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Grand canonical simulation of phase behaviour in highly size-asymmetrical binary
fluids

Douglas J. Ashton1 and Nigel B. Wilding1

1Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom.

We describe a Monte Carlo scheme for the grand canonical simulation study of fluid phase equi-
libria in highly size-asymmetrical binary mixtures. The method utilizes an expanded ensemble in
which the insertion and deletion of large particles is accomplished gradually by traversing a series
of states in which a large particle interacts only partially with the environment of small particles.
Free energy barriers arising from interfacial coexistence states are surmounted with the aid of mul-
ticanonical preweighting, the associated weights being determined from the transition matrix. As
an illustration, we present results for the liquid-vapour coexistence properties of a Lennard-Jones
binary mixture having a 10 : 1 size ratio.

I. INTRODUCTION

Fluid mixtures comprising two or more particle species
of disparate sizes are common in soft condensed mat-
ter [1]. A prime example is a colloidal dispersion to
which much smaller particles have been added such as
non-absorbing polymers [2–4] or charged nanoparticles
[5]. Interest in such systems stems from the fact that
by judicious choice of the small component, one can po-
tentially control the equilibrium and dynamical proper-
ties of the large component, giving rise to a rich assort-
ment of novel phenomena and material properties [2, 6].
Given, however, the wide variety of small particles that
one might conceivably choose to add, the experimental
task of characterizing the range of possible behaviour is
considerable. With this in mind there has been much
interest in deploying statistical mechanics and computer
simulation to predict the properties of such mixtures.

In this paper we shall focus on the problem of obtain-
ing the equilibrium phase behaviour of models of highly
size-asymmetrical mixtures. Direct analytical assaults
on such systems are generally complicated by the dis-
parity in particle length scales [7]. To make progress,
a widely practiced simplifying strategy is to try to map
the true two-component mixture onto a single component
system comprising solely the colloid particles. These are
assumed to interact via an effective potential which is
supposed to represent the net effect of the bare colloid-
colloid interactions plus the additional interactions medi-
ated by the small particles. Arguably the most successful
example of such an approach pertains to particles that
interact as hard spheres – a situation which can be real-
ized experimentally to a good approximation in colloid-
polymer mixtures [8]. Here the effective interaction is
the celebrated “depletion” potential describing the inter-
action between two hard sphere colloids immersed in a
“sea” of small hard spheres [9]. In seminal work, Bob
Evans and coworkers have contributed much insight into
this situation by tracing out the degrees of freedom as-
sociated with the small particles in order to produce an
explicit expression for the depletion potential parameter-
ized by the particle size ratio and the volume fraction of
small particles. This not only provides valuable infor-

mation on the nature of the colloidal interactions, but
also serves as a basis for theoretical and simulation in-
vestigations of the phase behaviour of the effective one
component system [10–12].

Whilst impressive progress has been made in obtaining
accurate effective one-component potentials, at present
they are largely limited to underlying interactions of the
hard sphere form [1]. Moreover, because effective poten-
tials are usually derived in the limit of low density of
large particles, there are concerns about their accuracy
at high densities where many body effects are significant.
Ideally then, one should like to be able to tackle the full
two component system and treat arbitrary interactions
between the particle species. Achieving this analytically
still seems some way off, making it tempting to appeal
to computer simulation for help. Unfortunately, simula-
tions of highly size asymmetric mixtures encounter their
own problems: the relevant physics is controlled by the
length scale of the large particles, but attempts to re-
lax these particles are often frustrated by the presence
of the small ones. For instance grand canonical Monte
Carlo simulations – the method of choice for studies of
fluid phase transitions [13] – suffer an unfeasibly small ac-
ceptance rate for insertions of large particles. Similarly
in Molecular Dynamics an impractically small timestep
is mandated by the need to avoid high energy overlaps
between large and small particles.

In this paper we describe a tailored Monte Carlo simu-
lation scheme that circumvents the principal drawbacks
of traditional approaches. The essential idea is to treat
both species grand canonically, but to ease the sampling
bottleneck for insertions (and deletions) of large parti-
cles by performing these – not in a single Monte Carlo
step – but gradually. In practice this is achieved by per-
mitting the system to traverse (in a stochastic fashion)
a prescribed set of states (or “stages”) that interpolate
between the limits of a large particle being fully present
and fully absent from the system. This idea of staged
insertion has been around for some time, principally in
the context of chemical potential measurements for dense
fluids and complex molecules using the Widom formula
[14–19]. It has been recently revisited in the context of
optimizing expanded open ensembles by Escobedo [20]
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and by Shi and Maginn [21]. However, to our knowledge
it has not been used to calculate the phase behaviour of
a model asymmetric mixture at large ratios of the com-
ponent sizes.

Whilst our method is quite capable of treating both
large and small particles on an equal footing when deter-
mining the phase behaviour of the mixture, the perspec-
tive we adopt in the present paper is one inspired by the
colloidal systems discussed above. Specifically, we shall
focus primarily on the phase coexistence properties of the
large species (colloids), the role of the small particles be-
ing assumed to modify the effective interactions between
the large ones. Hence the phase diagram that we shall
present is a single component (large species) projection
of the full phase diagram, this being obtained at constant
reservoir volume fraction of the small species.

II. METHOD

In this section we begin by outlining the statistical
mechanical basis to the staged insertion method for a
highly size asymmetric binary mixture. Thereafter we
discuss implementation issues, taking as an example the
case of a Lennard-Jones (LJ) mixture.

A. Statistical mechanics

Consider a binary mixture comprising N particles, Nl

of which are ‘large’ (l) and Ns of which are ‘small’ (s),
all contained in a volume V at temperature T . Particles
are identified via an index 1 ≤ i ≤ N , and a species label
γi = l, s, and we write the internal energy as

Φ =
N∑

i=1

N∑
j=i+1

φγi,γj
(qi,qj) , (1)

where φγi,γj is the pair potential for particles i and j of
species γi and γj , located at position vectors qi, and qj

respectively.
Let us now augment this system with an additional

‘ghost’ (G) large particle having position vector qG. The
ghost particle is taken to interact normally with other
large particles, but differently with small particles. To
deal with this, it is more convenient to associate separate
indices k and m with the Nl large and Ns small parti-
cles respectively, and write the interaction of the ghost
particle as

ΦG =
Nl∑

k=1

φll(qk,qG) +
Ns∑

m=1

φ̃
(n)
ls (qm,qG) . (2)

Here φ̃
(n)
ls describes the interaction between the ghost

large particle and a small particle. This is modified

with respect to the standard large-small interaction by
the dependence on a discrete stochastic macrovariable
n = 0 . . .M − 1. The role of n is to index the stages
that specify the degree of coupling between the ghost
and the small particles. Fluctuations in n forwards or
backwards across its range result in the gradual inser-
tion or deletion of a large particle (Fig 1). To be more
specific, we let n = 0 correspond to Nl large particles,
while n = M corresponds to Nl + 1. Intermediate values
of n = 1 . . .M − 1 represent a system of Nl large parti-
cles plus a ghost particle. Thus transitions n = 1 → 0
correspond to the deletion of the ghost particle from the
system, while n = M − 1 → M correspond to it turning
into a fully interacting (ie. standard) large particle. In
this sense the n = M state for a system of Nl large par-
ticles and the n = 0 state for a system of Nl + 1 large
particles are equivalent.

1 2 M−1 1 2 M−1

0 1 2

,n =

Nl =

, · · ·0 0 0

FIG. 1: Schematic showing how each integer value of the large
particle number Nl is expanded into M stages, each of which
is indexed by the macrovariable n.

The internal energy of the augmented system is
Φ′({q}l, {q}s, qG, n) = Φ + ΦG and the associated ‘ex-
panded’ [22] canonical ensemble has the partition func-
tion Z ′(Nl, Ns, V, T, n), where

Z ′ =
Nl∏

k=1

Ns∏
m=1

∫
dqk

∫
dqm

∫
dqG exp[−βΦ′], (3)

with β = 1/kBT . In the present work, we shall be con-
cerned with the measured form of the grand canonical
(GC) ensemble probability distribution of the fluctuat-
ing number of large particles, p(Nl|µl, µs, V, T ), where
µs and µl are the chemical potentials of the small and
large species respectively. This is obtainable from mea-
surements of the joint distribution p(Nl, n|µl, µs, V, T )
conducted within the expanded GC ensemble, which is
defined via a weighted sum of the expanded canonical
ensemble partition function Z ′:

p(Nl, n) '
∞∑

Ns=0

Z ′ exp [β(Nlµl + Nsµs)] . (4)

Here ' means up to an arbitrary normalization constant
and (for brevity) we have omitted combinatorical and
volume factors. p(Nl|µl, µs, V, T ) follows from Eq. 4 by
picking out those macrostates from the expanded ensem-
ble having n = 0, ie. that correspond to the physical

Page 2 of 8

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3

states in which no ghost particles are present in the sys-
tem:

p(Nl) =
1
Z

∞∑
Ns=0

M−1∑
n=0

Z ′ exp [β(Nlµl + Nsµs)] δn,0 (5)

where

Z =
∞∑

Nl=0

∞∑
Ns=0

M−1∑
n=0

Z ′ exp [β(Nlµl + Nsµs)] δn,0 (6)

is the grand partition function.
In the present work we shall seek to obtain p(Nl, n) at

state points (µl, µs, T ) for which its form may vary over
many decades. Variations on such a scale preclude di-
rect measurements of p(Nl, n) unless special biasing tech-
niques are deployed to facilitate sampling of the regions
of intrinsically low probability. To this end we utilize
multicanonical preweighting [23], specifying a sampling
distribution

p̂(Nl, n|w) ' p(Nl, n) exp[w(Nl, n)], (7)

where w(Nl, n) represents a set of weights defined on the
discrete combinations {Nl, n}. As shall be described in
Sec. II B, these weights are chosen such as to ensure
approximately uniform sampling on the set. The de-
sired form of p(Nl) is regained from the measured form
of p̂(Nl, n) by first using Eq. 7 to unfold the effects of
the weights, then picking out those macrostates having
n = 0.

B. Implementation for a binary Lennard-Jones
mixture

In order to illustrate how the above formalism can be
implemented in practice, we consider the case of a binary
mixture of Lennard-Jones particles. Pairs of particles
labelled i and j (having respective species labels γi and
γj) interact via the potential

φij(r) = 4εγiγj

[(σγiγj

r

)12

−
(σγiγj

r

)6
]

. (8)

Here εγiγj is the well depth of the interaction, while σγiγj

sets the range of the interaction based on the additive
mixing rule σγiγj

= (σγi
+ σγj

)/2, where σγi
and σγj

are the particle diameters. Interactions are truncated at
rc = 2.5σγiγj and we take σl as our unit length scale.

We shall be concerned with state points in which the
small particles occupy a relatively small fraction of the
overall volume and act as a quasi-homogeneous back-
ground to the large ones. Under these circumstances,
configurations of small particles can readily be sampled

using a standard GC algorithm at constant chemical po-
tential, µs. As is customary (in order to make contact
with experimental scenarios), we choose µs to yield a
prescribed volume fraction, ηr

s , of small particles in the
reservoir [24]. Since we seek a quasi-uniform density of
small particles, we set εss = εls = εll/10, which ensures
that the small particle reservoir fluid lies well above its
own (liquid-vapour) critical temperature. In the results
of Sec. III we refer to a dimensionless temperature which
is defined as T ? = 1/(βεll).

For highly size-asymmetric mixtures, a large number
of small particles are typically found within the cutoff
radius 2.5σls of each large particle. In order to locate
efficiently these particles, we partition our cubic simula-
tion box of volume V = L3 into cubic cells of linear ex-
tent 2.5σls, and maintain a list of cell occupancies. Simi-
lar cells structures were employed to identify small-small
and large-large interactions [25].

As described in Sec. II A, a large particle is inserted
or deleted in stages by modifying its interaction with the
small particles. Accordingly one must specify in advance
the form of the ghost particle interaction for each stage
n. Obvious candidate strategies include varying the well
depth of the interaction, or its range. However, we have
found that neither of these approaches operates particu-
larly effectively in practice because of the rapid increase
of the potential for distances less than that of the poten-
tial minimum. Specifically, particles whose separation is
such that the interaction energy is small at one value of
n can incur a very high energy penalty at a neighbouring
stage. This impacts adversely on the acceptance rate,
a difficulty which can only be mitigated by employing a
large total number of stages M .

A superior strategy circumvents this problem by im-
posing a minimum on the attractive part of the interac-
tion potential and a maximum on the repulsive part:

φ̃
(n)
ls (r) =

{
min(φls(r), φ̃

(n)
max) r < σls

max(φls(r), φ̃
(n)
min) r ≥ σls

. (9)

Each stage, n, is thus specified by a pair of parameters,
φ̃

(n)
min and φ̃

(n)
max. The form of φ̃

(n)
ls (r) for two such stages

is compared schematically with the full potential φls(r)
in fig. 2.

Once the set of stages has been defined, a Monte Carlo
scheme for sampling them can be implemented. Given
a system of Nl large particles and a ghost particle at
stage n, a proposal is made to perform a transition to
an adjacent stage, n → n′. This proposal is accepted or
rejected according to a simple Metropolis criterion

pacc = min
(
1, exp

[
−β(Φ(n′)

G − Φ(n)
G ) + ∆w

])
, (10)

where ΦG is given by Eq. (2) and ∆w = w(Nl, n) −
w(Nl, n

′) is the difference in multicanonical weights in the
old and new states, the specification of which is discussed
below. Note that special measures pertain to transitions

Page 3 of 8

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

4

φ̃(n)
ls (r)

φ̃(2)
max(r)

φ̃(1)
max(r)

φ̃(1)
min(r)

φ̃(2)
min(r)

r

n = 1

n = 2

n = 1

n = 2

FIG. 2: Schematic form of the interaction between the ghost

particle and a small particle, φ̃
(n)
ls (r) (Eq. 9) for two values

of n, compared to the full LJ interaction potential between
large and small particles.

that bring the ghost particle to the end of the range of
n. Specifically, for a transition n = 1 → 0, the ghost par-
ticle is completely removed from the system; the reverse
move entails a new ghost being added at a randomly cho-
sen location. On the other hand, when a ghost particle
undergoes a transition n = M − 1 → M , it becomes
fully coupled to the rest of the system, φ̃ls(r) = φls(r),
and Nl → Nl + 1; the corresponding reverse move en-
tails nominating a randomly chosen large particle to be-
come a ghost and setting Nl → Nl − 1. In such circum-
stances the difference in weights appearing in Eq. 10 is
∆w = w(Nl, n)− w(N ′

l , n
′).

In standard GC simulation, updates that insert
or remove a particle usually incorporate a factor of
eβµlV/(Nl+1) (insertion) or e−βµlNl/V (deletion) in pacc

to yield the correct GC equilibrium distribution. When
operating in the expanded GC ensemble it is convenient
(in the interests of obtaining a smooth weight function
in the expanded space of Nl and n) to set the chemical
potential µl = 0 and to ignore the volume and particle
number factors for the time being. The neglected factors,
as well as the unfolding of the multicanonical weights (cf.
Eq. 7) are easily accounted for when extracting the final
GC distribution from the measured form of p̂(Nl, n):

log p(Nl|µl) ' log p̂(Nl, n = 0|µl = 0) + βµlNl (11)
−w(Nl, n = 0) + Nl log V − log(Nl!).

We turn now to the matter of the choices for the num-
ber of stages M and the associated values of the stage
parameters φ̃

(n)
min and φ̃

(n)
max. This is governed by three

main desiderata :

(i) The rates for transitions between neighbouring
stages should be roughly equal (in both directions)
in order to avoid bottlenecks in the sampling.

(ii) M should be sufficiently large to ensure a reason-
ably high transition rate.

(iii) The number of stages M should not be so large
that the correlation time of the resulting random
walk in {Nl, n} is excessive (bearing in mind that
the time to cover a given number of steps grows like
the square of the number of steps).

With regard to (i), as we have chosen to implement
it, staging solely influences the strength of interaction
between the ghost large particle and the small particles.
Hence it does nothing to ameliorate the decrease in ac-
ceptance rate that accompanies an increase in the large
particle density – a situation analogous to standard GC
simulations of single component fluids. Thus even if the
effects of the small particles were to be offset equally for
all Nl, one would still expect the transition rate to fall
with increasing Nl. In such a situation, one can at best
aim to avoid bottlenecks in the sampling by ensuring that
(i) is satisfied locally in {Nl, n}. With regard to (ii) and
(iii), there is in practice a tradeoff to be realized here
which (in parallel with satisfying (i)) may necessitate a
degree of trial and error, although more systematic ap-
proaches have been considered in the expanded ensemble
literature [20]. In sec. III we consider factors affecting
the choice for one practical situation.

As discussed in Sec. II A, the form of p(Nl, n) may span
many decades of probability and in order to sample it ef-
fectively, multicanonical preweighting is called for. This
in turn requires knowledge of a set of weights, w(Nl, n),
that facilitate the even-handed sampling of regions of
high and low probability. One choice that ensures this is
w(Nl, n) ≈ − log p(Nl, n) which results in a sampled dis-
tribution p̂(Nl, n) that is approximately flat (cf. Eq. 7)
[26]. However, since p(Nl, n) is just the distribution that
we seek, the task of determining the weight function ap-
pears –at first sight– to be circular. Fortunately though,
the situation is saved by the observation that it is possible
to build up a suitable estimate of w(Nl, n) from scratch
via iterative means [29]. The approach we favour for
doing so is based on the transition matrix Monte Carlo
(TMMC) method [30–34].

TMMC works by monitoring the transitions between
macrostates and using these to infer their relative proba-
bility. Once sufficient transition statistics have been col-
lected, it is possible to construct the entire probability
distribution. The starting point is the macrostate bal-
ance condition relating the equilibrium probability of two
macrostates u and v to the transition rates between them:

p(u)W (u → v) = p(v)W (v → u) , (12)

where u and v are taken to represent combinations of
Nl and n. The equilibrium transition rate, W (u → v)
can be estimated in the course of a simulation by ac-
cumulating the acceptance probabilities for macrostate
transitions into a collection matrix, C(u → v). For every
proposed move, u → v, the unbiased acceptance proba-
bility, a (calculated from Eq. 10 by assuming ∆w = 0) is
added to the collection matrix thus:
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C(u → v) → C(u → v) + a (13)
C(u → u) → C(u → u) + (1− a) . (14)

This happens regardless of whether or not the move is
accepted.

The transition rates can be extracted from the collec-
tion matrix via

W (u → v) =
C(u → v)∑
v′ C(u → v′)

, (15)

where the sum in the denominator on the right hand side
runs over all possible values of the macrovariable.

Putting the transition rates into equation (12) yields
the macrostate probabilities

p(v)
p(u)

=
W (u → v)
W (v → u)

, (16)

from which the multicanonical weights follow as

w(u)− w(v) = − ln
W (u → v)
W (v → u)

. (17)

Since the collection matrix is concerned solely with un-
biased acceptance probabilities, one is free to apply an
arbitrary bias during the simulation without affecting es-
timates of equilibrium properties. This feature of TMMC
can be exploited to provide an automated strategy for ob-
taining a suitable multicanonical weight function. Start-
ing with no knowledge of the weight function, one simply
updates w(Nl, n) periodically via equation (17). This al-
lows the sampling to gradually extend over the range of
Nl, n, pushing progressively into regions of ever smaller
probability [35]. Once the region of interest has been
adequately sampled, the collection matrix provides an
estimate of the requisite distribution p(Nl, n) via Eq. 16.
During the simulation we also sample (in list form [37])
the instantaneous values of Nl, Ns, n, together with the
configurational energy Φ. This permits extrapolation of
the results for p(Nl, n) in temperature via standard his-
togram reweighting techniques [36].

III. APPLICATION TO THE LIQUID-VAPOUR
TRANSITION OF A BINARY LENNARD-JONES

MIXTURE

As a test of our method, we have applied it to the
study of liquid-vapour phase coexistence in a LJ mixture
having particle size ratio q ≡ σss/σll = 0.1 and reservoir
volume fraction of the small particles ηr

s = 0.01. The sim-
ulations were performed for a cubic periodic simulation
box of side L = 7.5, which for this ηr

s would correspond
to Ns ≈ 8000 in the absence of large particles. Since the

0 ≤ Nl ≤ 130 Nl > 130

Stage, n φ̃min φ̃max φ̃min φ̃max

1 −0.5 7.5→ 2.7 0 0

2 −0.8 20→ 16 −0.5 7.5

3 - - −0.8 20

TABLE I: The stage parameters φ̃
(n)
min and φ̃

(n)
max (expressed in

units of εls) as used in the simulations. For 0 ≤ Nl ≤ 130,
two intermediates stages (n = 1, 2) were used (ie. M = 3),

and φ̃
(n)
max was varied linearly as a function of Nl between the

limits shown (see text). For Nl > 130, three intermediate
stages were used (M = 4) with no variation of parameters.

coexistence properties of this system are known already
on the basis of simulation studies using a very different
approach (previously proposed by one of us [39]), there
exists a convenient baseline for comparison.

The choice of the stage parameters φ̃
(n)
min and φ̃

(n)
max was

guided by the criteria set out in Sec. II B. For small
values of Nl ≤ 130, only two intermediate stages were
required (ie. M = 3) to obtain a fairly high transition
rate. However, in order to maintain a roughly constant
transition rate across intermediate stages for different Nl,
it was found necessary to vary φ̃

(n)
max linearly as a function

of Nl between the limits shown in Table I. For Nl > 130
the overlap of the ghost with large particles becomes the
principal ground for rejecting an insertion, and we chose
to mitigate this by the introduction of an additional stage
(assigned to n = 1) with parameters φ̃

(1)
min = φ̃

(1)
max = 0,

thus making M = 4. No variation of the other stage pa-
rameters was deemed necessary in this regime, whose val-
ues for φ̃

(n)
min and φ̃

(n)
max are included in Table I. Across the

entire range of Nl studied, the acceptance rate for transi-
tions varied from ' 30% at small densities of large parti-
cle to ' 5% at liquid-like densities. The principal source
of this variation is overlaps between the ghost particle
and large particles; its magnitude compares favourably
with that occurring in grand canonical studies of single
component fluids over the same density range.

The simulations were initialized at the temperature
T ? = 1.047, close to the known critical temperature of
the model [39]. At this temperature the TMMC method
was used to obtain a suitable form for the multicanon-
ical weight function and thence an estimate of the his-
togram p(Nl, n) for Nl = [0 : 300]. This histogram was
then reweighted in µl such as to satisfy the equal area
criterion [38] for the two peaks in the near-coexistence
form of p(Nl), thereby yielding an estimate of the coex-
istence value of µl. Of course, the coexistence condition
of equal pressures of the phases actually implies equal
a-priori probabilities of the two phases in the space of
both components i.e. equal integrated weight of the two
peaks in the joint distribution p(Nl, Ns). However, this is
equivalent to equal areas under the double peaked form
of either p(Nl) or p(Ns) that results when p(Nl, Ns) is
projected onto either axis. Given our viewpoint, inspired
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by colloidal systems (see Sec. I), that the small particles
act to modify the effective single component phase be-
haviour of the large ones, we focus on the forms of p(Nl)
at constant ηr

s .
The data accumulated at T ? = 1.047 was subsequently

extrapolated to the lower temperature T ? = 1.0 by means
of histogram reweighting, maintaining the reservoir vol-
ume fraction ηr

s = 0.01 constant in the process (which ne-
cessitates a concommitant re-tuning of µs). The result-
ing form of p(Nl, n) provided a suitable multicanonical
weight function for a new run at this lower temperature.
By iterating this process we were able to step along the
coexistence curve without the need to ever recalculate
a multicanonical weight function from scratch. Further
details of this strategy for mapping liquid-vapour coexis-
tence lines are described in ref. [37].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρl

0

5

10

15

20

P(
ρ l )

T=1.047
T=1.00
T=0.95
T=0.90
T=0.85

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρl

10-15

10-10

10-5

100

P(
ρ l )

(b)

FIG. 3: (a) Estimates of the coexistence forms of P (ρl)
for ηr

s = 0.01 obtained using the methods described in
the text. Data are shown for T ? = 1.047 (criticality),
1.0, 0.95, 0.90, 0.85. (b) The same data expressed on a log
scale.

Fig. 3 presents our resulting estimates of the coexis-
tence forms of p(ρl) with (ρl = Nl/V ) at various tem-
peratures. Not surprisingly, the distributions exhibit be-

haviour which is qualitatively similar to that of a single
component fluid [13]. An estimate of the corresponding
liquid-vapour binodal can be extracted from the distri-
butions (by averaging the density under each peak) and
is shown in Fig. 4(a). Also included in Fig. 4(a) is the
binodal for the single component LJ fluid determined in
a previous study [13]; the comparison reveals that the
presence of the small particles in the mixture depresses
the critical temperature significantly. Estimates of the
phase boundary in µl − T space are shown in Fig. 4(b).

As regards the validation of our methodology, we have
checked it by generating coexistence data for the same
model using a simulation technique that operates along
fundamentally different lines, namely the “GCA-RGE”
simulation method of ref. [39]. Data for the coexistence
densities of large particles were obtained for T = 0.85 and
T = 0.90 and are included on Fig. 4 (crosses). Clearly
the level of agreement is very high, which supports the
correctness of our implementation.

We point out that obtaining this phase diagram in a
reasonable timescale would not have been feasible with-
out the staged insertion/deletion approach. Our tests
show that the wall clock correlation time in the absence
of staging is too large to be reliably estimated. Never-
theless, a lower bound on the ratio of correlation times
with and without staging can be estimated via a compar-
ison of the transition acceptance rates. For ηr

s = 0.01,
the insertion/deletion rate without staging is ∼ 10−6 at
liquid-like densities of the large particles. This very low
acceptance rate is of course attributable to the high like-
lihood that a randomly chosen large particle insertion
results in overlaps with one or more small particles – a
visual impression of the difficulty is provided by config-
urational snapshots of the coexisting phases as shown in
Fig. 5. Use of staging increases the transition acceptance
rate to ∼ 10−2 for M = 4 stages. The cost overhead is
an increases in the (round trip) random walk length in
Nl by a factor of M , thereby increasing the correlation
time by a factor M2 ∼ 10. Hence we believe that in the
present case our method is more efficient than standard
grand canonical sampling by a net factor of ∼ 103.

Notwithstanding the impressive scale of this speedup,
the net computational expenditure incurred by our study
remained significant. This is primarily due to the large
number of small particles in the system, even for the rel-
atively low volume fractions of small particles that we
considered. To be more quantitative, the task of ob-
taining the initial multicanonical weight function con-
sumed about a week of CPU time on a 32-core 3 GHz
machine, while data collection for each subsequent coex-
istence state point also took about a week.

IV. CONCLUSIONS

In summary, we have described a grand canonical
Monte Carlo simulation scheme for the study of fluid
phase transitions in highly size-asymmetrical binary mix-
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ρl
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1

1.1

1.2
T

LJ mixture: GC
Pure LJ fluid
LJ mixture: GCA-RGE

(a)

0.8 0.85 0.9 0.95 1 1.05 1.1
T

2

2.5

3

3.5

4

µ l

(b)

FIG. 4: (a) Coexistence densities (circles) as determined from
the peak positions of Fig. 3; dots interpolate between the
measured coexistence densities, and are determined via his-
togram reweighting. Squares show the binodal for the single
component LJ fluid obtained in Ref. [13]. Critical points are
marked (*). Crosses (×) are coexistence densities obtained
using the GCA-RGE technique [39] as discussed in the text.
Statistical uncertainties do not exceed the symbol sizes. (b)
Corresponding coexistence points in the µl − T plane, with
additional points (dots) obtained via histogram extrapolation.

tures. The method overcomes the low acceptance rate
for large particle transfers that plagues standard GC ap-
proaches. This is achieved via a staged insertion scheme
whereby insertion (deletion) of a large particle proceeds
stochastically via a set of intermediate states in which the
coupling to the environment of small particles is switched
on (off) gradually in stages. Once a suitable set of stages
and associated multicanonical weights has been deter-
mined, the system essentially performs a random walk
in the density of the large particles. We have applied
the method to a particular binary Lennard-Jones mix-
ture having q = 0.1 and ηr

s = 1%, determining the coex-
istence envelope for liquid-vapour demixing of the large
particles.

FIG. 5: Configuration snapshots of the coexisting vapour
phase (upper panel) and liquid phase (lower panel) at T ? =
0.95.

As regards the outlook for this approach, we see no
reason why it shouldn’t be effective at larger reservoir
volume fractions of the small particles, or indeed for
multicomponent mixtures. The principal computational
overhead associated with higher values of ηr

s will be the
larger number of interactions with small particles. The
number of stages M necessary to maintain a reasonable
acceptance rate will presumably increase too. We hope
to investigate and report on these issues in future work.
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