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Abstract

Parameter estimation for two-dimensional hypoelliptic diffusions is con-
sidered within two observations frameworks: complete observations where
both coordinates are discretely observed and partial observations where
only the first coordinate is discretely observed. Since the volatility ma-
trix is degenerate, Euler contrast estimators can not be used directly. For
complete observations, we introduce an Euler contrast based on the sec-
ond coordinate only. For partial observations, we define an Euler contrast
for an integrated diffusion resulting from a transformation of the origi-
nal one. We present a theoretical study where the estimators are proved
to be consistent and asymptotically Gaussian. A numerical application
to Langevin systems illustrates the nice properties of both complete and
partial observations estimators.
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1 Introduction

In this paper we consider parameter estimation for hypoelliptic diffusions. We
focus on two dimensional diffusions, which are generalisations of systems called
Langevin or hypoelliptic by different communities. They appear in many do-
mains such as random mechanics, finance modeling, biology. Their commun
form is as follows: {

dYt = g(Yt, Zt)dt
dZt = β(Yt, Zt)dt+ α(Yt, Zt)dBt

(1)

where g, β and α are real functions depending on unknown parameters θ. In
these systems, noise acts directly on the "speed" Zt and on the "position" Yt
only through Zt. We refer to Pokern et al. (2009) for examples of such systems
arising in applications.
In some applications, it is not possible to measure the two coordinates. There-
fore, we consider two observations cases. The complete observations case as-
sumes that both (Yt) and (Zt) are discretely observed. The partial observations
case assumes that only the first coordinate (Yt) is observed.
Statistical inference for discretely observed diffusion processes is complex and
has been widely investigated (see e.g. Prakasa Rao, 1988; Yoshida, 1992). It is
not possible in general to express the density of stochastic differential equation
(SDE) explicitely. So different types of contrast estimators have been intro-
duced for elliptic SDEs estimation, such as the multidimensional Euler contrast
studied by Genon-Catalot and Jacod (1993); Kessler (1997). However for the
hypoelliptic system (1), Euler contrast methods are not directly applicable as
the volatility matrix is non invertible. References on hypoelliptic estimations
are few, even in the case of complete observations. The main paper is Pok-
ern et al. (2009). They propose an empirical approximation of the likelihood
based on Ito-Taylor expansion so that the variance matrix becomes invertible.
They construct a Bayesian estimator of θ based on a Gibbs sampler. They
consider both complete and partial observation cases. Their method is limited
to g(Yt, Zt) = Zt, a drift function β(Yt, Zt) which is linear with respect to the
parameter and a constant volatility function α(Yt, Zt). In this paper, we con-
sider more general models. We assume that g belongs to a family of functions
such that it is possible to reduce to the case of integrated diffusions with a non-
autonomous diffusion for (Zt). Then, we propose to reduce to an Euler contrast
based only on the second equation. This allows to consider general drift and
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volatility functions. We study the asymptotic properties of this contrast esti-
mator when the number of observations increases and the time step between
two observations decreases.
The case of partial observations introduces more difficulties because (Yt) is not
Markovian while (Yt, Zt) is Markovian. Favetto and Samson (2010) propose a
maximum-likelihood estimation from discrete and partial observations of a two-
dimensional linear system with a non-degenerate volatility function. However,
their approach can not be extended to a degenerate volatility function. Main ref-
erences for partial observations of hypoelliptic diffusions are when the function
g(Yt, Zt) is equal to Zt. In this case, model (1) can be viewed as an integrated
diffusion process. Parametric estimation methods have been proposed in this
context under the additional condition that Zt satisfies an autonomous equa-
tion, meaning that the only coupling between Yt and Zt is through the identity
Yt =

∫ t
0
Zsds. Ditlevsen and Sørensen (2004) use prediction-based estimating

functions. Gloter (2006) proposes an Euler contrast function and studies the
properties of this estimator when the sampling interval ∆n tends to zero. How-
ever, their approaches are not adapted when Zt does not satisfy an autonomous
equation and when g(Yt, Zt) 6= Zt. In this paper, we extend the approach of
Gloter (2006) to this case.
In order to establish asymptotic properties of our estimators we need existence
and uniqueness of an invariant measure for system (1). This is a major difference
with respect to Gloter’s work since in his framework the second component Zt
satisfies an autonomous equation. Hence the invariant measure he introduces is
that of a one dimensional diffusion. In our case, we need an invariant measure
for the vector (Yt, Zt). Ergodicity of Langevin systems has been widely studied,
relying on the hypoellipticity of the system as well as a Lyapounov condition
involving a Lyapounov function: Lemaire (2005), Mattingly et al. (2002). We
detail these conditions and propose examples where our assumptions are verified.
A numerical study is performed on these examples, to which we compare results
obtained by Pokern et al. (2009).
The paper is organized as follows. Section 2 presents the hypoelliptic system,
general assumptions and more details for Langevin systems. Section 3 defines
the two observations cases and the contrast estimators. The main results are
presented, which consist in consistency and asymptotic normality of both es-
timators. Asymptotic properties of functionals of the processes are given in
Section 4. Proofs of the estimator asymptotic properties are given in Section 5.
Estimation methods are illustrated in Section 6 on simulated data. Section 7

3



presents some conclusions and discussions. Supplementary proofs are given in
Appendix.

2 Hypoelliptic system and assumptions

2.1 The Model

Let us consider system (1) and assume that the following condition holds

(C1) ∀(y, z) ∈ R× R, ∂zg(y, z) 6= 0

Under assumption (C1), system (1) is hypoelliptic in the sense of stochastic
calculus of variations (Nualart, 2006). Indeed, the Stratonovich form of (1) is{

dYt = g(Yt, Zt)dt
dZt = β̃(Yt, Zt)dt+ α(Yt, Zt) ◦ dBt

(2)

with β̃(y, z) := β(y, z) − 1
2α(y, z)∂zα(y, z). Writing the coefficients of (2) as

vector fields

A0(y, z) =

(
g(y, z)
β̃(y, z)

)
and A1(y, z) =

(
0

α(y, z)

)

and computing their Lie bracket leads to

[A0, A1] =

(
∂zg(y, z)
γ(y, z)

)

The form of γ is explicit but not detailed here. Under condition (C1) the vectors
A1 and [A0, A1] generate R2 and system (1) is hypoelliptic. We will discuss the
consequence of this property in Section 2.2.

Condition (C1) plays a crucial role also in the implicit function theorem which
is connected to our problem. Indeed, by the change of variable Xt := g(Yt, Zt),
the first equation of system (1) becomes dYt = Xtdt which suggests that the
process (Yt, Xt) should be an integrated diffusion. Condition (C1) enable us
to apply the implicit function theorem which states that Zt can be uniquely
defined as a function of (Yt, Xt) and consequently the vector (Yt, Xt) satisfies{

dYt = Xtdt

dXt = b(Yt, Xt)dt+ a(Yt, Xt)dBt
(3)
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where b and a result from the combination of the implicit function theorem and
Ito formula. However the result of the implicit function theorem is only local
and no explicit expression is available in general for Zt as a function of (Yt, Xt).
In this paper, we assume that system (1) verifies the following condition

(C2) The process (Yt, Xt) with Xt := g(Yt, Zt) satisfies a system of the form
(3) with explicit functions b and a.

This includes in particular functions g for which an explicit function f is avail-
able such that Zt = f(Yt, Xt). Examples are g(y, z) = θ1y + θ2z or g(y, z) =
φθ(y) + θ2z for a function φθ which depends on parameter θ. This condition is
also satisfied for more general systems. The following system{

dYt = −(θ1Yt − θ2Z
2
t )dt

dZt = −(θ3Zt + ZtFθ(Yt))dt+ α(Yt, Zt)dBt

with F ∈ C∞(R, [0,+∞[) a possibly non-linear function depending on pa-
rameter θ and α(Yt, Zt) = σZt is an example where the change of variables
Xt := g(Yt, Zt) yields to explicit functions b and a, even if there exists no
explicit function f such that Zt = f(Yt, Xt). Variants with volatility functions
α(Yt, Zt) = σZt/(1+Z2

t ) or α(Yt, Zt) = σZtF (Yt) are other examples of systems
that we consider in this paper.

In this paper, we consider systems (1) for which conditions (C1) and (C2) hold.
The first step of the estimation method consists in transforming system (1) into
system (3). We denote µ and σ the unknown parameters of functions b and a,
respectively. These parameters include parameters of functions g, β and α of
system (1). Our parameter is the vector (µ, σ2) = θ. In the sequel, we denote
bµ(Yt, Xt) and aσ(Yt, Xt) the drift and volatility functions.

2.2 Assumptions

We assume that the vector θ belongs to Θ = Θ1×Θ2 for Θ1 ⊂ Rd1 and Θ2 ⊂ Rd2

two compact subsets.
We now come to the assumptions regarding the coefficients. In this paper we
work under conditions (C1)-(C2). In the present section we list our additional
assumptions (A1) to (A4). Then we provide a set of sufficient conditions (S1)
to (S3) ensuring that these assumptions are satisfied. We also examine the
particular case of Langevin systems.
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(A1) (a) there exists a constant c such that supσ∈Θ2
|a−1
σ (y, x)| ≤ c(1+|y|+|x|)

(b) bµ and aσ belong to the class F of functions f ∈ C2(R2 × Θ) for
which there exists a constant c such that the function, its first and
second partial derivatives with respect to y and x are bounded by
c(1 + |y|+ |x|), for all x, y ∈ R, uniformly in θ.

(A2) (a) ∀k ∈]0,∞[ supt≥0 E(|Xt|k + |Yt|k) <∞

(b) there exists a constant c such that ∀t ≥ 0, ∀δ ≥ 0,

E( sup
s∈[t,t+δ]

|Xs|k|Gt) + E( sup
s∈[t,t+δ]

|Ys|k|Gt) ≤ c(1 + |Xt+δ|k + |Yt+δ|k)

where Gt = σ(Bs, s ≤ t).

(A3) (Yt, Xt) admits a unique invariant probability measure ν0 with finite mo-
ments of any order i.e. ∀k > 0, ν0(| · |k) <∞

(A4) (Yt, Xt) satisfies a weak version of the ergodic theorem namely

1
T

∫ T

0

f(Ys, Xs)ds −−−−→
T→∞

ν0(f) a.s.

for any continuous function f with polynomial growth at infinity.

Remark 1 1. Actually we need assumption (A2) only for k ≤ 4 to prove the
properties of our estimators.

2. We need (A4) for all f ∈ {aj , aj log a2, bk/aj , (∂b)k/aj ,
(∂2b)k/aj , (∂a2)k/aj , (∂2a2)k/aj , j ∈ {0, 1, 2, 4, 6}, k ∈ {0, 1, 2}}. These
have indeed polynomial growth at infinity thanks to (A1).

We now provide a set of sufficient conditions for (A2) to (A4) to hold. It is
based on the existence of a function V , called Lyapounov function. Lyapounov
functions are efficient tools in the asymptotic study of systems. Assumptions
(S1) and (S2) are sometimes called stability conditions. Assumptions (S1)-(S3)
are analysed in Lemaire (2005).

(S1) (a) V (y, x) ≥ 1, lim||(y,x)||→+∞ V (y, x) = +∞

(b) there exist c1 > 0 and c2 > 0 such that LθV (y, x) ≤ −c1V (y, x) +
c2, ∀(y, x) ∈ R2 where Lθ denotes the infinitesimal generator of the
considered diffusion.
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(S2) (Yt, Xt) admits a unique invariant probability measure ν0.

(S3) ∃C > 0 and ζ ∈ [0, 1] such that (aσ(y, x)∂xV (y, x))2 ≤ CV (y, x)2−ζ for
all (y, x) ∈ R2.

Assumption (S1) implies existence and uniqueness of a solution to system (3)
as well as existence of an invariant probability measure and the following inte-
grability property

sup
t≥0

E(V (Yt, Xt)) < +∞. (4)

However, uniqueness of the invariant probability measure is not guaranteed by
(S1) and is the object of assumption (S2). Moreover for any Lyapounov function
V , the process St := ec1t( c2c1 −V (Yt, Xt)) is a local submartingale as well as |St|k

for k ≥ 1. Hence based on arguments from Revuz and Yor (1991), for all t ≥ 0,

E

(
sup

s∈[t,t+δ]

|Ss|k|Gt

)
≤
(

k

k − 1

)k
E
(
|St+δ|k|Gt

)
(5)

Inequalities (4) and (5) suggest that in order to satisfy (A2), it is sufficient to
ensure existence of a Lyapounov function with polynomial growth at infinity
of order k, for each k ∈]0,∞[. Actually assumption (S3) provides a positive
answer to this question. If V is a Lyapounov function satisfying (S1) and (S3),
so is

√
ψ ◦ V where ψ is defined on [1,+∞[ according to the value of ζ in (S3):

if (S3) holds with ζ = 0, then ψ(y) := yp for any p ∈]1, 1 + 2α
C [ is admissible,

whereas if (S3) holds with ζ ∈]0, 1] then ψ(y) := exp(λyζ) with λ < 2α
ζC . Finally

asumptions (S2)-(S3) ensure that ∀f ∈ C, 1
T

∫ T
0
f(Ys, Xs)ds −−−−→

T→∞
ν0(f) a.s.

where C denotes the class of measurable functions negligible w.r.t.
√
ψ ◦ V .

Hence, if (S3) holds with ζ = 1, every polynomial of a given Lyapounov function
V is itself a Lyapounov function. In particular, if we can find V with polynomial
growth at infinity, then C contains all polynomials and (A2) as well as (A4) are
satisfied. As an example, (S3) with ζ = 1 holds when aσ is constant and V

quadratic at infinity.

We test our estimator numerically in Section 6 on particular Langevin systems.
Such systems are defined by{

dYt = Xtdt

dXt = [−γXt − F ′D(Yt)]dt+ σdWt

(6)
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with σ > 0, F ∈ C∞(R, [0,+∞[) is a possibly non-linear function depending on
parameter D and F ′ denotes the derivative of F w.r.t. y.
For these systems the invariant probability ν0 is unique and admits the density

ρ(y, x) = C exp− γ

σ2
(x2 − 2FD(y))

where C is a multiplicative constant. Hence (A3) is satisfied. Stability condi-
tions for these systems are presented in Mattingly et al. (2002). When FD(y) ≥
0, ∀y ∈ R and moreover satisfies

βFD(y)− 1
2
F ′D(y)y +

γ2

8
β(2− β)
(1− β)

y2 ≤ α (7)

for some β ∈]0, 1[ and α > 0, a Lyapounov function (which satisfies (S1)) is
provided by

V (y, x) =
1
2
x2 + FD(y) +

γ

2
< y, x > +

γ2

4
y2 + 1. (8)

and condition (S3) is satisfied. Note that the hypoelliptic property of these
Langevin systems is exploited in Mattingly et al. (2002) in order to establish
their geometric ergidicity. In our numerical section 6 we study respectively
γ = 0, FD ≡ 0 which corresponds to our Model I , γ > 0, FD(y) ≡ D

2 y
2 in

Model II and γ > 0, FD(y) ≡ −Σnj=1j
−1Dj(cos y)j in Model III. In the three

examples (A1) is satisfied. Moreover aσ is constant and V quadratic so (S3)
holds with ζ = 1 which, as noticed previously, implies (A2) and (A4). Moreover,
Models II and III satisfy (7).

3 Estimators and their properties

In this section, we first present the two observation frameworks. Then, for both
frameworks, we introduce a discretized scheme of the system. The properties
of these schemes are studied. They yield to the definition of the two contrast
functions. Finally, we present the main results of the two contrast estimators,
namely their consistency and the asymptotic normality.
We start with the two observations frameworks. The first case assumes that both
components (Yt) and (Xt) are observed at discrete times 0 = t0 < t1 < . . . < tn.
The second case assumes that the process (Xt)t≥0 is hidden or not observed and
that we only observe at discrete times ti the process (Yt)t≥0. In both cases, we
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assume that discrete times are equally spaced and denote ∆n = ti−ti−1 the step
size, so ti = i∆n. We denote (Yi∆n , Xi∆n) the observation of the bidimensional
process (Yt, Xt)t≥0 at time ti for the first case, and (Yi∆n) the observation of
the process (Yt)t≥0 for the second case. Our purpose is to estimate θ from the
complete and partial observations. As for notation, in the sequel we use an
upper index C (resp. P) for the case of complete (resp. partial) observations.
The asymptotic behavior of the two estimators is studied for a step size ∆n such
that ∆n → 0, as n→∞, n∆n →∞ and n∆2

n → 0.

3.1 Contrast estimator for complete observations

When (Yt) and (Xt) are both observed at discrete times (i∆n), we can consider
the classical two-dimensional Euler-Maruyama approximation which is(

Y(i+1)∆n

X(i+1)∆n

)
=

(
Yi∆n

Xi∆n

)
+∆n

(
Xi∆n

bµ(Yi∆n
, Xi∆n

)

)
+
√

∆nΣ

(
η1
i

η2
i

)
(9)

with (η1
i , η

2
i ) independent identically distributed centered Gaussian vector and

Σ =

(
0 0
0 aσ(Yi∆n

, Xi∆n
)

)
.

The two-dimensional Euler contrast can not be used directly to estimate param-
eters θ because Σ is not invertible. To circle this problem, Pokern et al. (2009)
consider an Itô-Taylor expansion of higher order, by adding the first non-zero
noise term arising in the first coordinate. This yields to an invertible covariance
matrix for some hypoelliptic models, which may be complex to calculate.
On the contrary, our estimation approach remains based on the Euler scheme.
As said previously, it can not be used directly. However, as we focus on param-
eter estimation of drift and volatility functions of the second coordinate which
is observed in this subsection, we propose to consider a contrast based on the
Euler-Maruyama approximation of this second equation. Dependence between
successive terms (Xi∆n

) are described in the following Proposition whose proof
is given in Appendix:

Proposition 1 We have

X(i+1)∆n
−Xi∆n −∆nbµ(Yi∆n , Xi∆n) = aσ(Yi∆n , Xi∆n)ηi,n + εCi,n
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where ηi,n is such that E(η2k+1
i,n |Gni ) = 0 and E(η2k

i,n|Gni ) = (2k)!/(2kk!)∆k
n for

k ≥ 0; εCi,n is such that E(|εCi,n||Gni ) ≤ c∆3/2
n (1 + |Y(i+1)∆n

| + |X(i+1)∆n
|) and

E(|εCi,n|k|Gni ) ≤ c∆k/2+1
n (1 + |Y(i+1)∆n

|k + |X(i+1)∆n
|k) for k ≥ 2.

This leads to the definition of the following estimation contrast

LCn (θ) =
n−1∑
i=0

(
(X(i+1)∆n

−Xi∆n −∆nbµ(Yi∆n , Xi∆n))2

∆na2
σ(Yi∆n , Xi∆n)

+ log(a2
σ(Yi∆n

, Xi∆n
))
)

(10)
which is an extension of the classical Euler contrast for unidimensional SDE
(see Kessler (1997)) when drift bµ and volatility aσ depend on both Y and X.
We define the minimum contrast estimator θ̂Cn for complete observations as

θ̂Cn = arg min
θ∈Θ
LCn (θ)

3.2 Contrast estimator for partial observations

Contrast (10) can not be used in the second case of observations, as (Xi∆n
) is

not observed. In the context of integrated diffusion, Gloter (2006) proposes to
approximateXi∆n

by increments of (Yt). We study the behavior of the process of
increments in Proposition 2. The basic idea which consists in replacing directly
Xi∆n by Y i,n in contrast (10) leads to a biased estimator (Gloter, 2006). This
is due to the dependence between two successive terms of the rate process Y i,n
(Proposition 3). This is the case when (Xt) satisfies an autonomous diffusion
(Gloter, 2006) and it remains true for non autonomous diffusion: the estimation
contrast for partial observation must be corrected to take into account this
correlation.
Now, we present more precisely these ideas. First, we introduce the increment
or rate process

Y i,n =
Y(i+1)∆n

− Yi∆n

∆n
(11)

Model (3) implies

Y i,n =
1

∆n

∫ (i+1)∆n

i∆n

Xsds

Thus, when ∆n is small, Y i,n is close to Xi∆n . More precisely, we prove the
following Proposition (proof is given in Appendix):

10



Proposition 2 Assume (A1)-(A2). Set Gni = Gi∆n . We have

Y i,n −Xi∆n
= ∆1/2

n aσ(Yi∆n
, Xi∆n

)ξ′i,n + ei,n

where there exists a constant c such that |E(ei,n|Gni ) ≤ c∆n(1 + |X(i+1)∆n
| +

|Y(i+1)∆n
|) and |E(e2

i,n|Gni ) ≤ c∆2
n(1 + |X(i+1)∆n

|4 + |Y(i+1)∆n
|4).

Furthermore, if k is a real number ≥ 1, then for all i, n, we have

E
(∣∣Y i,n −Xi∆n

∣∣k |Gni ) ≤ c∆k/2
n (1 + |X(i+1)∆n

|k + |Y(i+1)∆n
|k)

The link between two successive terms of the non-Markovian rate process Y i,n
is studied in the following Proposition.

Proposition 3 Assume (A1)-(A2). Then

Y i+1,n − Y i,n −∆nbµ(Yi∆n
, Y i,n) = ∆1/2

n aσ(Yi∆n
, Xi∆n

)Ui,n + εPi,n

where Ui,n = ξi,n + ξ′i+1,n with

ξi,n =
1

∆3/2
n

∫ (i+1)∆n

i∆n

(s− i∆n)dBs for i, n ≥ 0

ξ′i+1,n =
1

∆3/2
n

∫ (i+2)∆n

(i+1)∆n

((i+ 1)∆n − s)dBs for i ≥ −1, n ≥ 0.

If k is a real number ≥ 1, then for all i, n

E
(∣∣Y i+1,n − Y i,n

∣∣k |Gni ) ≤ c∆k/2
n (1 + |X(i+2)∆n

|k + |Y(i+2)∆n
|k)

Moreover there exist constants c such that

E(εPi,n|Gni ) ≤ c∆2
n(1 + |X(i+2)∆n

|3 + |Y(i+2)∆n
|3)

E((εPi,n)2|Gni ) ≤ c∆2
n(1 + |X(i+2)∆n

|4 + |Y(i+2)∆n
|4)

E((εPi,n)4|Gni ) ≤ c∆4
n(1 + |X(i+2)∆n

|8 + |Y(i+2)∆n
|8)

E(εPi,nUi,n|Gni ) ≤ c∆3/2
n (1 + |X(i+2)∆n

|2 + |Y(i+2)∆n
|2).

Remark that Proposition 3 implies that for any function f of the two variables Yt
and Xt, f(Yi∆n

, Xi∆n
) and Y i+1,n−Y i,n−∆nbµ(Yi∆n

, Y i,n) have a correlation
of order ∆1/2

n . Moreover the variance of Ui,n is 2/3∆n, while the variance of
ηi,n in Proposition 1 is 1. Gloter (2006) proposes a correction of the contrast
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by weighting the first sum in (10) by a factor 3/2. We extend this contrast to
the case of drift and volatility functions depending on both processes (Xt) and
(Yt). Thus we consider the following contrast

LPn (θ) =

n−2X
i=1

 
3

2

`
Y i+1,n − Y i,n −∆nbµ(Y(i−1)∆n , Y i−1,n)

´2
∆na2

σ(Y(i−1)∆n , Y i−1,n)
+ log(a2

σ(Y(i−1)∆n , Y i−1,n))

!
(12)

Remark that as (Y i,n) is not markovian, we introduce a shift in the index of
the drift and the diffusion functions to avoid a correlation term of order ∆1/2

n

between (Y i+1,n − Y i,n) and functionals f(Yi∆n
, Y i,n).

We define the minimum contrast estimator for partial observations θ̂Pn as

θ̂Pn = arg min
θ∈Θ
LPn (θ)

3.3 Main results

To simplify notations and proofs, we restrict to one-dimensional parameters
µ and σ. This could easily be extended to multidimensional parameters (see
remark 5 of Gloter, 2006). Simulations illustrate this extension.
Let µ0 and σ0 be the true parameter values. In this paper, we prove the consis-
tency and asymptotic normality of both estimators under the following identi-
fiability assumption

aσ(y, x) = aσ0(y, x) dν0(y, x) almost everywhere implies σ = σ0

bµ(y, x) = bµ0(y, x) dν0(y, x) almost everywhere implies µ = µ0

Classically, the consistency of the estimator θ̂n requires ∆n → 0.

Theorem 1 Under assumptions (A1)-(A4), the estimators θ̂Cn and θ̂Pn are con-
sistent:

θ̂Cn
P−−−−→

n→∞
θ0, and θ̂Pn

P−−−−→
n→∞

θ0.

The asymptotic distribution requires the additional condition n∆2
n → 0. The

rate of convergence is different for µ̂n and σ̂2
n. The drift term is estimated with

rate (n∆n)1/2 and the diffusion term is estimated with rate n1/2.

Theorem 2 Set assumptions (A1)-(A4), n∆2
n −−−−→

n→∞
0. In the complete obser-
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vations case,
(√

n∆n

(
µ̂Cn − µ0

)
,
√
n

(
σ̂2
C

n − σ2
0

))
converges in distribution to

N

(
0,
{
ν0

(
(∂µbµ0)2(·, ·)
a2
σ0

(·, ·)

)}−1
)
⊗N

(
0, 2

{
ν0

(
(∂σ2a2

σ0
)2(·, ·)

a4
σ0

(·, ·)

)}−1
)

and in the partial observations case,
(√

n∆n

(
µ̂Pn − µ0

)
,
√
n

(
σ̂2
P

n − σ2
0

))
con-

verges in distribution to

N

(
0,
{
ν0

(
(∂µbµ0)2(·, ·)
a2
σ0

(·, ·)

)}−1
)
⊗N

(
0,

9
4

{
ν0

(
(∂σ2a2

σ0
)2(·, ·)

a4
σ0

(·, ·)

)}−1
)

Theorem 2 is an extension of several results. We first comment the complete
observations case. When (Xt) is an autonomous diffusion, Kessler (1997) proves
that the asymptotic distribution is

N

(
0,
{
νX,0

(
(∂µbµ0)2(·)
a2
σ0

(·)

)}−1
)
⊗N

(
0, 2

{
νX,0

(
(∂σ2a2

σ0
)2(·)

a4
σ0

(·)

)}−1
)

where the limit distribution νX,0 is the stationary distribution of the diffusion
(Xt) itself. In that case, observations of (Yt) are not used. When (Xt) is not
autonomous and the diffusion is bi-dimensional, this result can be generalized if
the volatility matrix Σ is non degenerate. The asymptotic variance is then based
on ν0, the stationary distribution of the vector (Yt, Xt). When the volatility
matrix is degenerate as in model (3), the first assertion of Theorem 2 shows that
reducing the contrast to the Euler approximation of the second coordinate yields
to asymptotic normality for the estimator, the asymptotic variance involving the
stationary distribution of the vector (Yt, Xt). This is a major difference with
respect to the case of an autonomous diffusion for (Xt).
For the partial observations case, when (Xt) is autonomous, Gloter (2006) proves
that replacing Xi∆n

by Y i,n underestimates the asymptotic variance, as a con-
sequence of Proposition 3. As in the complete observation case, when (Xt) is
autonomous, the asymptotic variance is based on the stationary distribution
νX,0. In model (3) where the diffusion is not autonomous, second assertion
of Theorem 2 shows that the invariant measure of (Yt, Xt) is required in the
asymptotic variance.
The estimation of µ is asymptotically efficient since ν0

(
(∂µbµ0 )2(·,·)
a2
σ0

(·,·)

)
is the Fisher

information of the continuous time model. This is not the case for σ2 as its

13



asymptotic variance is increased with a factor 9/16 instead of 1/2 for directly
observed diffusion (Kessler, 1997).
Proofs of Theorems 1 and 2 are given in Section 5. They are based on properties
of functionals of (Yi∆n , Xi∆n) and (Yi∆n , Y i,n), which are studied in Section 4.

4 Functionals properties of (Yi∆n
, Xi∆n

) and (Yi∆n
, Y i,n)

Contrast properties rely on convergence results of functionals appearing in the
contrast functions. These functionals are of different types: functional mean,
variation and quadratic variation of Xi∆n

and Y i,n. We consider for the com-
plete observations case, for a measurable function f , the three functionals:

νCn (f) =
1
n

n−1∑
i=0

f(Yi∆n , Xi∆n , θ),

I
C

n (f) =
1

n∆n

n−1∑
i=0

f(Yi∆n
, Xi∆n

, θ)(X(i+1)∆n
−Xi∆n

−∆nbµ(Yi∆n
, Xi∆n

))

Q
C

n (f) =
1

n∆n

n−1∑
i=0

f(Yi∆n
, Xi∆n

, θ)
(
X(i+1)∆n

−Xi∆n

)2
and for the partial observations case, the three functionals

νPn (f) =
1
n

n−1∑
i=0

f(Yi∆n
, Y i,n, θ)

I
P

n (f) =
1

n∆n

n−2∑
i=1

f(Y(i−1)∆n
, Y i−1,n, θ)(Y i+1,n − Y i −∆nbµ(Y(i−1)∆n

, Y i−1,n))

Q
P

n (f) =
1

n∆n

n−2∑
i=1

f(Y(i−1)∆n
, Y i−1,n, θ)

(
Y i+1,n − Y i

)2
Note that in I

P

n (f) and Q
P

n (f), we introduce shifted processes Y(i−1)∆n
and

Y i−1,n in the function f as a consequence of the remark following Proposition
3. Consequently, the drift term bµ(Y(i−1)∆n

, Y i−1,n) in I
P

n (f) and in the con-
trast LPn are also shifted so that, when the square quantity in LPn is developed,
functionals to be studied have the proper index. Asymptotic study of these
functionals is difficult because it involves (Yi∆n , Y i,n) instead of the original
Markovian process (Yi∆n , Xi∆n).
We first study uniform convergence of these functionals, then their distribu-
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tion convergence. In the following, we assume that f belongs to the class F
introduced in Assumption (A1).

4.1 Uniform convergence

The first result concerns the empirical mean of the discretized process (Xi∆n
)i≥0

and the rate process (Y i,n)i≥1. The limits involve the stationary distribution
ν0 of the vector (Yt, Xt). Proofs are given in Appendix. They are essentially
based on Propositions 2 and 3 and generalize the proofs of Gloter (2006) to a
non autonomous diffusion (Xt).

Proposition 4 Under assumptions (A1)-(A4), we have uniformly in θ

νCn (f) P−−−−→
n→∞

ν0(f), νPn (f) P−−−−→
n→∞

ν0(f).

We see that replacing Xi∆n by Y i,n in the partial observations case does not
change the limit. The next result concerns the functionals I

C

n and I
P

n which
involve the variations of the processes (Xi∆n

)i≤0 and (Y i,n)i≤0, respectively.

Theorem 3 Under assumptions (A1)-(A4), we have uniformly in θ

I
C

n (f) P−−−−→
n→∞

0, I
P

n (f) P−−−−→
n→∞

0. (13)

The limit is the same for the complete and partial functionnals. This is due to
the introduction of the lag in the definition of I

P

n (f): f(Y(i−1)∆n
, Y i−1,n) and

b(Y(i−1)∆n
, Y i−1,n) instead of f(Yi∆n

, Y i,n) and b(Yi∆n
, Y i,n). This allows to

avoid correlation terms of order ∆1/2
n . When no lag is introduced, the limit is

not 0, see for instance Gloter (2006).
The last result deals with the quadratic variations of (Xi∆n

)i≥0 and (Y i,n)i≥1.

Theorem 4 Under assumptions (A1)-(A4), we have uniformly in θ

Q
C

n (f(·, ·, θ)) P−−−−→
n→∞

ν0(f(·, ·, θ)a2
σ0

(·, ·))

Q
P

n (f(·, ·, θ)) P−−−−→
n→∞

2
3
ν0(f(·, ·, θ)a2

σ0
(·, ·)).

Theorem 4 is an extension of different results. This implies several comments
which have already been partially addressed in Section 3.3. We first comment
the complete observations case. When (Xt) is an autonomous diffusion, Kessler
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(1997) proves that for a function f : R×Θ→ R

1
n∆n

n−1∑
i=0

f(Xi∆n
, θ)
(
X(i+1)∆n

−Xi∆n

)2 P−−−−→
n→∞

νX,0(f(·, θ)a2
σ0

(·))

where the limit distribution νX,0 is the stationary distribution of the diffusion
(Xt) itself. When the diffusion is two-dimensional and the volatility matrix Σ is
non degenerate, the limit is then ν0(f(·, ·, θ)ΣΣ′(·, ·)) where ν0 is the stationary
distribution of the vector (Yt, Xt). When the volatility matrix is degenerate as
in model (3), the first assertion of Theorem 4 shows that the problem is reduced
to the Euler approximation of the second equation of the system with the limit
involving the stationary distribution of the vector (Yt, Xt).
For the partial observations case, when (Xt) is autonomous, Gloter (2006)
proves that replacing Xi∆n by Y i,n modifies the result by underestimating
νX,0(f(·, θ)a2(·)). In the case of model (3) where the diffusion is not au-
tonomous, second assertion of Theorem 4 shows that the invariant measure
of (Yt, Xt) is required.

4.2 Distribution convergence of process functionals

In this section, we study some central limit theorems associated with the func-
tionals I

C

n , I
P

n andQ
C

n , Q
P

n . As I
C

n and I
P

n converge in probability to 0 (Theorem
3), their central limit theorems are the followings:

Theorem 5 Under assumptions (A1)-(A4) and n∆2
n −−−−→

n→∞
0, we have

√
n∆nI

C

n (f) D−−−−→
n→∞

N (0, ν0(f2a2))√
n∆nI

P

n (f) D−−−−→
n→∞

N (0, ν0(f2a2))

The condition n∆2
n −−−−→

n→∞
0 is classical (see Florens-Zmirou, 1989). This condi-

tion imposes that the discretization step decreases to zero fast enough to ensure
that the contribution of the error terms tends to 0 as n → ∞. The lag in-
troduced in the definition of I

P

n allows the result to be very similar for both
complete and partial observations case.
We now present a central limit theorem for Q

P

n and Q
C

n . Theorem 4 shows
that Q

P

n underestimates ν0(f(·, ·, θ)a2(·, ·)). The correction factor 2/3 is thus
required in its associated central limit theorem:
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Theorem 6 Under assumptions (A1)-(A4) and n∆2
n −−−−→

n→∞
0, we have

√
n
(
Q
C

n (f)− νCn (fa2)
)

D−−−−→
n→∞

N (0, ν0(f2a4))

√
n

(
Q
P

n (f)− 2
3
νPn (fa2)

)
D−−−−→

n→∞
N (0, ν0(f2a4))

In the partial observation case, when we replace Xi∆n
by Y i,n, the asymptotic

variance increases due to the factor 3/2. This can also be compared to the
results of Gloter (2006) when the diffusion (Xt) is autonomous.
Proofs of Theorems 5 and 6 are given in Appendix. They are essentially based
on results of Proposition 4 and Theorems 3 and 4.

5 Proofs of main results

In this section, asymptotic properties of estimators θ̂Cn and θ̂Pn are proved.

5.1 Proof of Theorem 1

We follow the proof of Kessler and Sørensen (1999). We have to show that,
uniformly in θ,

1
n
LCn (θ) P−−−−→

n→∞
ν0

(
a2
σ0

(y, x)
a2
σ(y, x)

+ log a2
σ(y, x)

)
(14)

1
n
LPn (θ) P−−−−→

n→∞
ν0

(
a2
σ0

(y, x)
a2
σ(y, x)

+ log a2
σ(y, x)

)
(15)

This ensures the convergence of σ̂n to σ0 for both cases. Then, if we prove that

1
n∆n

(LCn (µ, σ)− LCn (µ0, σ)) P−−−−→
n→∞

ν0

(
(bµ(y, x)− bµ0(y, x))2

a2
σ(y, x)

)
(16)

1
n∆n

(LPn (µ, σ)− LPn (µ0, σ)) P−−−−→
n→∞

3
2
ν0

(
(bµ(y, x)− bµ0(y, x))2

a2
σ(y, x)

)
(17)

this ensures the convergence of µ̂n to µ0 for both cases. We start by proving
(14-15). In the complete observations case, we have

1
n
LCn (θ) = Q

C

n (a−2
σ (·, ·)) + νCn (log a2

σ(·, ·))− 2∆nI
C

n (a−2
σ (·, ·)bµ(·, ·))

−∆nν
C
n (a−2

σ (·, ·)b2µ(·, ·))
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Using Proposition 4, Theorems 3 and 4, we easily prove (14). In the partial
observation case, we have

1
n
LPn (θ) =

3
2
Q
P

n (a−2
σ (·, ·)) + νPn (log a2

σ(·, ·))− 3∆nI
P

n (a−2
σ (·, ·)bµ(·, ·))

−3
2

∆nν
P
n (a−2

σ (·, ·)b2µ(·, ·))

Using Proposition 4, Theorems 3 and 4, we easily prove (15). For the proof of
(16), we have

1

n∆n

“
LCn (µ, σ)− LCn (µ0, σ)

”
= 2I

C
n (
bµ0

a2
σ

(·, ·)− bµ
a2
σ

(·, ·)) + νCn

„
(bµ(·, ·)− bµ0(·, ·)2

a2
σ(·, ·)

«
We conclude with Proposition 4 and Theorem 3. For the proof of (17), we write

1

n∆n

“
LPn (µ, σ)− LPn (µ0, σ)

”
= 3I

P
n (
bµ0

a2
σ

(·, ·)− bµ
a2
σ

(·, ·)) +
3

2
νPn

„
(bµ(·, ·)− bµ0(·, ·)2

a2
σ(·, ·)

«
We conclude with Proposition 4 and Theorem 3.

5.2 Proof of Theorem 2

The scheme of the proof is the same for both complete and partial observations
cases. Let θ̂n and Ln(θ) denote the estimator and contrast either for complete
or partial observations. A Taylor’s formula around θ̂n yields: Dn =

∫ 1

0
Cn(θ0 +

u(θ̂n − θ0)du En where

Dn =

(
−(
√
n∆n)−1 ∂

∂µLn(θ0)

−(
√
n)−1 ∂

∂σLn(θ0)

)
, En =

( √
n∆n (µ̂n − µ0)
√
n
(
σ̂2
n − σ2

0

) )
,

Cn(θ) =

(
1

n∆n

∂2

∂µ2Ln(θ) 1
n
√

∆n

∂2

∂σµLn(θ)
1

n
√

∆n

∂2

∂µσLn(θ) 1
n
∂2

∂σ2Ln(θ)

)
.

Let now detail the two cases. In the complete observations case, we have

1√
n∆n

∂µLCn (θ0) = −2
√
n∆nĨ

C
n

 ∂bµ0
∂µ (·, ·)
a2
σ0

(·, ·)


1√
n
∂σ2LCn (θ0) = −

√
n

(
Q
C
(
∂σ2(a2

σ0
(·, ·))

a4
σ0

(·, ·)

)
− νC

(
∂σ2(a2

σ0
(·, ·))

a2
σ0

(·, ·)

))
+ oP(1)
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By theorems 5 and 6, this yields

DCn
D−−−−→

n→∞
N

0,

 4ν0

(
(∂µbµ0 )2(·,·)
a2
σ0

(·,·)

)
0

0 2ν0

(
(∂σ2a

2
σ0

)2(·,·)
a4
σ0

(·,·)

) 


The proof of the distribution convergence of En follows with the consistency of
θ̂Cn and if we prove the uniform (with respect to θ) convergence in probability
of CCn (θ). To prove the uniform convergence, we differentiate twice LCn . Propo-
sition 4 and Theorem 3 show that CCn (θ) converges uniformly in θ in probability
to CC(θ) where

CC(θ) =

(
CC11(θ) 0

0 CC22(θ)

)

CC11(θ) = 2ν0

(
(∂µbµ)2(·, ·)
a2
σ(·, ·)

+
∂2
µ2bµ

a2
σ

(·, ·)(bµ(·, ·)− bµ0(·, ·))

)

CC22(θ) = ν0

(
(∂σ2a2

σ)2(·, ·)
(

2a2
σ0

(·, ·)
a6
σ(·, ·)

− 1
a4
σ0

(·, ·)

))
+ν0

(
∂2
σ2a2

σ(·, ·)
(

1
a2
σ(·, ·)

−
a2
σ0

(·, ·)
a4
σ(·, ·)

))
Hence the result for the complete observations case. In the partial observations
case, we have

1√
n∆n

∂µLPn (θ0) = −3
√
n∆nĨ

P
n

0@ ∂bµ0
∂µ

(·, ·)
a2
σ0(·, ·)

1A
1√
n
∂σ2LPn (θ0) = −3

2

√
n

„
Q
P
„
∂σ2a2

σ0(·, ·)
a4
σ0(·, ·)

«
− 2

3
νP
„
a2
σ0(·, ·)

∂σ2a2
σ0(·, ·)

a4
σ0(·, ·)

««
+ oP(1)

By theorems 5 and 6, this yields

DPn
D−−−−→

n→∞
N

0,

 9ν0

(
(∂µbµ0 )2(·,·)
a2
σ0

(·,·)

)
0

0 9
4ν0

(
(∂σ2a

2
σ0

)2(·,·)
a4
σ0

(·,·)

) 


Proof of the distribution convergence of En follows with the consistency of θ̂Pn
and the uniform (with respect to θ) convergence in probability of CPn (θ). To
prove the uniform convergence, we differentiate twice LPn . Proposition 4 and
Theorem 3 show that CPn (θ) converges uniformly in θ in probability to CP (θ)
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where

CP (θ) =

(
CP11(θ) 0

0 CP22(θ)

)

CP11(θ) = 3ν0

(
(∂µbµ)2(·, ·)
a2
σ(·, ·)

+
∂2
µ2bµ

a2
σ

(·, ·)(bµ(·, ·)− bµ0(·, ·))

)

CP22(θ) = ν0

(
(∂σ2a2

σ)2(·, ·)
(

2a2
σ0

(·, ·)
a6
σ(·, ·)

− 1
a4
σ0

(·, ·)

))
+ν0

(
∂2
σ2a2

σ(·, ·)
(

1
a2
σ(·, ·)

−
a2
σ0

(·, ·)
a4
σ(·, ·)

))
Hence the result. �

6 Simulation study

We consider three models of simulation, which are those proposed by Pokern
et al. (2009). Their general form is given as the Langevin system (6) where
FD is some (possibly non-linear) force function parameterized by D. Model I
corresponds to a simple linear stochastic growth with γ = 0, FD ≡ 0. Model
II coresponds to a linear oscillator subject to noise and damping with γ >

0, FD(y) ≡ D
2 y

2. Model III is a non-linear oscillator to noise and damping with
γ > 0, FD(y) ≡ −Σnj=1j

−1Dj(cos y)j . Stability conditions for these models have
been detailed in Section 2.

6.1 Model I: stochastic growth

We consider the following simple model{
dYt = Xtdt

dXt = σdBt
(18)

The process has one parameter, σ, that describes the size of the fluctuations.
Model (18) has a matricial form dUt = AUtdt+ ΓdBt where Ut = (Yt, Xt)t and

A =

(
0 1
0 0

)
, Γ =

(
0 0
0 σ

)
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This model has an explicit solution Ut = eA(t−t0)U0 +
∫ t
t0
eA(t−s)ΓdBs. Given

the fact that eAt = I + At for this simple model, the process (Ut) is Gaussian
with expectation vector and covariance matrix

E(Ut|U0) =

(
1 t

0 1

)
U0, V ar(Ut|U0) = Σt = σ2

(
t3/3 t2/2
t2/2 t

)

The covariance matrix Σt is invertible. Remark that the process (Ut) has no
stationary probability distribution. It is usual to consider the Lebesgue mea-
sure, which is not a probability measure, as its invariant measure. Although
the theory developed in this paper has to be extended to the existence of an
invariant measure which is not a probability measure, this is beyond the scope
of this paper. Nevertheless, this example illustrates that estimators have good
properties in that case. An exact discrete sampling scheme can be deduced from
the exact distribution of (Ut)(

Y(i+1)∆n

X(i+1)∆n

)
=

(
Yi∆n

+ ∆nXi∆n

Xi∆n

)
+ σΣ1/2

∆n

(
ε

(1)
i∆n

ε
(2)
i∆n

)
, (19)

As the exact distribution is available and easily computable, the estimation of
σ can be obtained from the exact likelihood when complete observations are
available. The exact maximum likelihood estimator (MLE) is thus

σ̂MLE =
1

2n

n−1∑
i=0

(U(i+1)∆n
− eA∆nUi∆n

)′(Σ∆n
)−1(U(i+1)∆n

− eA∆nUi∆n
)

The fact that the MLE is explicit is very specific to this simple model. It is
also interesting to study the two contrast estimators, which are defined for more
general models. The estimator for the complete observations case is equal to

σ̂C =
1

∆nn

n−1∑
i=0

(X(i+1)∆n
−Xi∆n

)2.

When partial observations are available, the estimator is

σ̂P =
3
2

1
∆n(n− 2)

n−2∑
i=1

(Y i+1,n − Y i,n)2.

The behavior of these three estimators are compared on simulated data. Three
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Figure 1: Model I: Stochastic Growth. Estimator densities of parameter σ com-
puted on 1000 simulated datasets for three designs ∆n = 0.1, n = 100 (a),
∆n = 0.1, n = 1000 (b) and ∆n = 0.01, n = 1000 (c). True value of σ is 1
(vertical line). Three estimators are compared: MLE (dotted line), complete
observation contrast estimator σ̂C (plain line), partial observation contrast es-
timator σ̂P (bold line).

designs (∆n, n) of simulations are considered: ∆n = 0.1, n = 100; ∆n = 0.1, n =
1000 and ∆n = 0.01, n = 1000. A thousand of datasets are simulated for each
design with the exact discrete scheme (19), the true parameter value σ = 1
and U0 = (1, 1)′. The three estimators are computed on each dataset. Kernel
estimations of the density of these estimators are represented in Figure 1. The
three estimators are unbiased for the three designs. Their variances are small
and decrease when n increases, whatever the value of ∆n. The maximum likeli-
hood estimator σ̂MLE has a smaller variance than the two contrast estimators
σ̂C and σ̂P , whatever the values of n and ∆n. This is expected as the MLE
is based on the exact distribution of the diffusion, while σ̂C and σ̂P are based
on Euler approximation. The two contrast estimators behave very similarly.
Empirical means and standard deviations of the three estimators for the three
designs are presented in Table 1. Means and standard deviations obtained by
Pokern et al. (2009) on the same example are also reported. With complete
observations, the MLE and the contrast estimator have similar estimate means
and are unbiased. The standard deviations of σ̂C are three times larger than for
σ̂MLE . With partial observations, the contrast estimator σ̂P has similar mean
than the one of Pokern et al. (2009), but twice greater standard deviations.
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Design
∆n = 0.1 ∆n = 0.1 ∆n = 0.01

Observations Estimator n = 100 n = 1000 n = 1000
Complete σ̂MLE 0.999 (0.050) 1.000 (0.015) 1.000 (0.016)
Complete σ̂C 0.998 (0.142) 1.001 (0.044) 1.000 (0.044)
Partial σ̂P 1.005 (0.158) 1.002 (0.048) 1.001 (0.046)
Partial Pokern et al. 0.993 (0.077) 0.999 (0.024) 1.000 (0.024)

Table 1: Model I: Stochastic Growth. True value is σ = 1. Mean and standard
error of estimators of parameter σ computed on 1000 simulated datasets for
three designs ∆n = 0.1, n = 100, ∆n = 0.1, n = 1000 and ∆n = 0.01, n = 1000.
Four estimators are compared: MLE with complete observations, complete ob-
servation contrast estimator σ̂C , partial observation contrast estimator σ̂P and
Gibbs estimates obtained by Pokern et al. (2009) with partial observations.

6.2 Model II: harmonic oscillator

We consider an harmonic oscillator that is driven by a white noise forcing:{
dYt = Xtdt

dXt = (−DYt − γXt)dt+ σdBt
(20)

with γ > 0 and D > 0. The process has three unknown parameters (D, γ, σ).
Model (20) has a matricial form dUt = AUtdt+ ΓdBt where Ut = (Yt, Xt)t,

A =

(
0 1
−D −γ

)
, Γ =

(
0 0
0 σ

)

The stationary distribution of (Ut) is Gaussian with zero mean and an explicit
variance matrix (Gardiner, 1985)

V ar(Ut) = ΣU =
1

−2tr(A)det(A)
(det(A)ΓΓ′ + (A− tr(A)I2)ΓΓ′(A− tr(A)I2)′

where tr(A) and det(A) are the trace and the determinant of A.
The estimator for the complete observations case is defined as

θ̂C = arg min
θ

[
n−1∑
i=0

(X(i+1)∆n
−Xi∆n

+ ∆n(DYi∆n
+ γXi∆n

))2

∆nσ2
+ n log σ2

]
.
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When only partial observations (Yi∆n) are available, the constrast is

θ̂P = arg min
θ

[
3
2

n−2∑
i=1

(Y i+1,n − Y i,n + ∆n(DY(i−1)∆n
+ γY i−1,n))2

∆nσ2
+ (n− 2) log σ2

]

The behavior of these two estimators are compared on simulated data. Three
designs (∆n, n) of simulations are considered: ∆n = 0.1, n = 1000; ∆n =
0.1, n = 100 and ∆n = 0.01, n = 1000. A thousand of datasets are simulated for
each design with the exact stationary distribution, the true parameter values
D = 4, γ = 0.5 and σ = 1 and U0 = (1, 0)′. The two estimators θ̂C and
θ̂P are computed on each dataset. Empirical mean and standard deviations of
the estimators are reported on Table 2 (simultaneous estimation of the three
parameters). Results obtained by Pokern et al. (2009) when estimating only
σ̂P are reported in Table 2. In their paper, the author do not detail their
results for drift parameters when using the Gibbs loop, which corresponds to
a simultaneous estimation. So we only report results for σ. Parameter σ is
estimated with very small bias whatever the design and the kind of observations.
The bias of σ is slightly less than the one of Pokern et al. (2009). Its standard
deviation decreases with n. The drift parameters D and γ are estimated with
bias for the two first designs. The bias decrease when n = 1000, ∆n = 0.01.
This is corroborated by the theoretical results, as the asymptotic conditions are
not the same for drift and volatility parameter estimation. The bias is very
small for D but still remains for γ when n = 1000, ∆n = 0.01. The bias for drift
parameters obtained with partial observations are larger than with complete
observations. For example, with n = 100, ∆n = 0.1, the mean estimated
value for parameter D is 3.588 with partial observations and 3.567 for complete
observations, to be compared to the true value 4. When n increases and ∆n

decreases, this difference decreases and the bias is small.

6.3 Model III: trigonometric oscillator

We consider the dynamics of a particle moving in a trigonometric potential (see
Pokern et al., 2009). The model is{

dYt = Xtdt

dXt =
(
−γXt −

∑c
j=1Dj sin(Yt) cosj−1(Yt)

)
dt+ σdBt

(21)
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Design
Estimator True ∆n = 0.1 ∆n = 0.1 ∆n = 0.01

value n = 100 n = 1000 n = 1000
σ̂C 1 0.980 (0.069) 0.974 (0.021) 0.996 (0.021)
σ̂P 0.946 (0.074) 0.956 (0.021) 0.994 (0.023)
Pokern et al. 1.154 (0.074) 1.114 (0.025) 1.016 (0.013)

D̂C 4 3.567 (0.489) 3.488 (0.187) 4.034 (0.642)
D̂P 3.588 (0.494) 3.501 (0.188) 4.032 (0.644)
γ̂C 0.5 1.022 (0.098) 1.086 (0.271) 0.678 (0.326)
γ̂P 1.285 (0.275) 1.215 (0.096) 0.699 (0.330)

Table 2: Model II: Harmonic Growth, estimation of the three parametersD, γ, σ.
Mean and standard error of parameter estimators D, γ and σ computed on 1000
simulated datasets for three designs ∆n = 0.1, n = 100 (a), ∆n = 0.1, n = 1000
(b) and ∆n = 0.01, n = 1000 (c). Three estimators are compared: complete
observation contrast estimator θ̂C , partial observation contrast estimator θ̂P
and Gibbs estimator obtained by Pokern et al. (2009) with partial observations.

with parameters θ = (γ,Dj , j = 1, . . . , c, σ). This system is non-linear. No
explicit closed form expression for the solution is known.
The estimator for the complete observations case is defined as

θ̂C = arg minθ
[
n log σ2

+
∑n−1
i=0

(X(i+1)∆n−Xi∆n+∆n(γXi∆n+
Pc
j=1 Dj sin(Yi∆n ) cosj−1(Yi∆n )))2

∆nσ2

]
When only partial observations (Yi∆n) are available, the estimator is

θ̂P = arg minθ
[
(n− 2) log σ2

+ 3
2

∑n−2
i=1

(Y i+1,n−Y i,n+∆n(γY i−1,n+
Pc
j=1 Dj sin(Y(i−1)∆n ) cosj−1(Y(i−1)∆n )))2

∆nσ2

]
The behavior of these estimators are compared on simulated data. Four designs
(∆n, n) of simulations are considered: ∆n = 0.1, n = 100; ∆n = 0.1, n = 1000;
∆n = 0.01, n = 1000 and ∆n = 0.01, n = 10000. A thousand of datasets
are simulated for each design with the exact stationary distribution and the
true parameter values proposed by Pokern et al. (2009) D1 = 1, D2 = −8,
D3 = 8, γ = 0.5 and σ = 0.7 and U0 = (1, 1)′. The two estimators θ̂C and θ̂P

are computed on each dataset. Simultaneous estimation of the five parameters
is performed. Empirical mean and standard deviations of the estimators are
reported on Table 3. Pokern et al. (2009)’s results are presented as figures
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Design
Estimator True ∆n = 0.1 ∆n = 0.1 ∆n = 0.01 ∆n = 0.01

value n = 100 n = 1000 n = 1000 n = 10000
σ̂C 0.7 0.886 (0.110) 0.861 (0.032) 0.713 (0.019) 0.714 (0.006)
σ̂P 1.012 (0.118) 1.021 (0.034) 0.873 (0.024) 0.784 (0.008)

D̂1

C
1 0.987 (0.414) 1.003 (0.125) 1.043 (0.381) 1.010 (0.111)

D̂1

P
1.002 (0.378) 1.002 (0.116) 1.036 (0.378) 1.005 (0.110)

D̂2

C
-8 -8.221 (1.451) -8.020 (0.367) -8.082 (1.878) -8.042 (0.498)

D̂2

P
-7.340 (1.382) -7.251 (0.339) -8.019 (1.859) -7.998 (0.495)

D̂3

C
8 8.271 (2.424) 8.001 (0.597) 7.722 (3.589) 8.010 (0.764)

D̂3

P
7.068 (2.235) 7.007 (0.565) 7.641 (3.559) 7.964 (0.758)

γ̂C 0.5 0.638 (0.290) 0.524 (0.074) 0.671 (0.384) 0.522 (0.099)
γ̂P 0.889 (0.304) 0.763 (0.074) 0.701 (0.384) 0.548 (0.100)

Table 3: Model III: Trigonometric Growth, estimation of the five parameters
D1, D2, D3, γ, σ. Mean and standard error of parameter estimators D, γ and
σ computed on 1000 simulated datasets for four designs ∆n = 0.1, n = 100,
∆n = 0.1, n = 1000, ∆n = 0.01, n = 1000 and ∆n = 0.01, n = 10000. Two esti-
mators are compared: complete observation contrast estimator θ̂C and partial
observation contrast estimator θ̂P .

and are not reported here. Bias and standard deviations of drift and volatility
parameters decrease when n increases and ∆n decreases. For example, for σ
with complete observations, the mean estimated value is 0.886 when n = 100,
∆n = 0.1 and 0.714 when n = 1000, ∆n = 0.01, to be compared to the true value
0.7. For γ with complete observations, the mean estimated values is 0.638 when
n = 100, ∆n = 0.1 and 0.522 when n = 1000, ∆n = 0.01, to be compared to the
true value 0.5. Estimators obtained from partial observations have greater bias
than those obtained from complete observations. For example, when n = 100,
∆n = 0.1, for σ with complete observations, the mean estimated value for σ
is 0.886 with complete observations and 1.012 with partial observations, to be
compared to the true value 0.7.

7 Discussion

We consider two cases of observations (partial and complete) of a hypoelliptic
two-dimensional diffusion, with non-autonomous equations. The contrast esti-
mators are based on Euler approximations of the second coordinate. We prove
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their consistency and give their asymptotic distribution. The case of complete
observations leads to efficient estimator. On the contrary, in the case of partial
observations, our estimator is not efficient. This extends the results of Gloter
(2006) to non-autonomous diffusion.
We compare our estimators to Pokern et al. (2009)’s estimator. Pokern et al.
(2009) limit their study to linear drift and constant diffusion coefficient. Their
estimator is based on a hybrid Gibbs sampler in a Bayesian framework. Their
algorithm may be time consuming. Our estimator has the advantage to be
simple to compute. For example, on the three examples considered in the sim-
ulation study, which are the same than those handled by Pokern et al. (2009),
our estimators are explicit and thus computed in less than one second.
Only second-order hypoelliptic systems have been considered in this paper. The
estimation method proposed by Pokern et al. (2009) works for larger order.
The extension of our approach to these higher order hypoelliptic systems would
require higher order approximation schemes, as Runge Kutta schemes.
Although Model (1) involves a function g in the first coordinate, we reduce to
the case dYt = Xt for the definition of the contrast functions as explained in
Section 2. Our estimation procedure could be used to estimate parameters of
function g. Numerical study of such models would be explored in future works.
This could have great usefulness to consider more complex models and real data.
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A Proofs

Proposition A of Gloter (2000) can be extended to drift and volatility depending
both on y and x:

Proposition 5 Let f ∈ C1. If ∃c,∀y, x such that |f ′y(y, x)|+ |f ′x(y, x)| ≤ c(1 +
|y|+ |x|) then, for all integer k ≥ 1, we have

E

 
sup

t∈[i∆n,(i+1)∆n]

|f(Yt, Xt)− f(Yi∆n , Xi∆n)|k |Gni

!
≤ c∆k/2

n (1+|Y(i+1)∆n |
k+|X(i+1)∆n |

k)

Proof. With start with f(y, x) = x. Let δi,n = supt∈[i∆n,(i+1)∆n] |Xt −Xi∆n |.
Using the Burkholder inequality, we get

E(δki,n|Gni ) ≤ cE

(∫ (i+1)∆n

i∆n

|bµ(Yt, Xt)|dt

)k
|Gni


+ cE

(∫ (i+1)∆n

i∆n

|a2
σ(Yt, Xt)|dt

)k/2
|Gni


Using Assumption (A2), we get

E(δki,n|Gni ) ≤ c∆k
nE

[
sup

t∈[i∆n,(i+1)∆n]

|bkµ(Yt, Xt)||Gni

]

+c∆k/2
n E

[
sup

t∈[i∆n,(i+1)∆n]

|akσ(Yt, Xt)||Gni

]
+c∆k/2

n (1+|Y(i+1)∆n
|k+|X(i+1)∆n

|k)
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Now for a general f , we study f(Yt, Xt)−f(Yi∆n , Xi∆n) = f(Yt, Xt)−f(Yi∆n , Xt)+
f(Yi∆n , Xt)− f(Yi∆n , Xi∆n). We have

E

(
sup

t∈[i∆n,(i+1)∆n]

|f(Yt, Xt)− f(Yi∆n
, Xi∆n

)|k |Gni

)
≤

2k−1E

(
sup

t∈[i∆n,(i+1)∆n]

|f(Yt, Xt)− f(Yi∆n , Xt)|k |Gni

)

+2k−1E

(
sup

t∈[i∆n,(i+1)∆n]

|f(Yi∆n
, Xt)− f(Yi∆n

, Xi∆n
)|k |Gni

)

We first study f(Yt, Xt)− f(Yi∆n
, Xt). Burkholder inequality yields

E( sup
t∈[i∆n,(i+1)∆n]

|f(Yt, Xt)− f(Yi∆n , Xt)|
k |Gni ) ≤ c∆k/2

n (1+|Y(i+1)∆n |
k+|X(i+1)∆n |

k)

We then study f(Yi∆n
, Xt) − f(Yi∆n

, Xi∆n
). Burkholder inequality yields the

result. �

Proof of Proposition 1. We have

X(i+1)∆n
−Xi∆n

−∆nbµ(Yi∆n
, Xi∆n

) = aσ(Yi∆n
, Xi∆n

)ηi,n + αin + βin

where ηi,n =
∫ (i+1)∆n

i∆n
dBs, αi,n =

∫ (i+1)∆n

i∆n
(aσ(Ys, Xs) − aσ(Yi∆n , Xi∆n))dBs

and βi,n =
∫ (i+1)∆n

i∆n
(bµ(Ys, Xs) − bµ(Yi∆n

, Xi∆n
))ds. Properties of ηi,n are di-

rectly deduced from properties of the Brownian motion. Let εCi,n = αi,n + βi,n.
Assumptions (A1)-(A2) lead to |E(βi,n|Gni )| ≤ c∆3/2

n (1+|Y(i+1)∆n
|+|X(i+1)∆n

|).
Proposition 5 provides E(|βi,n|k|Gni ) ≤ c∆k/2

n (1 + |Y(i+1)∆n
|k + |X(i+1)∆n

|k) for
k ≥ 2. Burkholder inequality gives E(|αi,n|k|Gni ) ≤ c∆k

n(1 + |Y(i+1)∆n
|k +

|X(i+1)∆n
|k) for k ≥ 2. �

Proof of Proposition 2. We have Y i,n−Xi∆n
= 1

∆n

∫ (i+1)∆n

i∆n
(Xv−Xi∆n

)dv and
Xv −Xi∆n

=
∫ v
i∆n

bµ(Ys, Xs)ds +
∫ v
i∆n

aσ(Ys, Xs)dBs. By the Fubini theorem,

we get Y i,n − Xi∆n
= ∆1/2

n aσ(Yi∆n
, Xi∆n

)ξ′i,n + ei,n where ei,n = αi,n + βi,n
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and

αi,n =
1

∆n

∫ (i+1)∆n

i∆n

(aσ(Yv, Xv)− aσ(Yi∆n
, Xi∆n

)) ((i+ 1)∆n − v)dBv

βi,n =
1

∆n

∫ (i+1)∆n

i∆n

∫ v

i∆n

bµ(Ys, Xs)dsdv

By Assumption (A1), we get |βi,n| ≤ c∆n(1 + sups∈[i∆n,(i+1)∆n](|Ys| + |Xs|)).
As E(αi,n|Gni ) = 0, we get |E(ei,n|Gni ) ≤ c∆n(1 + |X(i+1)∆n

| + |Y(i+1)∆n
|). By

assumption (A2), for all k ≥ 0, we get E
(
|βi,n|k|Gni

)
≤ c∆k

n(1 + |Y(i+1)∆n
|k +

|X(i+1)∆n
|k). For k ≥ 2, applying the Burkholder-Davis-Gundy and the Jensen

inequalities yields:

E
(∣∣αki,n∣∣ |Gni ) ≤ c

∫ (i+1)∆n

i∆n

E
(
|aσ(Ys, Xs)− aσ(Yi∆n

, Xi∆n
)|k|Gni

)
ds

By proposition 5 and by assumption (A1), we get E
(∣∣αki,n∣∣ |) ≤ c∆k/2+1

n (1 +
|Y(i+1)∆n

|k + |X(i+1)∆n
|k). Finally, we get |E(e2

i,n|Gni ) ≤ c∆2
n(1 + |X(i+1)∆n

|2 +
|Y(i+1)∆n

|2). Using Proposition 5, we have

E

(
sup

s∈[i∆n,(i+1)∆n]

|Xs −Xi∆n
|k|Gni

)
≤ ∆k/2

n (1 + |Y(i+1)∆n
|k + |X(i+1)∆n

|k)

thus we directly deduce

E
(∣∣Y i,n −Xi∆n

∣∣k |Gni ) = E

∣∣∣∣∣ 1
∆n

∫ (i+1)∆n

i∆n

(Xs −Xi∆n
)ds

∣∣∣∣∣
k

|Gni


≤ ∆k/2

n (1 + |Y(i+1)∆n
|k + |X(i+1)∆n

|k)

�

Proof of Proposition 3. We have

Y i+1,n−Y i,n =
1

∆n

Z (i+1)∆n

i∆n

Z s+∆n

s

aσ(Yv, Xv)dBvds| {z }
Ai

+
1

∆n

Z (i+1)∆n

i∆n

Z s+∆n

s

bµ(Yv, Xv)dvds| {z }
Bi
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By Fubini theorem, we have

Ai =
∫ (i+1)∆n

i∆n

aσ(Yv, Xv)(v−i∆n)dBv+
∫ (i+2)∆n

(i+1)∆n

aσ(Yv, Xv)((i+2)∆n−v)dBv

Bi =
∫ (i+1)∆n

i∆n

bµ(Yv, Xv)(v − i∆n)dv +
∫ (i+2)∆n

(i+1)∆n

bµ(Yv, Xv)((i+ 2)∆n − v)dv

We can rewrite Ai as Ai = aσ(Yi∆n
, Xi∆n

)∆3/2
n (ξi,n + ξ′i+1,n) + ai,n + a′i+1,n

where ai,n =
∫ (i+1)∆n

i∆n
(aσ(Yv, Xv)− aσ(Yi∆n

, Xi∆n
)) (v−i∆n)dBv and a′i+1,n =∫ (i+2)∆n

(i+1)∆n
(aσ(Yv, Xv)− aσ(Yi∆n , Xi∆n)) ((i+ 2)∆n − v)dBv. Similarly,

Bi = bµ(Yi∆n
, Xi∆n

)∆2
n + bi,n + b′i+1,n

where bi,n =
∫ (i+1)∆n

i∆n

(
bµ(Yv, Xv)− bµ(Yi∆n

, Y i,n)
)

(v − i∆n)dBv and b′i+1,n =∫ (i+2)∆n

(i+1)∆n

(
bµ(Yv, Xv)− bµ(Yi∆n

, Y i,n)
)

((i+2)∆n−v)dBv. Therefore, this yields

Y i+1,n − Y i,n −∆nbµ(Yi∆n
, Y i,n) = aσ(Yi∆n

, Xi∆n
)∆1/2

n (ξi,n + ξ′i+1,n) + εPi,n

with εPi,n = ai,n
∆n

+ a′i+1,n
∆n

+ bi,n
∆n

+ b′i+1,n
∆n

.
◦ Let us prove |E(εPi,n|Gni )| ≤ c∆2

n(1 + |X(i+2)∆n
|3 + |Y(i+2)∆n

|3). We have
E(ai,n|Gni ) = E(a′i+1,n|Gni ) = 0 and

E
(
bi,n
∆n
|Gni
)

=
1

∆n

∫ (i+1)∆n

i∆n

(v − i∆n)E(bµ(Yv, Xv)− bµ(Yi∆n , Xi∆n)|Gni )dv

+
1

∆n

∫ (i+1)∆n

i∆n

(v − i∆n)E(bµ(Yi∆n
, Xi∆n

)− bµ(Yi∆n
, Y i,n)|Gni )dv

By Ito’s formula, assumptions (A1)-(A2) and Proposition 5, we get

sup
v∈[i∆n,(i+1)∆n]

|E (bµ(Yv, Xv)− bµ(Yi∆n , Xi∆n)|Gni )| ≤ ∆nc(1+|Y(i+1)∆n |
2+|X(i+1)∆n |

2)

By Taylor’s formula of order two, there exists Z ∈ (Y i,n, Xi∆n) such that

bµ(Yi∆n , Y i,n)−bµ(Yi∆n , Xi∆n) =
∂bµ(Yi∆n , Xi∆n)

∂X
(Y i,n−Xi∆n)+

1

2

∂2b(Yi∆n , Z)

∂X2
(Y i,n−Xi∆n)2

Using the Cauchy Schwartz inequality, we get

∣∣E (bµ(Yi∆n
, Y i,n)− bµ(Yi∆n

, Xi∆n
)|Gni

)∣∣ ≤ c∆n(1+|Y(i+1)∆n
|2+|X(i+1)∆n

|2)|
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Hence

sup
v∈[i∆n,(i+1)∆n]

∣∣E (bµ(Yv, Xv)− bµ(Yi∆n
, Y i,n)|Gni

)∣∣ ≤ ∆nc(1+|Y(i+1)∆n
|2+|X(i+1)∆n

|2)

and
∣∣∣E( bi,n∆n

|Gni
)∣∣∣ ≤ ∆2

nc(1+|Y(i+1)∆n
|2+|X(i+1)∆n

|2). Similarly,
∣∣∣E( b′i+1,n

∆n
|Gni
)∣∣∣ ≤

∆2
nc(1 + |Y(i+2)∆n

|2 + |X(i+2)∆n
|2) and the bound on |E(εPi,n|Gni )| is proved.

◦We now bound |E((εPi,n)2|Gni )| and |E((εPi,n)4|Gni )|. Using the Cauchy-Schwarz
inequality, it is sufficient to bound |E((εPi,n)4|Gni )|. By assumption (A2) and

Proposition 5, we obtain E
(∣∣∣ bi,n∆n

∣∣∣4 |Gni ) ≤ ∆4
nc(1 + |Y(i+1)∆n

|4 + |X(i+1)∆n
|4)

and similarly E
(∣∣∣ b′i+1,n

∆n

∣∣∣4 |Gni ) ≤ ∆4
nc(1+|Y(i+2)∆n

|4+|X(i+2)∆n
|4). We have to

bound E
(∣∣∣ai,n∆n

∣∣∣4 |Gni ). Using the Burkholder-Davis-Gundy inequality, propo-

sition 5 and assumption (A2), we get

E
„˛̨̨

ai,n
∆n

˛̨̨4
|Gni
«

≤ c
∆4
n

E
“R (i+1)∆n

i∆n
(aσ(Yv, Xv)− aσ(Yi∆n , Xi∆n))4 dv

R (i+1)∆n
i∆n

`
(v − i∆n)4dv

´
|Gni
”

≤ c∆4
n(1 + |Y(i+1)∆n |

4 + |X(i+1)∆n |
4)

Similarly, we obtain E
(∣∣∣a′i+1,n

∆n

∣∣∣4 |Gni ) ≤ c∆4
n(1+|Y 4

(i+2)∆n
+|X(i+2)∆n

|4). This

completes the proof for the bound of |E(ε4
i,n|Gni )|.

◦We now proof |E(εi,nUi,n|Gni ) ≤ c∆3/2
n (1+|X(i+1)∆n

|2+|Y(i+1)∆n
|2). From the

definitions of (ai,n, a′i+1,n, bi,n, b
′
i+1,n), we can prove the following inequalities

|E(ai,nξi,n|Gni )| ≤ ∆5/2
n c(1 + |Y(i+1)∆n

|+ |X(i+1)∆n
|), |E(a′i+1,nξi,n|Gni )| = 0

|E(bi,nξi,n|Gni )| ≤ ∆5/2
n c(1 + |Y(i+1)∆n

|+ |X(i+1)∆n
|),

|E(b′i+1,nξi,n|Gni )| ≤ ∆5/2
n c(1 + |Y(i+2)∆n

|+ |X(i+2)∆n
|)

Hence the results for |E(εi,nUi,n|Gni ).
◦ Proposition 5 yields

E

(
sup

s∈[i∆n,(i+2)∆n]

|Xs −Xi∆n
|k
)
≤ c∆k/2

n (1 + |Y(i+2)∆n
|k + |X(i+2)∆n

|k)

which provides

E
(∣∣Y i+1,n − Y i,n

∣∣k |Gni ) ≤ c∆k/2
n (1 + |Y(i+2)∆n

|k + |X(i+2)∆n
|k)
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Proof of Proposition 4. The first assertion in the complete observations case is
based on the convergence of the Euler scheme (Bally and Talay, 1996). For par-
tial observations case, Taylor’s expansion ensures that there exists s ∈ (Y i,n, Xi∆n

)
such that

f(Yi∆n , Y i,n, θ) = f(Yi∆n , Xi∆n , θ) + f ′x(Yi∆n , Xs, θ)(Y i,n −Xi∆n).

Thus we deduce that E(sup |f(Yi∆n
, Y i,n, θ)−f(Yi∆n

, Xi∆n
, θ)||Gni ) ≤ c∆1/2

n (1+
|X(i+1)∆n

|+|Y(i+1)∆n
|). Hence, the L1 convergence of sup 1

n

∑n
i=0 |f(Yi∆n

, Y i,n, θ)−
f(Yi∆n

, Xi∆n
, θ)| is proved. The results yields by applying Proposition 2. �

Proof of Theorem 3. The scheme of the proof is the same for both com-
plete and partial observations cases, but the arguments are simpler for the
complete observations case. We only detail the second case. Set ĨPn (f) =

1
n∆n

∑n−2
i=0 f(Y(i−1)∆n

, Y i−1,n)
(
Y i+1,n − Y i −∆nbµ(Yi∆n

, Y i,n)
)
. We can write

I
P
n (f) = ĨPn (f)+

1

n∆n

n−1X
i=1

∆nf(Y(i−1)∆n , Y i−1,n, θ)(bµ(Yi∆n , Y i)−bµ(Y(i−1)∆n , Y i−1,n))

we first study the convergence of ĨPn (f) and then we deduce the result for I
P

n (f).
We have ĨPn (f) = 1

n∆n

∑n−1
i=0 Zi,n(θ) with Zi,n(θ) = f(Y(i−1)∆n

, Y i−1,n)(
Y i+1,n − Y i −∆nbµ(Yi∆n

, Y i,n)
)
. The random variable Y i,n is Gni+1-measurable

and Zi,n(θ) is Gni+2-measurable. We split ĨPn (f) into the sum of three terms

ĨPn (f) =
1

n∆n

(
n−1∑
i=0

Z3i,n(θ) +
n−1∑
i=0

Z3i+1,n(θ) +
n−1∑
i=0

Z3i+2,n(θ)

)

To prove (13), it is enough to show that 1
n∆n

∑n−1
i=0 Z3i,n(θ) P−−−−→

n→∞
0 uniformly

in θ, in probability (the proof for the convergence of 1
n∆n

∑n−1
i=0 Z3i+1,n(θ) and

1
n∆n

∑n−1
i=0 Z3i+2,n(θ) is analogous). Using Proposition 3, we set Zi,n(θ) =

z
(2)
i,n(θ) + z

(2)
i,n(θ) with

z
(1)
i,n(θ) = f(Y(i−1)∆n

, Y i−1,n)∆1/2
n aσ(Yi∆n

, Xi∆n
)Ui,n

z
(2)
i,n(θ) = f(Y(i−1)∆n

, Y i−1,n)εPi,n
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To prove 1
n∆n

∑n−1
i=0 z

(j)
3i,n(θ) P−−−−→

n→∞
0 for j = 1, 2, we use lemma A2 of Gloter

(2006). It is thus enough to prove

1
n∆n

n−1∑
i=0

E(z(j)
3i,n(θ)|Gn3i)

P−−−−→
n→∞

0

1
n2∆2

n

n−1∑
i=0

E((z(j)
3i,n(θ))2|Gn3i)

P−−−−→
n→∞

0

As Y 3i−1,n is Gn3i measurable and E(U3i,n|Gn3i) = 0, we have E(z(1)
i,n(θ)|Gn3i) = 0.

Using E(U2
3i,n|Gn3i) = 2/6, we get

E((z(1)
3i,n(θ))2|Gn3i) =

2
6

∆nf
2(Y(3i−1)∆n

, Y 3i−1,n)a2
σ(Y3i∆n

, X3i∆n
)

Assumptions (A1)-(A2) yields 1
n2∆2

n

∑n−1
i=0 E((z(1)

3i,n(θ))2|Gn3i)
P−−−−→

n→∞
0. For z(2)

3i,n(θ),

using proposition 3, we get E(z(1)
3i,n(θ)|Gn3i) ≤ cf(Y(3i−1)∆n

, Y 3i−1,n)∆2
n(1 +

|Y3i|3 + |X3i|3) and thus 1
n∆n

∑n−1
i=0 E(z(2)

3i,n(θ)|Gn3i)
P−−−−→

n→∞
0.

Similarly, we have E((z(2)
3i,n(θ))2|Gn3i) ≤ cf2(Y(3i−1)∆n

, Y 3i−1,n)∆2
n(1+|Y(3i+1)∆n

|4+

|X(3i+1)∆n
|4) and thus 1

n2∆2
n

∑n−1
i=0 E((z(2)

3i,n(θ))2|Gn3i)
P−−−−→

n→∞
0. This gives the

convergence in probability of ĨPn (f) for all θ.
To obtain uniformity with respect to θ, we use the proposition 51 of Gloter
(2006). It is enough to show supn∈N E

(
supθ |∂θ ĨPn (fθ)|

)
<∞. We have

∂θ Ĩ
P
n (fθ) =

1
n∆n

∑
i=1

n− 1∂θfθ(Y(i−1)∆n
, Y i−1,n)

(
∆1/2
n aσ(Yi∆n , Xi∆n)Ui,n + εi,n

)
.

As E(Ui, n|Gni ) = 0 and E(εi,n|Gni ) ≤ c∆2
n(1 + |X(i+1)∆n

|3 + |Y(i+1)∆n
|3), we

have E
(
∂θfθ(Y(i−1)∆n

, Y i−1,n)
(

∆1/2
n a(Yi∆n

, Xi∆n
)Ui,n + εi,n

)
|Gni
)
≤ c∆n(1+

|X(i+1)∆n
|3 + |Y(i+1)∆n

|3). With assumption (A2), it implies

E(∂θfθ(Y(i−1)∆n
, Y i−1,n)

(
∆1/2
n aσ(Yi∆n

, Xi∆n
)Ui,n + εi,n

)
|Gni ) ≤ c∆n.

Hence, supn∈N E
(

supθ |∂θ ĨPn (fθ)|
)
< ∞ and uniformity in θ follows. We can

now deduce the result for I
P

n (f). Taylor’s formula gives the existence of s1 and
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s2 such that

bµ(Yi∆n , Y i)− bµ(Y(i−1)∆n
, Y i−1,n) =

∂bµ(Ys1 , Y i)
∂V

(Yi∆n − Y(i−1)∆n
)

+
∂bµ(Y(i−1)∆n

, Xs2)
∂X

(Y i − Y i−1,n)

Assumptions (A1)-(A2), Cauchy-Schwarz inequality and Yi∆n − Y(i−1)∆n
=

∆nY i−1,n imply

E(
˛̨
bµ(Yi∆n , Y i)− bµ(Y(i−1)∆n , Y i−1,n)

˛̨
|Gni )

≤ c
“

E(
˛̨
∆nY i−1,n

˛̨2 |Gni )1/2 + E(
˛̨
Y i − Y i−1,n

˛̨2 |Gni )1/2
”

(1 + |X(i+1)∆n |+ |Y(i+1)∆n |)

≤ c∆1/2
n (1 + |X(i+1)∆n |+ |Y(i+1)∆n |)

This implies

1
n∆n

n−1∑
i=1

∆nf(Y(i−1)∆n
, Y i−1,n, θ)(bµ(Yi∆n

, Y i)−bµ(Y(i−1)∆n
, Y i−1,n)) P−−−−→

n→∞
0.

Hence the result. �

Proof of Theorem 4. We only detail the partial observations case. We set
Wi,n(θ) = f(Y(i−1)∆n

, Y i−1,n, θ)(Y i+1,n−Y i,n)2 such thatQ
P

n (f) = 1
n∆n

∑
Wi,n(θ).

We split the sum into the sum of three termsW3i,n,W3i+1,n andW3i+2,n. Given
this partition, it is enough to show that

(n∆n)−1
n−1∑
i=1

W3i,n(θ) P−−−−→
n→∞

2
3
ν0(f(·, ·, θ)a2(·, ·)).

As the expression of Q
P

n is slightly different from Gloter (2006), we are able to
write W3i,n(θ) as the sum of only three terms (instead four). Using Taylor’s
formula, there exists Xs ∈ (Y 3i,n, X3i∆n

) such that we can write W3i,n(θ) =
w

(1)
3i,n(θ) + w

(2)
3i,n(θ) + w

(3)
3i,n(θ) with

w
(1)
3i,n(θ) = ∆na

2
σ(Y3i∆n , X3i∆n)U2

3i,nf(Y(3i−1)∆n , Y 3i−1,n, θ)

w
(2)
3i,n(θ) = 2∆1/2

n U3i,naσ(Y3i∆n , X3i∆n)f(Y(3i−1)∆n , Y 3i−1,n, θ)(ε3i,n

+∆nbµ(Y3i∆n , X3i∆n) + ∆n
∂bµ(Y3i∆n , Xs)

∂X
(Y 3i,n −X3i∆n))

w
(3)
3i,n(θ) = (ε3i,n + ∆nbµ(Y3i∆n , X3i∆n)

+∆n
∂bµ(Y3i∆n , Xs)

∂X
(Y 3i,n −X3i∆n))2f(Y(3i−1)∆n , Y 3i−1,n, θ)
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We set Q
(Pj)

n (θ) = (n∆n)−1
∑n−1
i=1 w

(j)
3i,n(θ), for j = 1, 2, 3. We start by studying

Q
(P1)

n (θ). Using E(U2
3i,n|Gn3i) = 2/3 and E(U4

3i,n|Gn3i) = 4/3 and the fact that
Y 3i−1,n is Gn3i-measurable, we obtain:

E(w(1)
3i (θ)|Gn3i) =

2∆n

3
a2
σ(Y3i∆n

, X3i∆n
)f(Y(3i−1)∆n

, Y 3i−1,n, θ)

E(
(
w

(1)
3i (θ)

)2

|Gn3i) =
4∆2

n

3
a4
σ(Y3i∆n

, X3i∆n
)f(2Y(3i−1)∆n

, Y 3i−1,n, θ)

Thus, applying lemma A1 of Gloter (2006), we get

(n∆n)−1
n−1∑
i=0

E(w(1)
3i (θ)|Gn3i)

P−−−−→
n→∞

2
3
ν0(f(·, ·, θ)a2(·, ·))

and by assumption (A2), we get E
∣∣∣∣E(
(
w

(1)
3i (θ)

)2

|Gn3i)
∣∣∣∣ ≤ c∆2

n and therefore,

(n∆n)−1
∑n−1
i=0 E(

(
w

(1)
3i (θ)

)2

|Gn3i)
P−−−−→

n→∞
0. By lemma A2 of Gloter (2006), we

deduce Q
(P1)

n (θ) P−−−−→
n→∞

2
3ν0(f(·, ·, θ)a2(·, ·)) in probability. Using proposition

3 and lemma A2 of Gloter (2006), we easily prove that Q
(P2)

n (θ) P−−−−→
n→∞

0 and

Q
(P3)

n (θ) P−−−−→
n→∞

0. The uniformity is obtained by bounding

sup
n∈N

(n∆n)−1
n−1∑
i=0

E
(

(Y i+1,n − Y i,n)2 sup
θ

∣∣∂θf(Yi∆n
, Y i,n, θ)

∣∣) <∞

due to proposition 51 of Gloter (2006). This is easily obtained using proposition
2 and assumption (A2). �

Proof of Theorem 5. We only detail the partial observations case. We have

√
n∆nI

P

n (f) =
√
n∆nĨ

P
n (f)

+ 1√
n∆n

∑n−1
i=2 f(Y(i−1)∆n

, Y i−1,n)∆n(bµ(Yi∆n , Y i)− bµ(Y(i−1)∆n
, Y i−1,n)).

We first study the distribution convergence of
√
n∆nĨ

P
n (f) then we deduce

the result for
√
n∆nI

P

n (f). Using the same notations as in theorem 4, we
set
√
n∆nĨ

P
n (f) = N

(1)
n + N

(2)
n with N (1)

n = 1√
n

∑n−1
i=1 f(Y(i−1)∆n

, Y (i−1)∆n
; θ)

aσ(Yi∆n
, Xi∆n

; θ)(ξi,n+ξ′i+1,n) andN (2)
n = 1√

n∆n

∑n−1
i=1 f(Y(i−1)∆n

, Y (i−1)∆n
; θ)εin.

First, we study N (1)
n . In order to use a martingale central limit theorem, we
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reorder the terms

N (1)
n =

1√
n
f(Y0, Y 0; θ)aσ(Y∆n

, X∆n
; θ)ξ0,n +

1√
n

n−1∑
i=2

s
(1)
in (22)

+
1√
n
f(Y(n−2)∆n

, Y (n−2)∆n
; θ)aσ(Y(n−1)∆n

, X(n−1)∆n
; θ)ξ′n,n

with

s
(1)
in = f(Y(i−1)∆n

, Y (i−1)∆n
; θ)aσ(Yi∆n , Xi∆n ; θ)ξi,n

+f(Y(i−2)∆n
, Y (i−2)∆n

; θ)aσ(Y(i−1)∆n
, X(i−1)∆n

; θ)ξ′i,n).

We have E(s(1)
in |Gni ) = 0 and we compute the conditional variance E[(s(1)

in )2|Gni ]:

E[(s
(1)
in )2|Gni ] = 1

3
{f2(Y(i−1)∆n , Y (i−1)∆n ; θ)a2

σ(Yi∆n , Xi∆n ; θ)

+f(Y(i−1)∆n , Y (i−1)∆n ; θ)f(Y(i−2)∆n , Y (i−2)∆n ; θ)aσ(Yi∆n , Xi∆n ; θ)aσ(Y(i−1)∆n , X(i−1)∆n ; θ)

+f2(Y(i−2)∆n , Y (i−2)∆n ; θ)a2
σ(Y(i−1)∆n , X(i−1)∆n ; θ)}.

We want to prove that 1
n

∑n−1
i=2 E[(s(1)

in )2|Gni ] P−−−−→
n→∞

ν0(f2a2). We first start with

the term 1
n

∑n−1
i=2 f

2(Y(i−1)∆n
, Y (i−1)∆n

; θ)a2
σ(Yi∆n , Xi∆n ; θ). By the ergodic

theorem, we have

1
n

n−1∑
i=2

f2(Y(i−1)∆n
, X(i−1)∆n

; θ)a2
σ(Yi∆n , Xi∆n ; θ) P−−−−→

n→∞
ν0(f2a2).

A Taylor development and the Cauchy-Schwarz inequality provide the conver-
gence in L1 towards 0 of supθ

1
n

∑n−1
i=2 |f2(Y(i−1)∆n

, Y (i−1)∆n
; θ)a2

σ(Yi∆n , Xi∆n ; θ)−
f2(Y(i−1)∆n

, X(i−1)∆n
; θ)a2

σ(Yi∆n , Xi∆n ; θ)| using assumptions (A1)-(A2). The
terms f(Y(i−1)∆n

, Y (i−1)∆n
; θ)f(Y(i−2)∆n

, Y (i−2)∆n
; θ)aσ(Yi∆n

, Xi∆n
; θ)

aσ(Y(i−1)∆n
, X(i−1)∆n

; θ) and f2(Y(i−2)∆n
, Y (i−2)∆n

; θ)a2
σ(Y(i−1)∆n

, X(i−1)∆n
; θ)}

are similar.
We easily bound E[(s(1)

in )4|Gni ] and show that 1
n2

∑n−1
i=2 E[(s(1)

in )4|Gni ] L1

−−−−→
n→∞

0.

By the martingale central limit theorem, we deduce that 1√
n

∑n−1
i=2 s

(1)
in

D−−−−→
n→∞

N (0, ν0(f2a2)). By (22), we deduce N (1)
n

D−−−−→
n→∞

N (0, ν0(f2a2)).

We now have to prove the convergence to 0 of N (2)
n . Using proposition 3, we eas-

ily have the convergence to 0 of 1√
n∆n

∑n−1
i=1 E[f(Y(i−1)∆n

, Y (i−1)∆n
; θ)εin|Gni ] in

probability. Similarly, we obtain that 1
n∆n

∑n−1
i=1 E[f2(Y(i−1)∆n

, Y (i−1)∆n
; θ)ε2

in|Gni ]
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converges to 0 in probability. Thus, using proposition 5, we get N (2)
n

P−−−−→
n→∞

0.
This implies

1
n∆n

n−1∑
i=1

∆nf(Y(i−1)∆n
, Y i−1,n, θ)(bµ(Yi∆n

, Y i)−bµ(Y(i−1)∆n
, Y i−1,n)) P−−−−→

n→∞
0.

This gives the convergence in distribution of
√
n∆nĨ

P
n (f). To deduce the results

for
√
n∆nI

P

n (f), we remark that

bµ(Yi∆n , Y i)− bµ(Y(i−1)∆n
, Y i−1,n) = bµ(Yi∆n , Y i)− bµ(Y(i−1)∆n

, Y i)

+ bµY(i−1)∆n
, Y i)− bµ(Y(i−1)∆n

, Y i−1,n).

Taylor’s development gives

E[|bµ(Yi∆n
, Y i,n)− bµ(Yi∆n

, Y i−1,n)|Gni ] ≤ c
√

∆n(1 + |X(i+1)∆n
|+ |Y(i+1)∆n

|.

Using bµ(Yi∆n
, Y i)−bµ(Y(i−1)∆n

, Y i) =
∫ i∆n

(i−1)∆n

∂bµ
∂v (Ys, Y i−1,n)(Xi+

∫ s
(i−1)∆n

bµ(Vu, Xu)du+∫ s
(i−1)∆n

aσ(Vu, Xu)dBu)ds and the Burkholder inequality, this yields

E[|bµ(Yi∆n
, Y i)− bµ(Y(i−1)∆n

, Y i)||Gni ] ≤ c
√

∆n(1 + |X(i+1)∆n
|+ |Y(i+1)∆n

|).

Using assumptions (A1)-(A4), we deduce the convergence to 0 in probability
of 1√

n∆n

∑n−1
i=2 f(Y(i−1)∆n

, Y i−1,n)∆n(bµ(Yi∆n
, Y i)− bµ(Y(i−1)∆n

, Y i−1,n)). We

deduce that
√
n∆nI

P

n (f)−
√
n∆nĨ

P
n (f) = oP(1). �

Proof of Theorem 6. We only detail the partial observations case. We use the
same notations as in Theorem 4. Set Mn(f) =

√
n
(
Q
P

n (f)− 2
3νn(fa2)

)
and

β(y, x) = a2
σ(y, x)f(y, x). We have

Mn(f) =
√
n
[

1
n∆n

∑n−1
i=2

(
∆nf(Yi∆n

, Y i)a2
σ(Yi∆n

, Xi∆n
)U2

i

+f(Yi∆n , Y i)(ε
P
i,n + ∆nbµ(Yi∆n , Y i))

2 + 2∆1/2
n f(Yi∆n , Y i)aσ(Yi∆n , Xi∆n)Ui(εPi,n

+∆nbµ(Yi∆n
, Y i))

)
− 2

3n

∑n−1
i=2 f(Yi∆n

, Y i)a2
σ(Yi∆n

, Y i)
]
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By Taylor expansion, there exists Xv ∈ (Xi∆n , Y i,n) such that

Mn(f) =
√
n
[

1
n∆n

∑n−1
i=2

(
∆nβ(Yi∆n , Xi∆n)(U2

i − 2
3 ) + f(Yi∆n , Xi∆n)(εPi,n

+∆nbµ(Yi∆n
, Y i))2 + 2∆1/2

n f(Yi∆n
, Xi∆n

)aσ(Yi∆n
, Xi∆n

)Ui(εPi,n
+ ∆nbµ(Yi∆n

, Y i))(Y i+1,n − Y i,n)2(Y i,n −Xi∆n
)f ′x(Yi∆n

, Xv)
)

− 2
3n

∑n−1
i=2 (β(Yi∆n , Y i)− β(Yi∆n , Xi∆n))

]
Thus Mn(f) =

∑5
l=1M

(l)

n with

M
(1)

n =
1√
n

n−1∑
i=2

β(Yi∆n , Xi∆n)(U2
i −

2
3

)

M
(2)

n =
1√
n∆n

n−1∑
i=2

2f(Yi∆n , Xi∆n)aσ(Yi∆n , Xi∆n)Ui(εPi,n + ∆nbµ(Yi∆n , Y i))

M
(3)

n =
1√
n∆n

n−1∑
i=2

f(Yi∆n
, Xi∆n

)(εPi,n + ∆nbµ(Yi∆n
, Y i))2

M
(4)

n =
1√
n∆n

n−1∑
i=2

(Y i+1,n − Y i,n)2(Y i,n −Xi∆n
)f ′x(Yi∆n

, Xv)

M
(5)

n = 2
3
√
n

∑n−1
i=2 (β(Yi∆n

, Y i)− β(Yi∆n
, Xi∆n

))

We first study the convergence ofM
(1)

n . Reordering terms to obtain a triangular
array of martingale increments, we get

M
(1)

n =
1√
n

{
n−1∑
i=2

sin +
(
ξ2
0,n −

1
3

)
β(Y0, X0) + (ξ

′2
n,n −

1
3

)β(Y(n−1)∆n
, X(n−1)∆n

)

+ 2ξn−1,nξ
′
n,nβ(Y(n−1)∆n

, X(n−1)∆n
)
}

where sin =
(
ξ2
i,n − 1

3

)
β(Yi∆n , Xi∆n) +

(
ξ
′2
i,n − 1

3

)
β(Y(i−1)∆n

, X(i−1)∆n
)

+2ξi−1,nξ
′
i,nβ(Y(i−1)∆n

, X(i−1)∆n
). But, sin is Gni+1 measurable and centered

conditionally to Gni . Furthermore, using the properties of (ξi,n, ξ′i,n), we deduce

E(s2
in|Gni ) = 2

9β
2(Yi∆n

, Xi∆n
) + 2

9β
2(Y(i−1)∆n

, X(i−1)∆n
)

+ 4
3ξ

2
i−1,nβ

2(Y(i−1)∆n
, X(i−1)∆n

) + 1
9β(Y(i−1)∆n

, X(i−1)∆n
)β(Yi∆n

, Xi∆n
)
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To prove the convergence of M
(1)

n , it is sufficient to prove that

1
n

n−1∑
i=2

E
(
|s2
in||Gni

) P−−−−→
n→∞

ν0(β2) and
1
n2

n−1∑
i=2

E
(
|s4
in||Gni

) P−−−−→
n→∞

0

Indeed, applying theorem 3.2 in Hall and Heyde (1980), we get 1√
n

∑n−1
i=2 sin

D−−−−→
n→∞

N (0, ν0(β2)) and so does M
(1)

n . By lemma A2 of Gloter (2006), we have
1
n

∑n−1
i=2 ξ

2
i−1,nβ

2(Y(i−1)∆n
, X(i−1)∆n

) P−−−−→
n→∞

1/3ν0(β2).

Thus, we deduce 1
n

∑n−1
i=2 E

(
|s2
in||Gni

) P−−−−→
n→∞

ν0(β2). The bound on β4 yields

the convergence of 1
n2

∑n−1
i=2 E

(
|s4
in||Gni

)
.

We have to prove M
(l)

n
P−−−−→

n→∞
0 for l = 2, . . . , 5. This holds true using that

n∆2
n → 0 and the hypothesis (A1) for M

(5)

n . �
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