and (7)

to (
∂L

∂xi
a

)

gravity

=

(
ν
√
−g

2N
T µν ∂gµν

∂xi

)

a

. (29)

Thus, the final, general-relativistic SPH momentum equation reads

d(Si)a

dt
=

1

νa

∂L

∂xi
a

= −
∑

b

νb

{
Pa

√
−ga

ΩaN2
a

∂Wab(ha)

∂xi
a

+
Pb

√
−gb

ΩbN2
b

∂Wab(hb)

∂xi
a

}

+

(√
−g

2N
T µν ∂gµν

∂xi

)

a

. (30)

The gravity contribution to this equation is identical to the one in [12, 14], but the

hydrodynamical terms differ both due to the presence of the grad-h terms and due to a

different symmetrization in the particle indices.

2.4. The energy equation

For a suitable energy variable one can start from the canonical energy

E ≡
∑

a

∂L

∂vi
a

vi
a − L =

∑

a

νa

(
vi

a(Si)a +
1 + ua

Θa

)
(31)

to identify

ea ≡ vi
a(Si)a +

1 + ua

Θa
, (32)

whose evolution equation follows from straight forward differentiation

dea

dt
= (Si)a

dvi
a

dt
+ vi

a

d(Si)a

dt
+

d

dt

(
1 + ua

Θa

)
. (33)

As we will see below, the first term cancels with a corresponding term resulting

from the third term. Similar to the derivation of the momentum equation, the

term d[(1 + ua)/Θa]/dt splits up into a term involving derivatives of the density and

a term which contains derivatives of the metric tensor. Applying the first law of

thermodynamics, Eq.(11), once more and

d

dt

(
1√
−gΘ

)

a

= −
(

1

2
√
−gΘ

gµν dgµν

dt

)

a

−
(

1√
−gΘ2

dΘ

dt

)

a

, (34)

yields the evolution equation of the thermal energy

dua

dt
=

Pa

√
−gaΘa

N2
a

dNa

dt
− Pa

2na

gµν dgµν

dt
− Pa

naΘa

dΘa

dt
. (35)

If the time derivative of the generalized Lorentz factor Θ is expressed as

dΘa

dt
=

(
Θ3

2
vµvν dgµν

dt
+ Θ3gµν

dvµ

dt
vν

)

a

(36)



Relativistic SPH 8

one finds
d

dt

(
1 + u

Θ

)

a
=

Pa

√
−ga

N2
a

dNa

dt
− (Si)a

vi
a

dt
−
(√

−g

2N
T µν dgµν

dt

)

a

(37)

and on using Eqs. (30), (19), (37) and

dgµν

dt
=

∂gµν

∂xi
vi + ∂tgµν (38)

the final general-relativistic energy equation becomes

dea

dt
= −

∑

b

νb

{
Pa

√
−gav

i
b

ΩaN2
a

∂Wab(ha)

∂xi
a

+
Pb

√
−gbv

i
a

ΩbN2
b

∂Wab(hb)

∂xi
a

}

−
(√

−g

2N
T µν∂tgµν

)

a

. (39)

Together with an equation of state, the equations (14), (30) and (39) represent our

complete and self-consistently derived set of SPH equations. The gravitational terms

are identical to those of [12, 14], but the hydrodynamic terms differ in both the particle

symmetrization and the presence of the grad-h terms. Note that the only choices

in our above derivation were the h-dependence in Eq. (14) and how to adapt the

smoothing length. The subsequent calculation contained no arbitrariness concerning

the symmetry in particle indices, everything followed stringently from the first law of

thermodynamics and the Euler-Lagrange equations. Another important point to note

is that the derived energy equation, Eq. (39), does not contain destabilizing [32] time

derivatives of Lorentz factors on the RHS –in contrast to the thermal energy equation

(35) and to earlier SPH formulations [7]. For a practical simulation involving shocks,

Eqs. (30) and (39) need to be augmented by artificial viscosity terms similar to the

special-relativistic case [10, 12, 33]. In order to couple to a generic space-time evolution

code, the partial derivative ∂tgµν in Eq.(39) would need to be re-written in terms of the

extrinsic curvature, see e.g. [34].

2.5. The special-relativistic limit

In the special-relativistic limit we can neglect the gravitational terms in Eqs. (30) and

(39). In addition in flat space-time with Cartesian coordinates one has
√
−g → 1 and

Θ → γ, and Eq. (11) becomes N = γn, which simply expresses the increase in the

computing frame number density N with respect to the local fluid rest frame density n

due the Lorentz contraction. The momentum and energy equations reduce in this limit

to 
d~Sa

dt




SR

= −
∑

b

νb

{
Pa

ΩaN2
a

∂Wab(ha)

∂~ra
+

Pb

ΩbN2
b

∂Wab(hb)

∂~ra

}
(40)

and (
dea

dt

)

SR

= −
∑

b

νb

{
Pa~vb

ΩaN2
a

· ∂Wab(ha)

∂~ra
+

Pb~va

ΩbN2
b

· ∂Wab(hb)

∂~ra

}
(41)

which are the equations recently derived and successfully tested in a special-relativistic

context [33].
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3. Summary

In this article we have reviewed in detail the derivation of the general-relativistic SPH

equations form a variational principle for the case of a given background metric. We

have used the computing frame baryon number density in the SPH discretization pro-

cess and derived evolution equations for the canonical energy and momentum. If the

latter are chosen as numerical variables, no derivatives of Lorentz factors occur in the

evolution equations. As in non-relativistic SPH, one has the choice between calculating

(here: computing frame baryon number) densities via a particle summation or by evolv-

ing the continuity equation. The derived equation set also contains corrective terms

from smoothing kernel derivatives, so-called grad-h terms. The hydrodynamic parts of

the equation set differ from earlier general-relativistic SPH formulations by the presence

of these corrective terms and by the symmetry in the particle indices, the contributions

from the gravitational field are identical to those found in earlier work. In the special-

relativistic limit in Cartesian coordiates, the equations reduce to a recently derived

equation set that has been successfully tested in large number of benchmark problems

[33]. Future applications of this SPH formulation will include tidal disruptions of stars

by massive black holes.
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[30] V. Fock. Theory of Space, Time and Gravitation. Pergamon, Oxford, 1964.
[31] S. Rosswog. Astrophysical smooth particle hydrodynamics. New Astronomy Reviews, 53, 2009.
[32] M. L. Norman and K.-H.A. Winkler. Why ultrarelativistic numerical hydrodynamics is difficult.

In K.-H.A. Winkler and M. L. Norman, editors, Astrophysical Radiation Hydrodynamics. Reidel,
Berlin, 1986.

[33] S. Rosswog. Conservative, special-relativistic smooth particle hydrodynamics. ArXiv e-prints,
July 2009.

[34] M. Alcubierre. Introduction to 3+1 Numerical Relativity. Oxford University Press, 2008.


	Contents of MICRA_2009_contribution_Rosswog_rev.tex
	Go to page 1 of 10
	Go to page 2 of 10
	Go to page 3 of 10
	Go to page 4 of 10
	Go to page 5 of 10
	Go to page 6 of 10
	Go to page 7 of 10
	Go to page 8 of 10
	Go to page 9 of 10
	Go to page 10 of 10


