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We investigate theoretically the dynamical behavior of a qubit obtained with the two ground
eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson
fluxonium atoms inductively coupled to a transmission line resonator. We show an universal set
of quantum gates by using multiple transmission line resonators (each resonator represents a single
qubit). We discuss the intrinsic ’anisotropic’ nature of noise sources for fluxonium artificial atoms.
Through a master equation treatment with colored noise and manylevel dynamics, we prove that,
for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of
the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling,
where the ground state is an entangled photonic ’cat’ state.

PACS numbers: 03.65.Yz; 85.25.Hv; 42.50.Pq; 03.67.Pp

The study of quantum decoherence is believed to be
crucial in order to understand the transition from the
microscopic quantum world to the macroscopic classical
one. Moreover, a control and limitation of decoherence
is essential towards the realization of a robust, scalable
quantum computer. The study of cavity QED systems
in atomic physics [1] has led to spectacular fundamen-
tal investigations of non-unitary evolution due to deco-
herence mechanisms. In particular, it has been possible
to observe the fragility of states of the form |Ψcat〉 =
1√
2
{|α〉phot|g〉at + |αeiη〉phot|e〉at} (usually dubbed ’cat

states’[1]), where |α〉phot is a coherent photon state with
a large mean photon number |α|2 ≫ 1, |αeiη〉phot is an-
other coherent state with a phase difference η, while |g〉at
(|e〉at) is the ground (excited) state of a two-level atom
[2, 3]. These states have been prepared in a cavity QED
system well described by the Jaynes-Cummings model,
where the ground state is |0〉phot|g〉at, i.e., the vacuum of
photons times the atomic ground state. Recently, a grow-
ing interest has been generated by the so-called ultra-
strong coupling regime of cavity (circuit) QED , both the-
oretically [4, 5, 7–13] and experimentally [14–18]. Such
a regime is achieved when the vacuum Rabi frequency
Ω0, which quantifies the coupling between one photon
and one elementary matter excitation, is comparable or
larger than the cavity (resonator) photon frequency ωcav

. In such a regime, the Jaynes-Cummings model based
on the rotating wave-approximation (valid for small ratio
Ω0/ωcav) breaks down. In particular, the ground state of
the system is no longer the standard vacuum: recently, it
was shown [9, 10] that in the limit of very large coupling
the ground state can become quasi-degenerate with the
entangled structure:

|ΨG〉 ≃
1√
2

(

|α〉ph ΠN
j=1|+〉j + (−1)N | − α〉ph ΠN

j=1|−〉j
)

(1)
where N is the number of atoms embedded in the cavity

resonator, |α〉ph is a coherent state for the photonic field

which satisfies |α| ∼
√
NΩ0/ωcav, and |±〉j are pseudo-

spin polarized states for the j-th artificial atom, which
are defined in the following. For each two-level system
{|e〉j, |g〉j} one can introduce the Pauli operators σ̂j

x =
|e〉j〈g|j + |g〉j〈e|j , σ̂j

y = i(|g〉j〈e|j − |e〉j〈g|j) and σ̂j
z =

(2|e〉j〈e|j−1). With a light-matter coupling Hamiltonian

of the form Hcoupling =
∑N

j=1
λj â σ̂

j
x + h.c, (λj being

the local coupling strength and â the photonic bosonic
annihilation operator), |±〉j = 1√

2
(|e〉j ± |g〉j) are the

eigenstates of σ̂j
x. Interestingly, the (orthogonal) first

excited state has the similar form:

|ΨE〉 ≃
1√
2

(

|α〉ph ΠN
j=1|+〉j − (−1)N | − α〉ph ΠN

j=1|−〉j
)

(2)
In this letter, we show how |ΨG〉 and |ΨE〉 surprisingly
can form a robust qubit, whose decoherence can diminish
while increasing the ‘size’ of the corresponding photonic
‘cat’ states (see Fig. 1). Moreover, we also provide a
universal set of quantum computation gates and demon-
strate via a thorough master equation treatment the fi-
delity enhancement in a regime of ultrastrong coupling.

The energy difference δ between the two considered states
diminishes exponentially[9, 10] with the vacuum Rabi

coupling, namely δ ∼ ωeg exp(−2
Ω

2

0

ω2
cav

N), where ωeg is

the frequency of the single atom two-level transition (set
to be equal to the cavity mode frequency). Either in
the ultrastrong (Ω0/ωeg → +∞) or ‘thermodynamic’
(N → +∞) limit, the two states become degenerate. In
the ultrastrong coupling limit, the other excited states
are much higher in energy, separated by a frequency gap
∆ ∼ ωeg >> δ. Importantly, these interesting features
can not be obtained in every ultrastrong light-matter
coupled system. In particular, using the Pauli matrix
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FIG. 1: Description of the considered system. The building
block is a superconducting transmission line resonator em-
bedding N Josephson atoms (N = 2 in the sketch here).
By choosing judiciously the type of artificial atom (the de-
picted circuit represents fluxonium atoms inductively coupled
to the resonator) , the first two ground levels of the resonator
are entangled states (|α〉 is a photon coherent state, |±〉 is a
Josephson junction state ’polarized’ along the pseudospin x-
direction). One resonator represents a single qubit: a register
of M qubits is given by M resonators.

language, the ‘direction’ of the bare atomic Hamiltonian
must be orthogonal to the one of the light-matter inter-
action Hamiltonian[10]. This is the case in the following
spin-boson Hamiltonian:

Ĥ/~ = ωcavâ
†â +

ωeg

2

N
∑

j=1

σ̂j
z +

N
∑

j=1

i
Ω0√
N

(â− â†)σ̂j
x. (3)

In the present letter, we limit our description to a single
bososic mode and an uniform light-matter coupling , but
all the following results may be generalized to several and
spatially non uniform modes[9].
It has also been shown recently that in the ultrastrong

coupling regime, the quasi-degeneracy of the states |ΨG〉
and |ΨE〉 is robust with respect to a local and static per-

turbation of the type Hpert
y,z =

∑N
j=1

hy,jσ̂y,j + hz,j σ̂z,j

where hy,j and hz,j are random perturbation amplitudes
[9]. The reason is that in the subspace {|ΨG〉, |ΨE〉}
such perturbation couples (at the N thorder) coherent
states of opposite phase | − α〉 and |α〉. The effect of
the perturbation is proportional to the overlap 〈−α|α〉 =
exp (−2|α|2) ∼ exp(−2

Ω
2

0

ω2
cav

N). Indeed, the stronger is

the coupling Ω0 or the larger is the number of artificial
atoms N , the larger is |α|2, the ‘size’ of the photonic ’cat’
states |ΨG〉 and |ΨE〉. Importantly, the protection is not
complete[19], because these states are not robust with

respect to noise terms like Hpert
x =

∑N
j=1

hx,j σ̂x,j and

Hpert
â = haâ+ h∗

aâ
†, namely the noise in the direction of

the light-matter coupling and the noise associated to the
resonator field. However, if in a superconducting system,
perturbations likeHpert

y,z happen to be the dominant ones,

the lifetime and the fidelity of the quantum operation in-
volving the states |ΨG〉 and |ΨE〉 can be dramatically
improved by increasing Ω0/ωeg and/or N .
In fact, among the different flux Josephson atoms [17,

18, 20, 21], this noise anisotropy appears to be realistic
at least for a fluxonium[20] . Under conditions detailled
in [20], its Hamiltonian can be written as:

HF = 4ECJ
N̂2

J + ELJ

(ϕ̂J )
2

2
− EJ cos(ϕ̂J +Φext) (4)

The Hamiltonian parameters are subject to noise fluctu-
ations : Φext = π + ∆Φext with ∆Φext some flux noise
(in units of Φ0 = ~/2e), EJ = EJ + ∆EJ with ∆EJ =
∆I0/Φ0 proportional to the critical current fluctuation,
N̂J = N̂J + ∆N0, ∆N0 being the charge offset fluctua-
tion. One can also introduce some capacitive and induc-
tive noise ECJ

= ECJ
+∆ECJ

and ELJ
= ELJ

+∆ELJ
.

When the fluctuation sources are off, the first two eigen-
states of the fluxonium are very well isolated from the
higher states provided that EJ ≫ ELJ

and EJ ≫ ECJ
.

Then, the Hamiltonian (4) reads ĤF ≃ ~(ωeg/2)σ̂z in
the basis of the two first eigenstates which are symmet-
ric and antisymmetric superpositions of clockwise and
anticlockwise persistent current states. On the same ba-
sis ϕ̂J ≃ −ϕ01σ̂x and N̂J ≃ ωeg

8EC
ϕ01σ̂y (where ϕ01 ≃ 3).

The fluctuations produce (at the first order) the pertur-
bation:

ĤF,pert/~ ≃ ∆Φextsin(ϕ01)(EJ/~)σ̂x +∆N0ϕ01ωegσ̂y (5)

+ (
∂ωeg

∂EJ
EJ

∆I0
I0

+
∂ωeg

∂ECJ

ECJ

∆ECJ

ECJ

+
∂ωeg

∂EL
EL

∆EL

EL
)σ̂z

The spectral density of the flux noise is typically

S
1/2
∆Φext

≈ 10−6/
√
Hz [22, 23]. The critical current noise

∆I0/I0 = ∆EJ/EJ , which is also believed to follow a
1/f law [24, 25], has been recently measured[26] in a

fluxonium : S
1/2
∆EJ/EJ

≈ 3.10−5/
√
Hz. It proves that the

dissipation due to the σ̂z channel is much larger than
the σ̂x channel contribution. To study the behavior of
the qubit {|ΨG〉, |ΨE〉} in the presence of dissipation, we
used the master equation [27]:

dρ̂

dt
=

1

i~
[Ĥ, ρ̂] +

∑

r=rv,rf

Ûrρ̂Ŝr + Ŝrρ̂Û
†
r − ŜrÛrρ̂− ρ̂Û †

r Ŝr

+

N
∑

j=1

∑

m=xj,yj ,zj

Ûmρ̂Ŝm + Ŝmρ̂Û †
m − ŜmÛmρ̂− ρ̂Û †

mŜm (6)

where ρ̂ is the density matrix, Ĥ refers to Hamiltonian (3)
and where the ‘jump’ operators are Ŝrv = â+ â†, Ŝrf =

i(â− â†), Ŝxj
= σ̂j

x, Ŝyj
= σ̂j

y , Ŝzj = σ̂j
z . Moreover[28],

Ûk =

∫ ∞

0

νk(τ)e
− i

~
Ĥτ Ŝke

i
~
Ĥτdτ,(7)

νk(τ) =

∫ ∞

−∞
Γk(ω){nk(ω)e

iωτ + [nk(ω) + 1]e−iωτ}dω,
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for k = rv, rf or k = xj , yj , zj ∀j = 1..N .
Here we consider the zero temperature limit[29], where
the spectral functions Γk(ω) must vanish for ω < 0 be-
cause they are proportional to the density of states (of
the baths) at energy ~ω. For sake of simplicity, we have
set Γk(ω) = Γk for ω ∈ [0;ωc] and Γk(ω) = 0 elsewhere
∀k, with ωc an upper cut-off which is consistent with de-
creasing spectral noise. Finally, one must include many
excited states in the master equation treatment. To in-
vestigate the robustness of the coherence between the 2
quasi-degenerate vacua |ΨG〉 and |ΨE〉 , we have studied
the non-unitary dynamics of the initially prepared pure
state |Ψ0〉 = cos(θ)|ΨE〉 + sin(θ)eiφ|ΨG〉 in presence of
anisotropic Josephson dissipation rates Γy,Γz ≫ Γx and
for several cavity loss rates Γr/ωeg = Γrv/ωeg = Γrf /ωeg

(see caption of Fig. 2). Our simulations plotted in Fig.
2 prove that the coherence time increases while increas-
ing the normalized vacuum Rabi frequency Ω0/ωeg. In-
deed, if the dominant dissipation channels are along the
y and z directions, their effect decreases as exp (−2|α|2)
where α =

√
NΩ0/ωcav. Hence, the coherence time

is enhanced exponentially before reaching a saturation
value given by Γr, Γx and eventually decreasing with the
usual power law of cat states. The location of the coher-
ence time peaks with respect to the photonic amplitude
α =

√
NΩ0/ωeg is almost independent of the number of

atoms N (see top right panel of Fig. 2), indicating that
α is the relevant dimensionless parameter for the protec-
tion. Depending on Γr and Γx (see bottom right panel
of Fig. 2), the maximum coherent times have a different
behavior versus N . For smaller values of Γx, the protec-
tion increases monotonically with N ≥ 2 (we have been
able to calculate up to N = 5). For larger values of Γx in-
stead the maximum of the coherence time is achieved for
N = 1. Finally, since the number of photons 〈n〉 of |ΨG〉
and |ΨE〉 increases like Ω

2

0

ω2
cav

N (see Fig. 2), we conclude

that there is a regime where the larger is the number
of photons in |ΨG〉 and |ΨE〉, the stronger is their ro-
bustness against decoherence contrary to the usual cavity
QED ‘cat’ states [1], obtained when Ω0/ωeg << 1. In-
deed, it is well known[1–3, 30] that the coherence time of
those standard ’cat’ states decreases monotonically while
increasing their size.

Now, we show how to obtain an universal set of
gates for quantum computation [31] using the two states
|ΨG〉 and |ΨE〉 as computational basis for the qubit
and we will study the fidelity of such quantum opera-
tions. One begins by showing how to get the dynam-

ical gate e−iθxΣ̂x in the basis |ΨG〉 and |ΨE〉, where
Σ̂x = |ΨG〉〈ΨE |+ |ΨE〉〈ΨG| is the x-direction Pauli ma-
trix associated to this (collective) vacuum qubit. To do
so, one can add a coupling between the flux of one Joseph-
son atom embedded into the resonator (for instance the
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FIG. 2: Coherence time in units of 1/ωeg calculated via the
master equation (6) for ωeg = ωcav and with the initial state
|Ψ0〉 = cos(θ)|ΨE〉 + sin(θ)eiφ|ΨG〉. Results are averaged
over the possible initial values for θ and φ. Left panel: co-
herence time versus the normalized vacuum Rabi frequency
Ω0/ωeg for one atom (N = 1) with Josephson loss rates
{Γx,Γy ,Γz} = ωeg{10−6, 10−3, 10−3}. The different cavity
loss rates: Γr/ωeg = 10−6, 10−7, 0 correspond [1] to differ-
ent quality factors Q = ωeg/(4πΓr) ≃ 105, 106,∞. Inset :
the number of photons 〈n〉 = |α|2 = 〈a†a〉 is plotted versus
Ω0/ωeg for N = 1. Top right panel: coherence time for N = 1,
2 and 3 atoms for Γr/ωeg = 10−6 and with a lower anisotropy
in the atomic loss rates: {Γx,Γy ,Γz} = ωeg{10−5, 10−3, 10−3}
as a function of the photonic amplitude α =

√
NΩ0/ωeg. Bot-

tom right panel: maximum coherence time as a function of
the number of atoms N for different values of Γx, hence for
different noise anisotropy.

first atom) and an external, classical and tunable mag-
netic field Φs(t). This leads to an additional Hamiltonian
term of the type MΦs(t)ϕ̂

1
j = C(t)σ̂1

x where ϕ̂1
j is the flux

across the Josephson junction of the first artificial atom.
Such perturbation lifts the degeneracy of the fundamen-
tal subspace so that the new two first eigenstates are
|+〉|+α〉 and |−〉| −α〉 with a splitting δ(t) = 2C(t) and
where we have replaced ΠN

j=1|±〉j by |±〉 to simplify the
notation. By adiabatically shaping the time-dependence

of C(t) it is possible to create a dynamical gate e−iθxΣ̂x

with θx =
∫ T

0
C(t)dt with [0;T] the gate time interval.

Now, we show how to get a second single-qubit gate,

namely e−iθzΣ̂z where Σ̂z = 2|ΨE〉〈ΨE | − 1. |ΨG〉 and
|ΨE〉 have an energy splitting δ exponentially decreasing
as a function of Ω0. By modulating in time Ω0, one
gets the desired quantum gate. Acting adiabatically, the

rotation angle will be θz =
∫ T

0
δ(t)dt =

∫ T

0
δ(Ω0(t))dt.

Even without optimizing the temporal shape of t → Ω0(t)
, excellent fidelities can be reached. For instance, for the
Z-Pauli gate (corresponding to θz = π/2), with one atom
and for a linear back and forth between Ω0/ωeg = 2 and
Ω0/ωeg = 1.3, fidelity ≥ 99.9% is obtained for a typical
time T ∼ 300/ωeg in presence of realistic dissipation.
In practice, to modulate in situ Ω0(t), one can use an
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intermediate loop between the resonator and the artificial
atom with a tunable magnetic flux through it [9, 12].
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FIG. 3: Left panel: fidelity of the single qubit X rotation
gate (for θx = π/2) versus Ω0/ωeg. Master equation (6) was

used with a time-dependent Hamiltonian, Ĥ(t) = Ĥ(t = 0)+

C(t)σ̂1
x with Ĥ(t = 0) the initial spin-boson Hamiltonian (3)

with N = 1 (black solid), N = 2 (blue dashed) and N = 3
(red solid) Josephson atoms in the resonator. Inset: time
evolution of C(t). Right panel: fidelities of the 2-qubit gate

e−iθx12
Σ̂x1

⊗Σ̂x2 for θx12
= π/2 with respect to Ω0

ωeg
the vacuum

Rabi Frequency in each resonator in which there is 1 atom
embedded. The 2-qubits coupling constant C12(t) follows the
same time evolution as C(t) in the inset. Note that we have
included noise in the mutual coupling, via the jump operator
Ŝx12 = σ̂1

x,1σ̂
1
x,2 and the loss rate Γx12 = ωeg10

−6.

In order to get a complete set of quantum oper-
ations, one needs to perform a 2-qubit control gate.
Here, we will describe how to obtain the conditional

quantum gate e−iθx12
Σ̂x1

⊗Σ̂x2 in the 4-dimensional basis
{{|ΨG〉1, |ΨE〉1} ⊗ {|ΨG〉2, |ΨE〉2}} = { 1√

2
(|+〉| + α〉1 ±

|−〉| − α〉1) ⊗ 1√
2
(|+〉| + α〉2 ± |−〉| − α〉2)} where 1 (2)

stands for the resonator number. For our goal, one way
is provided by a direct magnetic mutual coupling[32]
M12(t)ϕ̂1

j ϕ̂
2
j , between 2 fluxonium atoms (one in each

resonator), giving the Hamiltonian Ĥ12 = Ĥ1 + Ĥ2 +
C12(t)σ̂1

x,1σ̂
1
x,2, where Ĥ1 (Ĥ2) stands for the spin-boson

Hamiltonian (3) for the resonator 1 (2), while σ̂1
x,1 (resp.

σ̂1
x,2) stands for the x-Pauli matrix acting on the first

two levels system of the resonator 1 (2). Applying such
a perturbation will partially lift the 4 times degener-
acy of the fundamental subspace so that the two states
(|+〉|+α〉1⊗|+〉|+α〉2 and |−〉|−α〉1⊗|−〉|−α〉2) will have
a different energy than the states (|+〉|+α〉1⊗|−〉|−α〉2
and |−〉|−α〉1⊗|+〉|+α〉2). Fidelity of that operation for
θx12

= π/2 is given in the right panel of Fig. 3 in presence

of dissipation, showing again the enhancement for in-
creasing values of the normalized vacuum Rabi frequency.
Other proposals for the practical coupling between the 2
resonators could be envisaged[33, 34]. Concerning the
read-out of our qubit, this can be done by a projective
measurement on the states |+〉|+ α〉 and |−〉| − α〉: the
flux across the Josephson junctions is polarized and can
be in principle measured via the surrounding quasi-static
magnetic field.

In conclusion, we have shown that it possible to
considerably enhance the coherence times of a qubit
given by the first two eigenstates of a circuit QED
system in the ultrastrong coupling regime: such states
are entangled states of photons and polarized Josephson
atomic states, which are robust with respect to a general
class of ’anisotropic’ environment. In our proposal, the
resonator is used to protect quantum information[35, 36]
, contrary to the approach [37–39] where it acts as a
bus joining several embedded Josephson qubits. The
present work shows that the qualitative modification
of the quantum ground state in ultrastrong coupling
circuit QED can have a significant impact on the deco-
herence and manipulation of quantum states in multiple
resonators. We would like to thank M.H.Devoret for a
critical reading of the manuscript and useful discussions.
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