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Abstract. We present new results on instabilities in rapidly and déffgially rotating
neutron stars. We model the stars in full general relatigityd describe the stellar matter
adopting a cold realistic equation of state based on theedhBLy prescription [1]. We
provide evidence that rapidly and differentially rotatistars that are below the expected
threshold for the dynamical bar-mode instability, = 7'/|W| ~ 0.25, do nevertheless
develop a shear instability on a dynamical timescale ancafaiide range of values af.
This class of instability, which has so far been found only $mall values of3 and with
very small growth rates, is therefore more generic thanipusly found and potentially more
effective in producing strong sources of gravitational @avOverall, our findings support the
phenomenological predictions made by Watts, AnderssonJands [2] on the nature of the
low-T'/|W| instability as the manifestation of a shear instability iregion where the latter is
possible only for small values of th& Furthermore, our results provide additional insight on
shear instabilities and on the necessary conditions far degelopment.

PACS numbers: 04.40.Dg, 95.30.Lz, 95.30.5f 97.60.Jd

1. Introduction

Non-axisymmetric deformations of rapidly rotating boda® rather generic phenomena
in Nature and can appear in a wide class of systems. Particutderesting within an
astrophysical context are those deformations taking piladkiids that are self-gravitating
and the literature on this has a long history dating backontbrk of [3] on incompressible
Newtonian uniformly rotating bodies. Since then, the stofiese instabilities has continued
over the years both in Newtonian gravity and in full geneedtivity.

Special attention has traditionally been paid to the study.o= 2 instabilities, which
are characterized by the exponential growtthof= 2 deformations, where: parametrizes
the azimuthal dependenet&™? in a standard mode decomposition in spherical harmonics.
Most of the interest in this type of deformation in compaatsistems from the fact that it has
the shortest growth time and leads to the emission of a sgomgtational-wave signal.

The development of non-axisymmetric instabilities is coomfy analyzed in terms of
the quantitys = T/|W| (i.e. the ratio between the kinetic rotational enerfjyand the
gravitational potential energyy), that provides a dimensionless measure of the amount of
angular momentum that can be tapped to feed the developmehé anstabilities. This
parameter plays an important role in what is possibly thetncetebrated of the non-
axisymmetric instabilities: the so-callelynamical bar-mode instability. This is am = 2
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instability which takes place when the parametes larger than a critical on€j.. In the
case of a Newtonian incompressible self-gravitating poly¢, for instance, the dynamical
bar-mode instability develops > (; = 0.2738 [3] and is only weakly dependent on
the considered polytropic index or whether the fluid is cosspible. Post-Newtonian (PN)
studies [4] or fully general-relativistic ones [5] correbis results only slightly, by reducing
the threshold to somewhat lower values of the instabilitsapgeter. As an example, for a
polytropic relativistic star with polytropic indek = 2, the accurate calculations reported
in [6] reveal that the critical value i8. ~ 0.245 and that a simple dependence on the stellar
compactness allows one to track this threshold from the blielanh limit over to the fully
relativistic one [7].

The onset and development of the bar-mode instability has baditionally studied by
means of nonlinear 3D simulations of Newtonian stars thategther unmagnetized [8, 9,
10, 11, 12] and, more recently, also magnetized [13]. Intaaidi PN and fully relativistic
simulations have been performed and highlighted, for hmttathat the persistence of the
bar is strongly dependent on the degree of overcriticality is generically of the order of
the dynamical timescale. Furthermore, generic nonlineataycoupling effects between the
m = 1 and them = 2 mode appear during the development of the instability amdeh
can severely limit the persistence of the bar deformatiah @rentually suppress the bar
deformation [6]. These results have been recently confifoyettie perturbative calculations
in [14].

Besides dynamical instabilities, which are purely hydmaiyical,secular instabilities
are also possible in rotating compact stars and these amsahsriggered by dissipative
processes, such as viscosity or radiation emission. Ifaitiqular, the dissipative mechanism
is the emission of gravitational radiation, then the setinatability is also known as
Chandrasekhar-Friedman-Schutz or CFS instability [1%, TBontrary to what their name
may suggest, secular instabilities do not necessarilyldgyan secular timescales (although
they normally do) and are characterized by having a muchlentateshold for the instability.
Once again, in the case of a Newtonian polytrope, the crisieeular instability parameter is
as small agl. ~ 0.14 and thus much more easy to attain in astrophysical circurosta

Although widely observed in numerical simulations, the gibgl conditions leading to
a dynamical bar-mode instability are difficult to be encewatl in standard astrophysical
scenarios. Such large values of the instability paramigtéact, cannot be easily attained in
old and cold neutron stars, which have been brought intaumifotation and thus to rather
small values of3. However, more recently these pessimistic prospects hega bhanged
when a newm = 2 instability has been discovered in differentially rotagtiNewtonian
stars [17] for values off =~ 0.01, therefore well below the expected values for a dynamical
bar-mode instability. The most salient aspect of this nestaibility is that it appears in stars
with a large degree of differential rotation and that it gsomn a timescale which is longer
but comparable with the dynamical one. This instability basn referred to as the “low-
T /|W | instability” and its dependence on the polytropic index andhe degree of differential
rotation has been studied in [18]. Since then, the instglias been observed or discussed
in a number of related studies [19, 20, 21, 22, 23, 24, 25pfaVhich have highlighted the
possible occurrence of this type of instability during tlilapse of a massive stellar core.

Despite the abundant numerical evidence on the developofethis instability, the
nature of these lovi”/|W| instabilities is still matter of debate and, most imporana
sufficient criterion for its onset has not been derived yédtisThstability has been studied in
great detail by Watts and collaborators [26, 2], who haveeraadumber of phenomenological
predictions either using a toy shell-model first introdutef27, 28], or for a stellar model in
Newtonian gravity. Overall, the work of Watts and collaliora (but see also [29]) recognizes
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the low-I'/|WW| instabilities as the manifestation of a more generic cldsastabilities, the
shear instabilities [2] , that is unstable oscillations that do not exist in unifdy rotating
systems and are associated to the existence of a corotatimh[BO, 31]. Watts, Andersson
and Jones suggest, in particular, that a necessary canddiothe development of the
instability is “corotation”, that is the presence of a pantvhich the star rotates at the same
pattern speed of the unstable mode [2]. An alternative sstgieon the necessary conditions
has been made also by Ou and Tohline [20], who instead assdh&@ development of the
instability to the presence of a minimum in the vortensitgfipe of the star. This minimum
can then drive unstable not only the corotating= 2-modes but also the odd modes such as
them = 1 andm = 3-modes [32]. In this interpretation, the growth time of thetability

is proportional to distance between the corotation radiasthe radial position at which the
unstable mode corotates with the star, and the minimum ofdhensity.

The purpose of this work is to shed some light on the developwfeshear instabilities
and, in particular, to validate one prediction made, algfounot explicitly, by Watts,
Andersson and Jones. More specifically, we show that, fdicgrit amounts of differential
rotation, shear instabilities develop famy value of the instability paramete# and also below
the expected critical value for the dynamical bar-modeaibitity. We therefore provide
evidence that the IoW?/|W| instability is not a new instability but rather the maniggin of
a shear instability in a region where the latter is possiblg tor small values of5.

Our analysis proceeds via the simulation in full generaltreity of sequences of neutron
star models having constant rest-mass and constant degfréigferential rotation, but with
different amounts of rotationi,.e. with different values of3. The neutron-star matter is
described by a realistic equation of state (EOS) defined bytiified SLy prescription [1]
and we study the development of the non-axisymmetric iilgtab from their linear growth
up to the fully nonlinear development and suppressionréstengly, we find that depending
on the degree of differential rotation, the shear instgbikads either to the growth of a
single modes (for the lows models) or to the simultaneous presence of up to three Uastab
modes (for the high# models), which produce beatings in the growth of the overnal- 2
deformation. Special attention is also paid to the propsrtif the unstable modes and to
their position within the corotation band or the vortengitpfiles. In this way we are able
to confirm both the necessary conditions proposed so fah®ohset of the instability. In
particular, we show that all the unstable modes are witterctirotation band of the progenitor
axisymmetric modeldf. [2]) and that all of the unstable models have vortensity fesfivith
a local minimum €f. [20]).

The structure of the paper is as follows: in section 2 we des¢he numerical setting
of our simulations, the EOS we used and the initial models agegated. In section 3 we
describe the quantities and tools we used to monitor theutiwal of the instability. In
section 4 we report the results of the simulations and se&ics dedicated to conclusions
and discussion. We use a spacelike signafuret, +, +) and a system of units in which
¢ =G = Mg = 1 (orin cgs units whenever more convenient). Greek indicesaen
to run fromO to 3, Latin indices froml to 3 and we adopt the standard convention for the
summation over repeated indices.

2. Numerical Setup and Initial Models

In what follows we provide a brief overview of the numericatigp used in the simulations,
of the realistic EOS adopted and on the procedure followethf@construction of the initial
axisymmetric models.
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2.1. Numerical Setup

We solve numerically the full set of Einstein equations
G =811y, Q)

where G, and T}, are the Einstein tensor and the stress-energy tensor, cieghe
The equations are solved within the “3+1” decomposition dicetime, in which thel-
dimensional metrig,,,, is decomposed into the spatial metyig, the lapse function and the
shift vector components;. The field equations, which then also provide an evolutiaritie
extrinsic curvature tensdt;;, are then coupled to those of general relativistic hydreayics

V. TH =0 ; V,(pu*)=0, 2
where, in the case of a perfect-fluid, the stress-energptésgiven by

T = p (1 + e+ 1—;) utu” + pgh”. 3)

Above u# is the fluid 4-velocity, p is the fluid pressures the specific internal energy and
p the rest-mass density, so that= p(1 + ¢) is the energy density in the rest frame of the
fluid. The set of hydrodynamics equation is then closed byeagiption for the properties
of the matter in the form of a relation between the pressudeadiner quantities in the fluid,
eg. p = P(p,¢), and for which we have chosen a cold and realistic EOS whidhbai
discussed in the following section.

The evolution of the spacetime was performed using @@ATI E code, a three-
dimensional finite-differencing code providing a solutafra conformal traceless formulation
of the Einstein equations (see [33] for the explicit expi@ss of the equations solved in
the code and also [34] for a more recent and improved impléstien). The relativistic
hydrodynamics equations, on the other hand, were solvedikeWi sky code, which
adopts a flux-conservative formulation of the equations esgnted in [35] and high-
resolution shock-capturing schemes or HRSC (see [36, 37/0B8he explicit expressions
of the equations solved in the code and also [39] for a morenteextension of the code
to MHD). The Whi sky code implements several reconstruction methods, such @$ To
Variation-Diminishing (TVD) methods, Essentially-Nors€llatory (ENO) methods [40] and
the Piecewise Parabolic Method (PPM) [41]. Also, a varidtggproximate Riemann solvers
can be used, starting from the Harten-Lax-van Leer-Einf@tl LE) solver [42], over to
the Roe solver [43] and the Marquina flux formula [44] (see, [3¢] for a more detailed
discussion). All the results reported hereafter have beempated using the Marquina flux
formula and a PPM reconstruction.

Both the Einstein and the hydrodynamics equations are daisimg the vertex-centered
adaptive mesh-refinement (AMR) approach provided byGhepet driver [45]. Our rather
basic form of AMR consists of box-in-box structures centleva the origin of the coordinate
system and with the finest grid covering the whole star airakt$. The simulations reported
here make use aof levels of refinement, with the finest having a resolutio2®f m and the
coarsest one a resolution bf77 km. The outer boundary was set relatively close to the star
and at a distance af 159.5 km, i.e. at about~ 10 times the size of the star. A reflection
symmetry across ther, y) (equatorial symmetry) plane was used to reduce the conipuidht
costs, but not a rotational one around thexis (r-symmetry) as it would have artificially
prevented the growth of oda- modes (see discussion in [6]).
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2.2. Realigtic Equation of Sate

As mentioned above, the system of hydrodynamics equatieedsnto be closed by an EOS
relating the pressure with the other primitive variabkeg, the rest-mass density. Previous
studies of the bar-mode instability, both in Newtonian gsesnd in general relativity, have
been focused on the use of ideal fluids and analytic EOSegreéitithe form a of a “polytropic”
(and isentropic) EO$ = p(p), or of an “ideal-fluid” and (non-isentropic) EQS= p(p, ¢)
(cf. discussion in [6, 7]). While these two descriptions are efge to provide results that
are qualitatively correct, a more accurate modelling os¢hmstabilities in compact stars
necessarily requires a more physically-motivated desonmf the neutron-star matter.

It is in this spirit that we have here considered a realist@SEnamely the unified SLy
EOS [1], which models high-density and colide( zero temperature) matter via a Skyrme
effective potential for the nucleon-nucleon interactiofse SLy EOS, which describes via
a single effective Hamiltonian the neutron star’s interisrsupplemented with the HP94
EOS [46] to describe the crustal matter and with the BPS EQ@B ¢4 lower density regions.
This prescription results in a one-parameter EOS in the foemp(e(p)) = p(p), where the
SLy EOS is used fop > 4.979 x 10'°, the HP94 EOS is used fan® < p < 4.979 x 10'°
and the BPS EOS fgr < 10°® (see also figure 1 of [48]). In addition, at even lower deasiti
the EOS becomes temperature dependent (and thus no loniggpla barotropic EOS), but
because these these regions are well below the threshdliefartificial atmosphere, we do
not consider an additional prescription for< 10% g cm 3.

We recall, in fact, that our HRSC methods require the use @fiadus atmosphere which
fills the regions of the computational domain not occupiethgycompact star. The threshold
value for the rest-mass density of the atmosphere is chodem $everal orders of magnitude
smaller than the maximum value and in our simulation a fluahnt is considered to be
part of the atmosphere if its rest-mass dengisatisfiesp/ max (p) < x10-8. When this
happens the fluid element is treated as a non-dynamical eattdescribed by a polytropic
EOS,p(p) = Kp*, with ' = 2 and its velocity is set to zero (see [49] for a more detailed
discussion on the use of the atmosphere invthiesky code).

The practical implementation of the realistic EOS can tdkegin a number of different
ways. The simplest is to use standard interpolation teclasige.g. based on Lagrangian
polynomials, on the values of the published tables. Whilgightforward, the interpolations
in this approach do not guarantee in general that the thernaudics relations are fulfilled
(see [50] for a thermodynamical preserving interpolatioir) addition, the derivatives of
the fields,e.g. of the pressure to evaluate the sound speed, are typicdllgvadable in the
tables. Furthermore, the use of high-order interpolatima@r finite differences can lead to
undesirable spurious oscillations.

A second approach that removes all of these problems, uségiarits that have been
proposed for the pressure. As an example, ref. [48] sugdj&ste the specific internal energy
of the unified SLy EOS table with the expression

p1pP? + p3pP4 P
(1+psp)? x 10=6 4 2.1p0-585 fo{ps(log(p) + p7)} (4)

where fo{z} = 1/(e*+1), p ande are in cgs units, and the coefficienis arep; =
{0.320, 2.17, 0.173, 3.01, 0.540, 0.847, 3.581} (see Table2 of [48]). Equation (4) is

obtained from Eq. (15) of [48] after using= mpn, wheren is the baryon number density
andmp = 1.66 x 1024 g is the mass of the nucleons. As discussed in [51], it is thesipte

fo{=pes(log(p) +p7)} + 5

1 Note that a different notation is used in [48] for some priveitvariables.
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to compute the pressure from the valuecafsing the first principle of thermodynamics at
T=0

de

2

- 5
p pdp’ ()

and thus to have an evaluation of the pressure which is thdynamically consistent.
The differences between the fit and the table are typicallg khen2%. Unfortunately,
although apparently very convenient, the evaluation ofittieg formulas containing several
exponential and logarithmic functions, turns out to be cataponally rather expensive even
if done in a optimized way.

As a third approach, which combines the efficiency of a taldarch with the
thermodynamical consistency of an analytic fit, consistspefforming a simple linear
interpolation among the tabulated values constructed fileenanalytic fit. Besides being
highly efficient, a linear interpolation also eliminateg tspurious oscillations that arise, for
instance, in the derivative of the pressure if high-ordearipolation formulas are used. In this
case, the interpolation error can be reduced simply by @bimgl the analytically constructed
tables with a large number of entriesg. ~ 600 in place of the~ 150 which are typically
available in published tables. This third approach is theactually implemented ithi sky
and provides a speed up of ab@ith with respect to the evaluation of the pressure via the
analytic fits and with comparable accuracy.

2.3. Initial Data

The initial data for our simulations are prepared as statipand axisymmetric equilibrium
solutions for rapidly rotating relativistic stars [52]. Apting spherical quasi-isotropic
coordinates, the line element of the corresponding spaeds

ds? = —e*T7dt? + e* V2 sin? 0(dg — wdt)? + e*(dr? 4 r2d6?), (6)
wherey, v, w and¢ are functions ofr andd. Moreover we assume the usual relativistic
j-constant law of differential rotation and that amounts &swme an angular-velocity
distribution of the form

_ 2 oin2 —2v
Q0= Al (Q — w)r*sin 9(23 ’ %
A2r2 [1 - (Q — w)?r?sin” fe—2v

wherer. is the coordinate equatorial stellar radius and the coefftel provides a measure of
the degree of differential rotation. Expression (7) repregsthe general-relativistic equivalent
of the simpler Newtoniari-constant law [27]
Q- Q=_ O.r2sin? 0 . (®)
(A2r2 4 r2sin? )

Clearly,A — oo corresponds to a star in uniform rotation, while— 0 corresponds to a star
with increasing degree of differential rotation. As a refeze,A = 1 yields a star with an
angular-velocity profile which varies of a facter3 between the center and the surface of the
star ¢f. left panel of figure 2).

In practice, we have computed a very large number of initiadets using the SLy
prescription for the EOS for which we have compubadyonic massi/,, the gravitational
massM, the angular momentuni, the rotational kinetic energy’ and the gravitational
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Figure 1. Left panel: position in thé3, M/R.) plane of the initial models computed with
A = 1, with the filled circles representing those we have evolvetherically (A similar
behaviour is shown also by the models with = 2. Indicated with solid thin lines are
isocontours of constant baryon mass models while indicati¢tl a thick dashed line is the
threshold to the dynamical bar-mode instability as congpéwe al’ = 2 polytrope [7]. Note
that the threshold for the instability tends to increasesfoaller rest-masses. Right panel: the
same initial models as in the left panel but showr{pn, r,/re) planes with isocontours of
constant3 (upper part) or constant//R. (lower part). See Table 1 for a summary of the
properties of the initial models.

binding energyV defined as
My, = /d% VAW, p, M= /d% (=210 + T4) /7, 9)
Ein = /d3x VAW, pe J= /d3x Tgaﬁ, (10)

1
Tzi/d%QTgaﬁ, W =T+ B + My — M, (11)

where, /7 is the square root of the determinant of three-dimensioediion,;; andW, = au’

is the fluid Lorentz factor. We stress that the definitions(2]) of quantities such ag 7', W
and s are meaningful only in the case of stationary axisymmeuwitfigurations and should
therefore be treated with care once the rotational symnietost.

Out of this large set, we have then selected for the numeeialution a number of
models so as to build sequences of constant baryonic mass\Wyit= 2.5 M, degree of
differential rotationA = 1,2 and values of the instability parametérranging between
0.140 and 0.250. Each model in this sequence is supramassive, namely it haass
which is larger than the maximum mass allowed for a corredjpgnnonrotating model,
i.e. Miazlo=o = 2.05 Mg, My mazlo=0 = 2.43 Mg, although it is not hypermassive,
namely it does not have mass which is above the maximum mass daiformly rotating
model, i.e. Myazlo=0,., = 2.41 Mo, My mazlo=0,,.. = 2.84 M. There are two
different reasons why such a large-mass model has beenrchd$e first one is that we
are interested in the development of a shear instabilithémbetastable star produced by the
merger of a binary system of two neutron stars. As shown bynabyen of authors and most
recently in [49], the product of this merger is either a supaasive or a hypermassive neutron
star. Hence, our reference model has a mass which is sufficierge so as to be a reasonable
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Table 1. Main properties of the simulated stellar models. Startiognfthe left: the name of
the model, the differential rotation parametéthe instability parametes, the compactness
M/Re, the central rest-mass densjty, the maximum of the densitymax (Note that for
models withA = 2, pmax = pe.), the ratio between the polar and the equatorial cooreinat
radii r,, /7, the proper equatorial radiuB., the gravitational masa/, the total angular
momentum/J divided by the square of the gravitational mass.

Model A B M/R. p./10"  pnax/10"  7,/re  R. M J/M?
(g/cm’)  (g/cm?) (Km) (Mo)

M1.140 1 0.140 0245 0.989 1011 0562 1320 2.19 0.681
M1.150 1 0.150 0.240  0.941 0.968  0.536 13.48 2.20 0.708
M1.160 1 0.160 0237 0.893 0.926  0.511 13.81 221  0.735
M1.180 1 0.180 0.226  0.802 0.847  0.461 14.49 222  0.789
M1.200 1 0.200 0217 0.712 0.773 0413 1527 224  0.844
M1.210 1 0210 0212  0.668 0.737  0.389 1570 2.25 0.873
M1.220 1 0.220 0207 0.618 0.703  0.365 16.16 2.26  0.902
M1.230 1 0.230 0200 0.576 0.669  0.340 16.67 2.26  0.933
M1.241 1 0241 0.194  0.522 0.633  0.312 17.29 227  0.968
M1.244 1 0244 0.193  0.506 0.624  0.305 17.47 228 0.978
M1.247 1 0.247 0.190  0.490 0.614  0.297 17.66 2.28  0.988
M1.250 1 0.250 0.188  0.474 0.604  0.289 17.85 2.28  0.999
M2.125 2 0125 0241 1.143 1143 0.642 1322 217 0.668
M2 150 2 0.150 0.227  1.039 1.039 0578 1415 217  0.739
M2. 175 2 0175 0210  0.947 0.947 0512 1533 218  0.801
M2.200 2 0.200 0.184 0.865 0.865  0.435 17.34 215  0.878

approximation to the product of a binary neutron star me&rg&€he second reason is that a
sufficiently massive model is necessary in order to reachegabf the instability parameter
which are above the expected threshold for dynamical batemiestabilities as computed
in [7], i.e. Bmax ~ 0.25. Indeed, the maximum possible value f@mwithin the computed
sequence is around,,.x ~ 0.2533 and thus just above the threshotfl {ong-dashed line in
the left panel of figure 1). Note also that the threshold ferittstability tends to increase for
smaller rest-masses.

Overall, when comparing with equilibrium models generatit a polytropic EOS with
K =100 andI’ = 2 (see table 1 of [6]) the realistic EOS models reach higherpamtmess
(modelsin [6] typically havé\//R. ~ 0.1) but lower values of} (i.€. Smax ~ 0.2533 for the
models considered here, whilg,.. ~ 0.28 for the polytropic models considered in [6]).

The whole space of parameters is shown in figure 1, whosedattlgeports the position
inthe (3, M/R.) plane of the initial models computed with= 1, and where the filled circles
represent those we have evolved numerically. Indicatel satid thin lines are isocontours
of constant baryon mass models while indicated with a thiakhed line is the threshold
to the dynamical bar-mode instability as computed fdr a= 2 polytrope [7]. The right
panel reports the same initial models considered in thede but shown in(p.,,/7.)
planes with isocontours of constan{upper part) or constarit/ / R. (lower part). The main
properties of the simulated models are also reported ire thbWhere we also introduce our
naming convention. Any initial model is indicated lss% #, with %being replaced by the

§ We note that the use of a supramassive model has also thevément consequence that it is not possible to
construct a corresponding nonrotating model and this ptevgs, for instance, from computing the frequency of the
fundamental mode and compare it with the results of pertivbanalyses.
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value of the differential-rotation parametdrand# by the instability parametes. As an
exampleM 1. 200 is the star withd = 1 andj = 0.200.

Finally, shown in figure 2 are the angular-velocity profillest(panel) and the rest-mass
density profiles (right panel) of some representative neydeimelyM 1. 150, M 1. 200
andM 1. 250. Indicated with different symbols, which match the onesha teft panel
of figure 5, are the normalized radial positions of the cdrotaradii, with the one for
modelM 1. 150 being shown filled to help distinguish it from the others. hsltigh we
postpone to sections 4.1 and 4.2 the discussion of the iatjgits of these corotation radii,
two aspects of the initial data are worth emphasizing. Th& €ine is that the amount of
differential rotation for a given value of effectively decreases when increasing the instability
parametefs (cf. left panel of figure 2), thus resulting in a smaller corotati@nd for models
with large3. The second one is that all the initial models evolved arsyamimetric but have
a “toroidal-topology”, namely have the maximum dengity,, that is not at the center of the
star, and thug. < pmax. This toroidal deformation increases with the rotation #mg with

8.
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Figure 2. Left panel: Initial angular-velocity profiles for three regentative models with
small, medium and high values gfand A = 1 (A similar behaviour is shown also by the
models withA = 2). Indicated with different symbols, which match the onethia left panel
of figure 5 and 6, are the normalized radial positions of thetedion radii, with the one for
modelM 1. 150 being shown filled to help distinguish it. Right panel: thengaas in the left
panel but for the initial rest-mass density.

3. Methodology of the analysis

A number of different quantities are calculated during thel@ion to monitor the dynamics
of the instability. Among them is the quadrupole moment eftatter distribution

k= /d3x VAW, p k. (12)

which we compute in terms of the conserved dengifyiV, p rather than of the rest-mass
densityp or of the Ty, component of the stress energy momentum tensor. Of colnse, t
use of,/7W, p in place ofp or of Ty is arbitrary and all the three expressions would have
the same Newtonian limit, though with different amplitudesthe gravitational waveforms
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produced (see for example [53]). However, we here adoptdha {12) becausg/4W, p
is a quantity whose conservation is guaranteed by the formserhfor the hydrodynamics
equations.

The quadrupole moment (12) can be conveniently used to iydnttth the growth
time of them = 2 instability 7, and the oscillation frequency once the instability is fully
developedr}. (Hereafter we will indicate respectively with andc?, | the growth time and
frequencies of then = n unstable modes and we note that, as will be discussed lafer on
during the simulation a number of different modes appeas jhstifying the use of the upper
index “7"). In practice, we perform a nonlinear least-square fit & thy component of the
computed quadrupol&’*(t) and we generally use as fitting function a sumMdf(usually
three) exponentially modulated cosines

N

k() = Z Igé) et/ cos(2m afn) t+ b)), (13)

=1
Wherelgk = [kt = 0). Because we commonly have only abdotcycles in the time
interval considered for the fits, extreme care needs to bkegpphen computing the growth
time, especially when the oscillation frequencies and thevth times are close to each other.
In these cases, in fact, variations of the initial phase efrtiodess(;) can result in large
variation of the growth times. In view of this, we will not req them.

Using three components of the quadrupole moment irfthg) plane we can define the
distortion parameterns, (t) andn (¢), as well as the axisymmetric modg(t) as

172 (t) — 1v(1) _ 2179 (t) CIFE(E) 4 1YY (t)
o+ ) 0T o) ™0 )+ )

so that the modulug(t) and the instantaneous orientation of the bar are given by

00 = VTR, ) =t (D) 15)

Finally, as a useful tool to describe the nonlinear propertf the development and
saturation of the instability, the rest-mass density iodgeosed into its Fourier modés, (t)
as

n+(t) = , (14)

P,(t) = /dgxpeimd’ , where ¢ = tan~'(z/y). (16)

The phase,, = arg(P,,) essentially provides the instantaneous orientation ofittth mode
when the corresponding mode has a nonzero power. Note thgiteléheir denomination, the
Fourier modes (16) do not represent proper eigenmodes difatisa of the star. While, in
fact, the latter are well defined only within a perturbatiggime, the former simply represent

a tool to quantify, within the fully nonlinear regime, whatathe main components of the
rest-mass distribution. As a final comment we note that wlll@uantities (12)—(16) are
expressed in terms of the coordinate tinaad are not invariant measurements, the lengthscale
of variation of the lapse function at any given time is alwkyger than twice the stellar radius

at that time, ensuring that events on the same timeslicdsoekse in proper time.

4, Results

In what follows we first describe the dynamics of the sheatalnifity as deduced from the
numerical simulations and then contrast our results wighptienomenological predictions on
the necessary conditions for its development.
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4.1. Dynamics of the instability

As mentioned when discussing the initial data, we have eebhumerically two sequences
of constant baryonic mass, with/, = 2.5 M. The first sequence has a higher degree
of differential rotation (.e. A = 1) and instability parameter ranging from = 0.140 to

£ = 0.250. The second sequence, on the other hand, has a smaller dégiéferential
rotation {.e. A = 2) and instability parameter betwegn= 0.125 and 8 = 0.200. For both
sequences the highest valuemtonsidered is also very close to the highest attainable with
our initial data code (see figure 1). To keep the computationsis to an affordable level
we have evolved of all these models forl5 ms and although this time window is in general
insufficient to capture the suppression of the instabiktgdequate to measure the frequencies
of the unstable modes and provide a first estimate of the gromies.

After analyzing the results following the method outlinedthe previous section and
focusing on the properties of the distortion parametgrsy. andng, we find thatall of the
models show anm = 2 instability. The maximum distortions obtained during tirawation
time aren ~ 0.1 (i.e. distortions of 10% with respect to the axisymmetric progenitor), with
the maximum values being reached for the models ofthe 1 sequence. The models of the
A = 2 sequence, in fact, have in general much smaller distortimite 7 ~ 0.01 over the
timescale over which they have been evolved. We believagtgsnply the consequence of
the fact that the models in this sequence have smaller gnatgk (see also the discussion in
the next section).

To show the general behaviour of the simulation we focus endéscription of the
result of the simulation for thel = 1 sequence as this is representative also of the one
with A = 2. In particular, in the upper part of each panel in figure 3 wewslhe
time evolution of the distortion parameter computed with Eq. (14) for six representative
models:M 1. 150, M 1. 160, M 1. 200, M 1. 220, M 1. 241 andM 1. 250. Similarly,
in the lower parts of each panel we show the correspondiniyiémo of the Fourier-modes
computed from Eq. (16) fan = 1,2, 3, 4.

Note that for models with lower values @fthe bar-mode deformation is very similar to
the one already discussed in [6, 7], growing exponentiaily with only one unstable mode
appearing ¢f. first row of figure 3). However, as the rotation is increased,development
of the instability is more complex and at least two unstabteles appear which develop
in different parts of the star. These two modes have verylainbiut distinct frequencies
and growth times, leading to a series of beatings in the &wols of ., whose irregular
evolution makes the calculation of the growth times chaieg (cf. second row). As the
rotation is increased towards the maximal valueg,afip to three distinct modes appear and
the evolution of the instability is correspondingly morergaex (f. third row). A similar
behaviour is shown also by the evolution of the Fourier modiae two models with lowes,
in fact, show a clear growth of the = 2 mode and of then = 1, with the latter becoming
first comparable and then larger when the instability is segged. In models 1. 250,

M 1. 241, on the other hand, thev = 2 andm = 3 modes have comparable amplitude
for a long period and then thes = 2 becomes the dominant one (this is more clear in
modelM 1. 241). Finally, for larger values of3, them = 1 mode never attains values

comparable with either the: = 2 or them = 3, which instead control the evolution.

Figure 4 reports the power spectral density (PSDy-ofandn, for the same models
(solid black lines) and allows to appreciate how the spectahanges as the instability
parameter is increased. More specifically, it is very appiatteat at lows the spectra have
only one peak, whose maximum is marked by the vertical blteddines and that is present
at all the values of beta considered; this is the mode we tefas o3 (cf. table 2 and
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Figure 3. Summary of the dynamics of some representative modeds, M 1. 150,

M 1.160, M 1.200, M 1.220, M 1.241and M 1. 250, with increasing values of
3. For each panel the upper part reports the evolution of tivelistortion parameter,
while the lower part shows the evolution of the power in thigedént modes of the Fourier
decomposition of the rest-mass dendity,. See text for details. Indicated with dotted vertical
lines are the windows within which the analytic fit with thetfunction 13 is made. Note that
we here report only some models and with= 1 as they are representative also of those with
A=2.
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Figure 4. Power spectral density (filtered using Hanning windowingarbitrary units of
the evolution ofn4. for the models described in figure 3 (black continuous ling) af the
axisymmetric modey, (red dashed line). Indicated with dotted vertical lines¢hl blue and
magenta) are the peak frequencies reported in the left pdriglure 5 within the corotation
band and which are used in figure 6 to mark the position of thetation radii. Finally, shown
with a shaded rectangular area is the corotation band fonadels.

figure 5). Asg increases, the amplitude of this peak decreases and it lesctha weakest
for very large rotation rates. Starting from modél1. 200 (although a hint of a peak is
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Table 2. Results of the analysis of quadrupole evolutions. The ®eqieso, and ol are
obtained from the position of the peaks in the PSD while tlegjienciess’, are obtained
from the nonlinear fitting of Eq. (13). Reported in the lasbteolumns are the edges of the
corotation band as expressed in terms of angular frequenitye ssurfaceQ. /7 = Q(r =
R.)/m and on the axi§2. /7. Note that depending on the rate of rotation and the degree of
differential rotation some frequencies may not be present.

Model oy 0% 0% O'g &% 6% 5; Qe/m Qe
(kHz)  (kHz) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz)

M 1.140 1.678 — 3.601 — — 3.521 — 1.807 6.701
M 1.150 1.671 — 3.521 — — 3.515 — 1.814  6.649
M 1.160 1.524 — 3.465  4.815 — 3.428 4.826 1.816 6.577

M 1.180 1.515 — 3.318  4.502  3.200 3.335 4.522 1.805 6.376
M 1.200 1.466 2983 3.215 4.272 2719 3.267 4.249 1.774 6.102
M1.210 1.432 2796 3.220 4.152 2846 3.174 4180 1.751  5.940
M1.220 1.396 2.668 2962 4.012 2559 2956 4.022 1.723  5.760
M1.230 1.366 2488 2920 3.871 2449 2900 3.843 1.689 5.563
M1.241 1.293 2353 2828 3.664 2342 2810 3.676 1.645 5.324
M 1.244 1.297 2328 2788 3.632 2301 2773 3.603 1.632 5.256
M 1.247 1.274 2267 2.750 3.564 2.250 2.765 3.522 1.618 5.183
M1.250 1.270 2.235 2777 3.461 2224 2768 3.475 1.603 5.110

M2.125 1.736 2969 3.384 — 2.964 3.395 - 2.217  3.929
M2.150 1.682 3.033 3.322 - 3.060  3.313 - 2.232 3.868
M2.175 1.610 2901 3.146 - 2.886  3.030 - 2.222  3.766
M 2.200 1.531 2589 2910 — 2,512  2.742 - 2.125  3.484

present already iM 1. 160), a second peak appears at higher frequency and is markied wit
magenta vertical dot-dashed lines; this is the mode we tefasos and although it never
becomes the largest one, its amplitude increasesitfinally, a third peak appears at low
frequency in the spectra starting from moblell. 220 (even though a hint is present also for
modelM 1. 210) and is marked with black vertical long-dashed lines. Thigls which we
refer to assl, becomes the dominant one at highNote also that in each panel of figure 4
we report with a dashed blue box the corotation band thathwelfurther discussed in the
following section.

As a final remark we note the peaks in the spectruméf+ 7YY (red dashed lines in
figure 4) are related to axisymmetric = 0 modes and most likely tg-modes oscillation
excited by the development of the instability. Indeed, ithreiquenciesr, match reasonably
well the phenomenological fit for th¢-mode frequencies of nonrotating neutron stars
with realistic EOSs computed in [54]. Because our sequedoesot contain nonrotating
configurations (the rest mass is larger than the maximum, dhé& association is just
qualitative and a more detailed investigation of the fregpyespectra of the equilibrium
models is necessary to confirm this suggestion.

4.2. Necessary conditions for the instability

To support the interpretation of these instabilities asasliestabilities we have considered
whether the necessary conditions suggested by [2] and Byaf2dmet. We recall that Watts
and collaborators pointed out that an unstable configuraimuld have the unstable mode
with a frequency within the corotation band. In the case efftffewtonian expression (8), the
corotation band is simpler to compute and for a mode withifeagyo and azimuthal number
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m, this is simply given by

A2
QA 9 g, (17)
A2+1 m

We have therefore checked whether any of the unstable 2 (bar-modes) with computed
frequencyo—&) has pattern speed velocity,/m = o4/2, within the corotation band.
A careful and rather involved analysis has indeed confirnmedprediction of Watts and
collaborators: namelwll the unstable modes are within the corotation band of the progenitor
axisymmetric model. These results for the models with= 1 are listed in table 2, where
we report the edges of the general-relativistic corotaltiand in terms of angular frequency
at the surfac®. /7 = Q(r = R.)/= and on the axi$)./m, as well as the frequencies of the
unstablen = 2 modes obtained from the position of the peaks in the PSDd«}) or from
the nonlinear fitting of Eq. (13) €. 53). Note that depending on the rate of rotation and the
degree of differential rotation some frequencies may ngiresent in the corotation band.

The datain table 2 is also shown in the left panel of figure Sn&hve plot the position of
the non-axisymmetric frequencie$ within the corotation band as a function@findicated
with a filled symbol, to distinguish it from the others, is thefrequency for moddil 1. 150
(cf. figure 2 and 6). The right panel of the same figure shows thesponding information
and on the same scale but for the models with= 2 (the inset shows instead a magnified
view). Clearly, for both sequences all the unstable modesagthin the band and, as the
stellar rotation rate increases, more unstable modes afipehe same value of.

Figureb. Left panel: Position of the non-axisymmetric frequen(zigéor models withA = 1
and shown as a function ¢f; indicated with thick solid lines are the edges of the cdrota
band,i.e. the frequency interval betweém. /7 and<2. /7. Shown with a filled symbol, to help
distinguish it from the others, is thﬁ% frequency for modelM 1. 150 (cf. figure 2 and 6).
Right panel: the same as in the left one and with the same buafer models withd = 2;
the inset shows instead a magnified view. Clearly, in bottejsaall the unstable modes are
within the band and up to three unstable modes appear fot thel sequence with increasing

8.

Watts, Andersson and Jones also give a qualitative deserjsummarized in their figure
2 of [2], of how the unstable and stable models should beikiig&d in the @, 3) plane. The
considerations they make are particularly simple: for liighrees of differential rotation, that
is at low values of4, the corotation band is rather wide and there will be bothgeuvalue



On the Shear Instability in Relativistic Neutron Sars 16

and a lower value off between which the shear instability can develop (thesearitalues

of  correspond to the entrance and exit of the unstable modesindtotation band). This
situation corresponds therefore to the one commonly erteceshin numerical simulations,
suchasthosein[18, 19, 20, 21, 22, 23, 24], and for whichhlikaisinstability takes place only
for very small values of the instability parameter and oresicales that are much longer than
the dynamical one. When moving to larger degrees of diffgaibrotation, that is when going
to smaller values ofl, the corotation band becomes larger and larger and the istséaiility
can develop essentially for all values@f merging with the dynamical bar-mode instability
for 8 = 0.25. This is exactly what has been found here. Conversely, whanng to smaller
degrees of differential rotation, that is when going to leigialues ofA, the corotation band
becomes thinner and the shear instability can develop amlg §maller range gf. As the
differential rotation is further decreased and the stad$dn rotate uniformly, the corotation
band width vanishes, all the models are stable to the shstbitity and subject only to the
dynamical bar-mode instability fg# > 0.25. This is indeed the case for the unstable models
evolved in [6], which were purely (bar-mode) dynamicallystable and none of which had
the unstable mode within the corresponding corotation plamidabove it.

In essence, therefore, there should be an intermediate oinigfor which the instability
is absent at lows, appears at intermediate values and then disappears ddaghas, thus
defining an interval of values g% for which the models are unstable. To validate also this
prediction we simulated a sequence of models with smalfégrditial rotation andd = 2.
This seconds sequence has the same baryonic mass as thatwithbut with 3 in a smaller
range, namely between = 0.125 and = 0.200 (Note thats = 0.200 is also very close
to the largest value for which we could build an equilibriurndel.) Unfortunately, also all
of these models show an = 2 shear instability, with the unstable frequencies fallirithin
the corotation band, as it was for tHe= 1 stars. Of course, lack of evidence is not evidence
of absence and the fact that we have not found stable modeiswiur range of values of
most likely means that these stable models have to be sebeither for values off < 0.125
(for this value ofA = 2), or by moving towards higher values df where the corotation band
is less large.

An obvious consequence of the phenomenological scenasorided by [2] and
confirmed by the calculations reported here is that the idea w-7"/|W| instability
is indeed misleading and it is instead more meaningful toktlaf a more generic shear
instability that, depending on the degree of rotation andiféérential rotation, may manifest
itself on timescales that are comparable with the dynandpak (as in the cases reported
here) or on much longer ones (as in the cases reported in [17])

Another phenomenological prediction made by Watts, Argteraind Jones in [2], is that
the growth times should be shorter in the center of the baddnenease towards the edges (the
growth times should in fact diverge at the edges). As showfigirre 5, all of the simulated
models do have unstable modes well inside the corotatiod bad this probably explains
why we observe them develop on a timescale which is compaaith the dynamical one
and not on much longer timescales as in the original findirfd of We also find indications
that theA = 2 models, which generically have longer growth times, havstalle modes
which occupy regions of the corotation band that are ovenalle central €. right panel of
figure 5) and thus in contrast with what expected from [2]. ldeer, the difficulties mentioned
above in computing an accurate estimate of the growth timdgtze intrinsic difficulties in
determining what is the central part of the corotation bamelyent us from providing a more
quantitative validation of this prediction.

We now switch to consider our results in the light of the othecessary condition for
the onset of the shear instability discussed in [20]. As oeet in the Introduction, it has in
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Figure 6. Left panel: radial profiles of the vortensity for three representative models with
small, medium and high values 6f The different symbols match the ones in figure 2 and in
the left panel of figure 5, with the one for mod®&l 1. 150 reported as filled, and show the
actual position of the corotation radii. Note that none efsii coincides with the minimum of
V; for compactness we have reported only the models with: 1. Right panel: normalized
corotation radii for the different frequenciegﬁ presented in the left panel of figure 5 shown as
a function of3; the same convention of the previous figures is used for tfereint symbols.

fact been shown that the presence of a minimum in the profilleeobortensity is a necessary
condition for a mode in corotation to be unstable [20]. Theitive description is that the

vortensity well can act as a resonant cavity inside the ataplifying the modes that happen
to lay near its minimum [32]. Indeed, the growth rate of thstable mode is expected to
depend on the location of its corotation radius with respedhe vortensity profile, being

proportional to the depth of its corotation radius inside ¥brtensity well [20]. Note that the

mere existence of a local minimum in the vortensity cannatded as a sufficient condition
for the occurrence of a shear instability. All of the unséabiodels considered in [6], in
fact, do show a local minimum in the vortensity but do not hthe unstable modes in the
corotation band.

To validate whether this Newtonian condition holds also tloe general-relativistic
instabilities simulated here, we have computed for all thoelets the Newtonian vortensity,
which is defined as the ratio, along the radial cylindricabrciinate, between the radial
vorticity and the density

V:QQ_HDQ'@, (18)

p

where w is the radial cylindrical coordinate (a fully general-t@lstic definition of the
vortensity is also possible but more complicated to comjunig not significantly different
from the Newtonian one). When doing this we found that all timstable models have
vortensities with a local minimum in the star and this is shaw the left panel of figure
6, which reports the radial profiles of the vortensityfor three representative models with
small, medium and high values gf The different symbols match the ones in the left panel
of figure 2 and 5, with the one for mod®l 1. 150 reported as filled, and show the actual
positions of the corotation radii. The right panel of the sdigure, on the other hand, shows
the normalized corotation radii for the different frequiese} presented in the left panel of

figure 5 as a function of.
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Note that none of these coincides systematically with theimmim of V', nor with the
maximum of the rest-mass density. All of the corotation irdadwever, do move towards
larger radial positions as the rotation rate is increasedcty as does the minimum of the
vortensity and the rest-mass maximum. Although we cannofirto that modes whose
corotation radius is closer to the minimum of the vortensigve systematically shorter
growth times (our data is not sufficiently accurate for thisg can compare the models
with the higher degree of differential rotatioh = 1 with those having a smaller degree
of differential rotationd = 2. In the first case the vortensity well is considerably degpith
AV/V =1 = Viin/Vr—o ~ 0.6 — 0.7, while for the latter the vortensity has shallower wells
with AV/V = 1 — Viin/Vr=o ~ 0.02 — 0.25. Since the models withl = 2 have smaller
growth rates, our results indicate therefore that also xistence of a local minimum in the
vortensity can be taken as a necessary condition for thdaj@went of the shear instability
and that the depth of the vortensity well can be used to etitha growth of the instability.

5. Conclusions

For many years the properties of rapidly rotating and selfdgating fluids have been
characterized by a complete analytic perturbative theohychwv provided, for instance,
sufficient conditions for the development of instabilitigee, for instance, [3, 55] for a
collection of results). As numerical simulations have bmeoincreasingly accurate and
stable on longer timescales, these predictions, both intdi@an theory and in full general
relativity, have been verified, corrected and in some castenéed. Our ability of modelling
such configurations has now reached a maturity such that doeuai new properties and
instabilities have been “discovered” numerically, but ethido not have behind a fully
perturbative description. The main reason for this is thasthof this phenomenology is
the result of physical scenarios which are much more comihlar the ones investigated
perturbatively in the paste.g. non-isolated systems with high differential rotation and
exchanging mass and angular momentum, which are much nféiceldio treat analytically.

A most notable example of these complex and yet ubiquitostfilities is the so-
called “low-T'/|W| instability”, which was initially found in [17] and then repduced in a
number of other different scenarios [18, 19, 20, 21, 22, 2328]. As the phenomenological
description of this instability provided by the simulatiohas become richer and richer, a
full understanding of the mechanisms that lead to its dgrmknt has lagged behind and
it is presently unclear. We are therefore in a situation inclwmumerical simulations can
probe regimes and conditions which are not yet accessilpertorrbative calculations, and
can guide the latter by confirming or refuting those scesattiat although possible do not
find a realization in practice.

This work has followed this spirit and has used fully geneeddtivistic calculations of
rapidly and differentially rotating neutron stars modeleith a realistic EOS to shed some
light on the development of the lo@/|1/| instability. In particular we have concentrated
our attention on validating an indirect prediction, madetigtts, Andersson and Jones [2],
who recognized the loW?/|W| instability as the manifestation of a more generic class of
instabilities associated to the existence of a corotatenmd{30, 31], theshear instabilities,
and should develop faany value of the instability paramete# when sufficient amounts of
differential rotation are present. This is exactly what vagérfound in our simulations. More
specifically, we have performed simulations of sequencesofron-star models described by
a realistic SLy EOS [1] and having constant rest-mass anckdsf differential rotation, but
with different amounts of rotation. In all cases considesechave found the development of
a bar-mode instability growing on a dynamical timescalenewhen the initial axisymmetric
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models were well below the critical limit for the dynamicadrbmode instability. These
results, which match well the phenomenological scenaritrgyed in [2], suggest therefore
that the idea of a lowF/|WW| instability is indeed misleading and should be replaced by
the more general one of shear instability. Depending thethendegree of rotation and
of differential rotation, the instability will develop oimtescales that are comparable to the
dynamical one (as reported here) or on much longer onesgfastee in the first lowf/|W|
instability studies).

Special attention has also been paid to the properties afrteble modes and to their
position within the corotation band or the vortensity pesil In particular, we have shown that
all the unstable modes are within the corotation band of tbggnitor axisymmetric model
(which is the necessary condition for the development ofitiséability proposed by [2])
and that all of the unstable models have vortensity profiligls a/local minimum (which is
the necessary condition suggested by [20]). Finally, bymaning the growth times among
models with different degree of differential rotation wesbahown that there is a correlation,
although not a strong one, between the depth of the vorjewsll and growth rate of the
instability, with the latter being larger for models withegeer wells.

In summary, the results presented here shed some light aradeaspects of shear
instabilities, but they also reveal that more work is regdjrfor instance, to distinguish
between the predictions based on the corotation band andném based on the vortensity
well, or to establish whether in effect they just represamt tifferent ways of expressing
the same physical conditions. Clarifying these aspecig@guires additional analytical and
numerical modelling, and this will be part of our future raseh.
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