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Field induced superconducting phase in Superconductor-Normal metal and Superconductor-Superconductor bilayer

We study the proximity effect in a superconductor (S)-normal metal (N) bilayer systems under in-plane magnetic field and demonstrate that a compensation between the Zeeman effect and the energy splitting between bonding and anti-bonding levels may lead to a magnetic field induced superconducting phase well above the standard paramagnetic limit. It occurs that the non-uniform Fulde-Ferrell-Larkin-Ovchinikov superconducting state also exists in the field induced phase. The presence of the impurities scattering shrink the region of field induced superconductivity existence in S-N and S-S bilayers.

INTRODUCTION

Quasi two dimensional superconductors have been studied for fifty years. A strong upper critical magnetic field (H c2 ) anisotropy was observed for the first time in intercalated layered crystal of dichalcogenides of transition metals 1 . In these compounds, H c2 is higher for the in-plane orientation (ab plane) than in the perpendicular one (c-axis).

Moreover, this H c2 anisotropy was observed in intercalated graphite superconductors (in Ca 4,5 and in C 6 Y b 5 ), in organic superconductors 6 , in high superconducting critical temperature (High T c ) cuprates superconductors [7][8][9][10] ) and also in superconductingsuperconducting (S-S') Y Ba 2 Cu 3 O 7 /DyBa 2 Cu 3 O 7 and superconducting-insulating (S-I) (Y Ba 2 Cu 3 O 7 ) n / (Pr Ba 2 Cu 3 O 7 ) m artificial superlattices 11,12 . High T c cuprates superconductors have a layered crystal structure 13 and a strong electron anisotropy 7,[13][14][15][16][17] . The superconducting coherence length along the c-axis ξ c is smaller than the interlayer distance d. Consequently, high T c cuprate superconductors can be considered as natural superlattices. In high T c cuprate superconducting compounds, superconductivity exists in CuO 2 atomic planes which are sandwiched by non-superconducting atomic planes 18,13 . Ginzburg-Landau model (in the weak anisotropy limit (ξ c d)) 19 and Lawrence-Doniach model (in the strong anisotropy limit (ξ c d)) 20 give the description of the H c2 anisotropic properties in layered superconductors near T c . This H c2 anisotropy in superconducting multilayers can also be described microscopically by the standard Bardeen-Cooper-Schrieffer (BCS) and the tunneling Hamiltonian theory. Using this method, we obtain the (H c2 , T ) phase diagram of layered superconducting systems.

C 8 K 2,3 in C 6
Some of high T c cuprate superconductors can be considered as a stack of S-N, S-S' 21 or S-F 22 weakly coupled bilayers. The S-N, S-S' or S-F bilayer constitute the elemental unit cell of the multilayer. The properties of the S-N, S-S' or S-F bilayers qualitatively differs from a single S, N or F layers. Consequently, the properties of multilayers based on single layer elemental unit cell may be qualitatively different of the properties of multilayers based on bilayer elemental unit cell. We show in this paper that (H, T ) phase diagram, with in plane magnetic field, of S-N and S-S' bilayers may reveal a magnetic field induced superconducting phase.

The case of S-F multilayers has been studied in [22][23][24][25] . In S-S bilayer, Buzdin et al have demonstrated 26,27 the possibility to overcome the paramagnetic limit at low temperature for a high in-plane critical magnetic field. The field induced superconducting phase may appear at high magnetic field if the interlayer coupling energy t is higher than T c . Moreover, in this phase, the adjacent S layers have opposite signs of the order parameter (this is socalled π-state 22 ). In this case, the Zeeman effect is compensated by the bonding-antibonding degeneracy lift produced by the hybridization between the two S layers (see figure 1). The

Cooper pairs in the π state are more stable at high magnetic field than the 0-state. The 0-state occurs when the adjacent S layers support the same signs of the order parameter.

Somewhat similar idea in the context of two-band superconductivity was introduced by Kulic and Hofmann 28 . In this paper, we show that in a S-N bilayer at high in-plane magnetic field H (see figure 2), at low temperature and strong enough coupling t > T c0 between the two planes, the paramagnetic limit is also enhanced above the usual Fulde-Ferrell-Larkin-Ovchinikov (FFLO) 29,30 limit and a field induced superconducting phase may appear at high magnetic field. The corresponding mechanism is qualitatively the same as in the S-S bilayer but naturally there is no π state realization in this case. We study also the influence of the impurity scattering on the (H, T ) phase diagram of S-N and S-S bilayers.

The outline of the paper is as following. In Sec. II, we present the model of a multilayer system and give the exact solutions of the Eilenberger equations. In Sec. III, we study the influence of the transfer integral on the superconducting critical temperature and the effect of impurities. In section IV, we investigate the phase diagram of the S/N bilayer in the strong exchange field regime in both the clean and the dirty limits. In section V, we study the influence of impurities of the S-S bilayer (H, T c ) phase diagram.

II. MODEL OF AN ATOMIC THICKNESS S/N BILAYER

We start with a non-interacting model (see for example 31,22 ) of layered systems with alternating superconducting and normal metal layers. The electron motion is described in the N and S layers by the spin-dependent energy spectra ξ n,σ (k) and ξ s,σ (k) respectively.

The parameters that characterize the systems are the transfer energy between the N and S layers t, the Cooper pairing constant λ which is assumed to be nonzero in S layers only. The Zeeman energy splitting, due to in plane magnetic field H, is written as h = µ B H where µ B

is the Bohr magneton.

The two mechanisms destroying superconductivity under a magnetic field are the orbital and the paramagnetic effect 32,33 . Usually it is the orbital effect that is more restrictive. However, in systems with a large effective mass of electrons 34,35 or in low-dimensional compounds, like quasi-one dimensional or layered superconductors under in-plane magnetic field 36 , the orbital magnetism is weakened and it is the paramagnetic effect that is responsible for superconductivity destruction.

The Chandrasekhar-Clogston paramagnetic limit 37,38 is achieved when the polarization energy of the normal electron gas, χ n H 2 /2, equals the superconducting condensation energy N (0) ∆ 2 0 /2, where N (0) is the density of state of the normal electron gas, χ n is its spin susceptibility, and ∆ 0 = 1.76T c is the zero temperature superconducting gap. This criterion gives the exchange field h p (T = 0) = ∆ 0 / √ 2 where the superconductor should undergo a first-order transition to the normal state. Larkin and Ovchinikov 29 and Fulde and Ferrell 30

(FFLO) predicted the existence of a non-uniform superconducting state with slightly higher critical field h 3D F F LO (T = 0) = 0.755∆ 0 > h p (T = 0). For quasi-2D superconductors the critical field of the FFLO state is even higher, namely h 2D F F LO (T = 0) = ∆ 0 , 39 while in quasi one dimensional systems there is no paramagnetic limit at all 40 . We focus on the 2D case for which a generic temperature magnetic field phase diagram has been established 39 .

We consider the case when the coupling between the layers is realized via the transfer energy t. In the whole paper, we assume t E F where E F is the Fermi energy and then Cooper pairs are localized within each plane. The layers are coupled together by the coupling Hamiltonian

Ĥt = t j,σ,k ψ + j+1,σ (k) ψ j,σ (k) + ψ + j,σ (k) ψ j+1,σ (k) + H.c . (1) 
where ψ + j,σ (k) (resp. ψ j,σ (k)) is the creation (resp. annihilation) operator of an electron with spin σ and momentum k in the jth layer. In this paper, we study the S-N and S-S bilayers. In S-N system, the superconducting layer has the index j = 0 and the normal metal j = 1. In the S-S bilayer, the superconducting layers are indexed j = 0 and j = 1.

The Hamiltonian of the system can be written as :

Ĥ = Ĥ0 + ĤBCS + Ĥt , (2) 
where H 0 is the kinetic and Zeeman Hamiltonian , H t the tunneling Hamiltonian and H BCS the BCS Hamiltionian. For the jth layer, the kinetic and Zeeman parts of the Hamiltonian are written as

Ĥ0 = σ,k ξ j,σ (k, h j ) ψ + j,σ (k) ψ j,σ (k) , (3) 
The Zeeman effect manifests itself in breaking the spin degeneracy of the electronic energy levels according to

ξ j,σ (k, h j ) = ξ j (k) -σh j (4) 
where ξ j (k) = k 2 /2m -E F i.e. for simplicity we choose the same electron spectrum in both layers.

The field h j in the jth layer is assumed to be the same in both layers (h 0 = h 1 = h).

We suppose an s-wave singlet superconductivity coupling which is treated in H BCS within a mean field approximation 41

ĤBCS = j,k ∆ * j (q) ψ + j,↓ (k) ψ + j,↑ (-k) + ∆ j (q) ψ j,↑ (k) ψ j,↓ (-k) + 1 |λ| d 2 r∆ 2 j (r) ( 5 
)
where r is the two-dimensional coordinate within each layer and λ the electron-electron coupling constant in the S layer only. The superconducting order parameter ∆ j is non zero only in the S layers as the coupling constant is 0 in the N layer. In order to investigate the occurrence of modulated superconducting phase (FFLO), we choose the superconducting order parameter in the form

∆ (r) = ∆e iq.r
where q is the FFLO modulation wave vector. Using Gorkov's formalism, we introduce the normal G and anomalous F Green functions 41 :

G j,l (k, k ) = -T τ ψ ↑,j (k) ψ + ↑,l (k ) = δ (k -k + q) G j,l (k) , F + j,l (k, k ) = T τ ψ + ↓,j (k) ψ + ↑,l (k ) = δ (k + k ) F + j,l (k) , (6) 
where the brackets mean statistical averaging over grand-canonical distribution and T τ the ordering operator in the Matsubara's formalism 41 , and j and l the layer's indexes. From the equation of motion 41 , the system of Green functions equation is in the Fourier representation in the S-N bilayer:

       (iω -ξ 0,↑ (k + q)) -t ∆ 0 0 -t (iω -ξ 1,↑ (k + q)) 0 0 ∆ * 0 0 (iω + ξ 0,↓ (k)) t 0 0 t (iω + ξ 1,↓ (k))        .        G 0,0 (k + q) G 1,0 (k + q) F + 0,0 (ω, k) F + 1,0 (ω, k)        =              
, where ω = (2n + 1) πT are the fermionic Matsubara frequencies. In quasi 2D superconductors, the maximal modulus of the FFLO wave vector is of the order of (ξ 0 ) -1 , ξ 0 being the typical superconducting coherence length. Since ξ 0 1 k F which of the order of the inter atomic distance with a good approximation we can consider ξ j,↑ (k

+ q) = ξ (k) -h + v F .q
where v F is the Fermi velocity vector in the plane. The anomalous Green function in the S layer writes

F + 0,0 = -∆ * 0 A -α 0 A -βt 2 + t 4 where A = (iω -ξ (k) + h -v F .q) (iω + ξ (k) + h), α 0 = |∆ 0 | 2 - (iω -ξ (k) + h -v F .q) (iω + ξ (k) + h) and β = (iω -ξ (k) + h -v F .q) 2 +(iω + ξ (k) + h) 2 .
The superconducting order parameter in the 0th superconducting layer satisfies the selfconsistency equation

∆ * 0 = |λ| T ω>0 k F + 0,0 = |λ| T ω +∞ -∞ F + 0,0 dξ. ( 7 
)
To describe the FFLO modulated phase and the influence of the impurities it is more convenient to use the quasi-classical Eilenberger formalism. Moreover, we include the FFLO modulation phase and non-magnetic impurities. Applying Eilenberger's method 42 for layered system 43 with Hamiltonian (2), the system of equations of Green functions can be written as:

       ω -iv F .q -i t 2 0 i t 2 -i t 2 ω -iv F .q i t 2 0 0 i t 2 ω -iv F .q -i t 2 i t 2 0 -i t 2 ω -iv F .q        .        f + 0,0 f + 1,0 f + 1,1 f + 0,1        =         ∆ * 0 + f + 0,0 (ω,q) φ 2τ 0 0 0         (8) 
where

ω = ω + ih + (1/2τ ) and f + j,l (ω, q) = 1 iπ +∞ -∞ dξF + j,l (ω, ξ, q)
dξ is the anomalous Green function in the Eilenberger formalism and τ electron mean free pass time. We write v F .q = v F .q. cos (φ) where φ is the polar angle (v F , q) and φ is the average over φ. We assume an in-plane scattering on impurities and the absence of spin flip during the electronimpurity interaction. To consider the presence of impurities we substitute ω by ω + 1/2τ and ∆ * j by ∆ * j + f + j,j (ω, q) φ /2τ see for example 43 . Solving the Eilenberger equation ( 8) yields the Eilenberger Green function for the S layer

labeled j = 0 f + 0,0 = ∆ * 0 2 1 - ( 1 2τ )[Ω1Ω3+Ω2Ω3+2Ω1Ω2] 4Ω 1 Ω 2 Ω 3 1 ω 3 + 1 2ω 1 + 1 2ω 2 (9) 
where we pose

Ω 2 1,2 = ω 2 ± + v 2 q 2 , Ω 2 3 = ( ω 2 + v 2 q 2 ) with ω = ω + ih + (1/2τ ), ω ± = ω + ih + (1/2τ ) ± it, ω 3 = ω -iv F .q. cos (φ) with (ω 1,2 = ω 3 ± it = ω ± -iv F .q. cos (φ)
). The averaged solution on the φ angle of (9) writes

f + 0,0 φ = ∆ * 0 2 1 - ( 1 2τ )[Ω1Ω3+Ω2Ω3+2Ω1Ω2] 4Ω 1 Ω 2 Ω 3 1 Ω 3 + 1 2Ω 1 + 1 2Ω 2 (10)
where φ is the average on the φ angle. Close to the superconducting critical temperature of the second order phase transition, the self consistency ( 7) can be written

33 ln T c T c 0 = Re ω>0 f 0,0 ↓↑ (ω, q) φ - π ω (11)
where T c is the critical temperature of the superconducting layer in the S-N bilayer and

T c0 = 2γω D π e -2π 2
|λ|mk F the critical temperature of an isolated superconducting layer with m the electron's mass, k F the Fermi impulsion, γ = 0.577215 is the Euler's constant and ω D the Debye frequency.

At zero temperature, close to the critical magnetic field of the second order phase h 0 , the order parameters ∆ j are also small the self consistency (7) writes

ln h h 0 = 2T c π +∞ 0 Re f 0,0 ↓↑ (ω, q) φ - π ω + ih 0 dω. (12) 

III. PROXIMITY EFFECT IN S-N BILAYER

In this section, we investigate the superconducting phase in the S layer in the clean limit (τ → ∞). We study the superconducting critical temperature as a function of the interlayer coupling. We obtain the critical magnetic field of second order superconducting to normal metal phase transition as a function of the temperature and the interlayer coupling. Study of the influence of the impurities and of the S-S bilayers are respectively proposed in section IV and V.

A. Critical temperature

We study first the influence of the proximity effect on the superconducting critical temperature T c of the S layer when no magnetic field is applied (h = q = 0) in the clean limit (τ → ∞). Then (10) becomes :

f + 0,0 = ∆ * (t 2 +2ω 2 ) 2ω(t 2 +ω 2 ) , (13) 
thus the self consistency equation writes ln

T c T c0 = - 1 4 2γ + 4 ln 2 + Ψ 1 2 - it 2πT c + Ψ 1 2 + it 2πT c .
where Ψ (x) is the digamma function. As seen in fig 3, the superconducting critical temperature decreases with the increase of the proximity effect. At low transfer energy t T c , the superconducting critical temperature varies like

Tc T c0 = 1 -7 8 ζ(3) π 2 t T c0 2
. In the case of low interlayer coupling, the superconducting critical temperature reveals a quadratic decrease with the transfer energy. The superconducting state is not qualitatively influenced by the normal metal layer and can be considered as a single superconducting layer.

At strong coupling between S and N layers at t T c (but in the limit t ω D ) , the superconducting temperature varies as Tc T c0 = πe can be considered as an equivalent single S layer with an effective coupling constant λ where λ < λ. In the case where t ω D , the S-N bilayer can be considered as a single superconducting layer S with λ = | λ | 2 as predicted in 31 .

B. Phase diagram of the S-N bilayer

We study the (h, T ) and (h, t) phase diagram of the S-N bilayer in the clean case and in presence of non-magnetic impurities. In a two-dimensional S monolayer, we can define three critical magnetic fields at zero temperature. h 0 = ∆ 0 /2 is the critical magnetic field for a second order phase transition. h I = ∆ 0 / √ 2 is the critical magnetic field for a first order phase transition defined by Clogston-Chandrasekar 37,38 . h F F LO = ∆ 0 is the critical magnetic field in the presence of FFLO modulations. One can see that

h F F LO > h I > h 0 .
In a clean S monolayer with an applied in-plane magnetic field, the critical field is h F F LO , 33 .

In this case, the Eilenberger anomalous Green function ( 9) becomes for arbitrary interlayer coupling t :

f + (0, 0) = ∆ * 2 1 (ω+ih+i -→ v F . -→ q ) + 1 2(ω-it+ih+i -→ v F . -→ q ) + 1 2(ω+it+ih+i -→ v F . -→ q ) ( 14 
)
where we note the appearance of three energy scales

E 3 = h+ - → v F . - → q and E 1,2 = h±t+ - → v F . - → q .
1. (h, t) phase diagram at zero temperature From ( 14)and the self consistency equation ( 12) , the critical magnetic field h is shown to satisfy

h c -t + (h c -t) 2 -(q.v F ) 2 . h c + t + (h c + t) 2 -(q.v F ) 2 . h c + h 2 c -(q.v F ) 2 2 = h 4 0 ( 15 
)
where one must find the value of q that maximizes the critical field h c . If the field induced phase is assumed to be uniform in the each planes, namely if q = 0, equation ( 15) merely reduces to

|h c | 2 . |h c -t| . |h c + t| = h 4 0 ( 16 
)
The number of solutions with physical meaning of the equations ( 16) differs with the value of t (see figure 4 ) . We defines the critical interlayer coupling t c = √ 2h 0 = 1.2473T c0 that determines the number of physical solutions.

If t < t c , the equation ( 16) has only one solution. The critical magnetic field at zero temperature writes h c1 = 1 2 2t 2 + 2 t 4 + 4h 4 0 . In the limit t T c0 , the solution can be

written h c1 = ∆ 0 2 1 + t 2 ∆ 2 0
. We note that the critical magnetic field at T = 0K in the S-N bilayer increases with the interlayer coupling t.

In the case t > t c , the equation ( 16) has three solutions with physical meaning. The first solution is h c1 . The second and the third solution are h c2 = 1 2 2t 2 + 2 t 4 -4h 4 0 and h c3 = 1 2 2t 2 -2 t 4 -4h 4 0 respectively. In the limit t T c0 , the three solutions can be written as h c1,2 = t ± ∆ 4 0 /32t 3 and h c3 = ∆ 2 0 /4t. In the limit t T c0 , T c is of order of T 2 c0 /t and then h c3 is of order of T c . Consequently, h c3 define the lowest critical magnetic field.

For t = t c the critical fields h c2 and h c3 coincide.

In the case of high interlayer coupling t > t c , a field induced superconducting phase appears at high magnetic field. This phase exists between the two magnetic fields h c1,2 = t ± ∆ 4 0 /32t 3 . Thus, the new zero temperature paramagnetic limit h c1 = t + ∆ (0) 4 /32t 3 may be tuned far above the usual one h F F LO = ∆ 0 merely by increasing the interlayer coupling.

Thorough analysis of equation ( 15) shows that the upper critical field is even increased by an in-plane modulation (see figure 5).

The FFLO paramagnetic limit of the S-N bilayer also depends on the interlayer coupling t as seen in the figure 5. The field induced superconducting phase is observable at T = 0K, FIG. 4: (h/T c0 , t/T c0 ) diagram for the S-N bilayer in the clean limit (τ → ∞)at T=0K (solid line).

The uniform superconducting state is presented in grey. The line h = ∆ 0 /2 presents the critical magnetic field for a second order superconducting phase transition for a single superconducting layer. The line h = ∆ 0 corresponds the FFLO paramagnetic limit for a single superconducting layer. The line h = ∆ 0 / √ 2 represents the first order paramagnetic limit for a single superconducting layer.

only when h c2 and h c3 are distinguishable. In presence of FFLO modulation, the critical magnetic field at zero temperature h F F LO c2 and h F F LO c3 are separated in the case t 1.5T c0 .

Below this value, the usual superconducting (h, T ) phase diagram may be strongly deformed (see figure 7).

(h, T ) phase diagram

In this section, we study the second order (h, T ) phase transition diagram taking into account FFLO modulation. The self consistency equation ( 11) is

ln T c0 Tc = 2T c 2π 0 dφ 2π Re γ + 2 ln (2) + 1 4 Ψ 1 2 + i(h+v F .q. cos(φ)) 2πT + +2T c 2π 0 dφ 2π Re 1 8 Ψ 1 2 + i(h+t+v F .q. cos(φ)) πT + 1 8 Ψ 1 2 + i(h-t+v F .q. cos(φ)) πT . ( 17 
)
This analysis in general case can be performed only numerically on the basis of the equation (17).

A magnetic field induced superconducting state appears at high magnetic field as we can see in the figure 6 for t = 2.T c0 and 8 for t = 3.T c0 . For h t, the Zeeman effect that destroys the superconductivity is compensated by the bonding-antibonding states degeneracy created by the proximity effect between the S and the N layers (see figure 1). The lower and upper critical lines merge at field h = t and the field induced superconductivity is confined to temperature lower than T M = πe -γ T 2 c0 / (8t) in the limit t T c0 . Therefore, the superconducting field induced phase is confined to temperature lower than T M . These results were obtained for relatively strong coupling. For lower coupling, (t T c0 ), the usual phase transition diagram is strongly deformed as shown in figure 7 and finally disappear for t smaller enough than T c0 . From an experimental point of view, one might choose a system with an intermediate coupling t small enough to settle superconducting field induced phase but large enough to separate re-entrance and usual S phase.

IV. EFFECT OF THE IMPURITIES ON THE FIELD INDUCED SUPERCON-DUCTING PHASE

In this section, we investigate phases with uniform superconductivity in the S layer. We study the superconducting critical temperature as a function of the interlayer coupling. We obtain the critical magnetic field of second order superconducting to normal metal phase transition as a function of the temperature and the interlayer coupling. Study of the influence of the impurities and of the S-S bilayers are respectively proposed in section IV and V.

A. Critical temperature

We start with the analysis of the influence of the impurities on the superconducting critical temperature. Then (10) writes

f + 0,0 = ∆ * t 2 +2(ω+ 1 2τ ) 2 (2ω+ 1 2τ )t 2 +2ω(ω+ 1 2τ ) 2 . ( 18 
)
in accordance with the model developed in 31 .The self consistency equation ( 11) in this case is written as

ln Tc T c0 = 2πT c ∞ ω=0 t 2 +2(ω+ 1 2τ ) 2 (2ω+ 1 2τ )t 2 +2ω(ω+ 1 2τ ) 2 -1 ω . ( 19 
)
In the case of weak proximity effect (t T c0 ), the decrease of the critical temperature is deduced from the equation ( 19)and reads

Tc-T c0 T c0 = ∆Tc T c0 = -1 2 (τ t) 2 1 2τ T c0 π + 4Ψ 1 2 -4Ψ 1 2 + 1 4τ T c0 π .
In the clean limit T c0 t 1 2τ the superconducting critical temperature varies as

Tc T c0 = 1 -7 8 ζ(3) π 2 -π 192 1 τ T c0 t 2 T 2 c0
, and the impurity scattering inside the N layer decreases the proximity effect. In the dirty regime T c0 1 2τ t the superconducting critical temperature 

varies as

Tc T c0 = 1 -π 2 τ t 2
T c0 . The presence of impurities enhanced the superconducting state and T c decreases slower than in the clean case (see figure 9). In this case, the impurities decreases the effective transfer coupling and then the proximity effect.

However at strong interlayer coupling t T c0 and 1/2τ T c , the expression for the anomalous Green function (18

) becomes f + 0,0 = ∆ * (t 2 +2ω 2 ) 2ω(t 2 +ω 2 ) 1 + t 2 (2ω 2 -t 2 ) 2ω(t 2 +ω 2 )(t 2 +2ω 2 ) 1 2τ so the critical temperature varies as Tc T c0 = πe -γ 2 T c0 t 1 -1 8 t τ T 2 c0
. This means that scattering on impurities strongly decreases T c for high interlayer coupling as seen in the figure 9. In the regime t T c0 , the mixing between the superconducting state in the S layer and the normal state in the N layer is very strong. The bilayer draws near the regime λ -→ λ/2 where the S-N bilayer can be considered as a single S layer with an effective coupling constant λ < λ.

Note that T c depends on the impurities contrary to the Anderson theorem prediction which is not astonishing because the system is non uniform.

B. Effect of the impurities on the phase diagram.

In this section, we study the influence of the impurities on the (h, T ) and (h, t) phase diagram of the S-N bilayer. In the presence of impurities, the modulated phase disappears and h F F LO decreases to h I 44,45 . When the normal phase is overcooled then the critical magnetic field decreases from h I to h 0 33 . For simplicity in the whole paper, we will focus on the second order transition critical field of the S-N bilayer, taking in mind that if the transition is of order the first order the calculated field corresponds to the overcooling field and the critical region of superconductivity phase existence may be somewhat larger. Consequently, we study the influence of the impurities in the homogeneous case (q = 0). In this case, the anomalous Green function is the same as ( 18) with the substitution ω -→ ω + ih and can be written as

f + 0,0 = ∆ * 0 2(ω+ih+ 1 2τ ) 2 +t 2 (2(ω+ih)+ 1 2τ )t 2 +2(ω+ih)(ω+ih+ 1 2τ ) 2 (20) 1. (h, t) phase diagram at zero temperature
The impurities change the form of the (h, t) phase diagram at T = 0K as shown presented in the figure 10. The (h, t) phase diagram has been calculated numerically. The critical interlayer coupling t c increases with the impurities diffusion potential 1/2τ . The maximal values of h c1 and h c2 decreases with the impurities diffusion potential contrary to h c3 . The variations of h c1 , h c2 and h c3 reveals that the superconducting phase in the S layer is enhanced by the presence of the impurities whereas the field induced superconducting phase is destroyed by the impurities.

(h, T ) phase diagram

The (h, T ) phase diagram as been calculated numerically. The reentrance phase is strongly influenced by the presence of the impurities as seen on the figure 11. The maximal critical temperature under which the field induced phase exists, decreases with the impurity scattering potential. Moreover the upper and lower critical fields of the re-entrant superconducting phase (h c1 and h c2 ) become closer with the increase of impurities diffusion potential as seen in the last part. In the case t = 2T c0 , the reentrance phase totally disappears for an impurity diffusion potential 1/2τ upper than 0.097T c0 . In the figure 11, the usual supercon- ducting phase is also influenced by the presence of impurities. The critical magnetic field at zero temperature h c3 and the critical temperature at zero magnetic field T c increase with the impurities diffusion potential. The effective interlayer coupling decreases in the presence of impurities then the usual superconductivity in the S layer is enhanced.

V. EFFECT OF THE IMPURITIES ON THE S-S BILAYER

In this section, we study the S-S bilayer considering the FFLO modulation and the impurities. As predicted in 22 for ferromagnet superconductor multilayered systems, a π state may appear in S-S bilayer under magnetic field. Using the same model as developed in the section II, the S-S bilayer is described by the following equations

       ω -iv F .q -i t 2 0 i t 2 -i t 2 ω -iv F .q i t 2 0 0 i t 2 ω -iv F .q -i t 2 i t 2 0 -i t 2 ω -iv F .q        .        f + 0,0 f + 1,0 f + 1,1 f + 0,1        =         ∆ * 0 + f + 0,0 (ω,q) φ 2τ 0 ∆ * 1 + f + 1,1 (ω,q) φ 2τ 0         (21) 
where ∆ * 1 is the superconducting gap in the S layer indexed j = 1. In the π-phase, ∆ * 0 = -∆ * 1 , the solution of the system ( 21) is

f + 0,0 = ∆ * 0 2 1-1 2τ (Ω 2 +Ω 1 ) 2 Ω 1 Ω 2 1 ω 1 + 1 ω 2
and the averaged solution on the φ angle

f + 0,0 φ = (Ω 1 +Ω 2 )∆ * 0 2 Ω 1 Ω 2( 1-1 2τ (Ω 2 +Ω 1 ))
In the clean limit (τ -→ ∞), at zero temperature, the π superconducting phase appears above the critical magnetic field h low = t -∆ 2 0 /8t and below h up = t + ∆ 2 0 /8t in the limit t ∆ 0 . As predicted in 21 , the modulated FFLO state appears at low temperature and maximize the critical magnetic field. Hence, with the FFLO state, the critical magnetic fields are h low,up = t ∓ ∆ 2 0 /4t in the limit t ∆ 0 . The re-entrance superconducting phase is enhanced at low temperature by FFLO modulations. The presence of impurities in the system may destroy the FFLO state and the re-entrance phase. The FFLO transition should meet quickly the first order transition line. Consequently, we will study the influence of the impurities in the homogeneous case where q = 0. respectively the critical magnetic field for a second order superconducting phase transition, the critical magnetic field for a first order phase transition and the FFLO paramagnetic limit for a single S layer. The close-dashed line is the FFLO paramgnetic limit in the S-S bilayer in the clean limit.

A. (h, t) phase diagram

At T = 0K in the π-state without FFLO modulation, the self consistency equation ( 12) becomes :

  4 1 2τ 2 + 2h + -4t 2 + 1 2τ 2 2     4 1 2τ 2 + 2h - -4t 2 + 1 2τ 2 2   = 16h 2 0 . (22) 
The solutions of ( 22) are

h imp up,low = 1 2 -4t 2 + 1 2τ 2 -4 1 2τ 2 ± 4 -1 2τ 2 -4t 2 + 1 2τ 2 + h 4 0
where h imp up,low are the critical magnetic field of the S-S bilayer in the presence of impurities (see figure 12 ). The field induced superconducting state is destroyed in presence of impurities and cannot be observed if h imp low = h imp up . We define a critical impurity diffusion time τ c = 1/2 2t 2 -4t 4 -h 4 0 below which the re-entrance phase totally disappears.

In the case where t = 2T c0 and h 0 = 0.882T c0 then 1 2τ c 0.194T c0 .

The critical magnetic field in the presence of FFLO modulation is plotted in the figure 12in the clean limit. The critical magnetic field in the presence of FFLO modulations is the upper limit of the critical magnetic field.

We can see that h F F LO up , the upper critical field in presence of FFLO modulations, cross the line h = ∆ 0 for t 1.25T c0 . It means that the usual superconducting phase is deformed only for t > 1.25T c0 at T = 0K. Then the field induced superconducting phase becomes observable. The field induced superconducting phase become totally observable when h F F LO low , the lower critical field in presence of FFLO modulations, cross the line h = ∆ 0 for t 2.1T c0 .

In the uniform case, we would have to consider the first order transition line. For the S-S bilayer, the first order transition line is between the second order and the FFLO transition line. The reentrance phase would appear when h I up , the upper critical field for a first order phase transition is above h I = ∆ 0 / √ 2 and would be distinguishable if the lower critical field in the case of first order phase transition is higher than h.

B. (h, T ) phase diagram

In the π-state, the Cooper pairs are formed by two electrons in the different layer. The standard superconducting state is only due to the 0-phase and then is not influenced by the impurities as predicted by the Anderson theorem. The lower and upper critical lines merge at field h = t and temperature T M = πe -C T 2 c0 / (4t) in the limit t T c0 . The field induced π superconductivity is confined to temperature lower than T M .

On the phase diagram, we see that the reentrance decreases as the impurity self energy is increasing (see figure 13). The reentrance phase totally disappear for 1 2τ 0.194T c0 in the case where t = 2T c0 . The existence of first order transition line in the field induced phase transition could influence these results. h I up,low are higher(smaller) than h up,low . Consequently, the critical impurity diffusion time τ c should be higher than in the case of a second order transition.

VI. CONCLUSION

To conclude, the proximity effect plays a crucial role in the S-N and S-S bilayers. The superconducting critical temperature and the critical magnetic field at zero temperature in the S-N and the S-S bilayers depends directly on the interlayer coupling. We demonstrated that at low temperature, a magnetic field induced superconducting phase appears at high in-plane magnetic field in S-N bilayers. This field induced phase is originated from the compensation of Zeeman effect energy splitting by the energy splitting between the bonding and antibonding state electronic levels. This reentrance phase provides the possibility to overcome the classical paramagnetic limit and the results of our work give the hints for engineering layered superconducting material with very high critical fields.

In S-S and S-N bilayers, the presence of impurities make the superconducting field induced phase more difficult to observe. The impurities produce a broadening of the different energy levels over an energy range 1/τ which prevents exact compensation. It is possible to define a critical mean free pass time over which the re-entrance phase cannot survive. In the S-N and S-S bilayer, the critical mean free pass time τ c only depends on the interlayer coupling.

In S-S bilayer, in the case t ∆ 0 then τ -1 c 0.25∆ 0 above which there is no possibility to observe field induced phase. From an experimental point of view, it could be possible with the molecular beam epitaxy techniques to provide a sufficiently large mean free path to realize the condition of field-induced phase observation.

Although we have only treated the Zeeman effect as cooper pair breaking effect, we have to discuss on the orbital pair breaking effect. In the case of multilayered system under in-plane magnetic field, the condition for neglecting the orbital effect is given by tHξ 0 d/Φ 0 < ∆ 0 , where ξ 0 is the in-plane coherence length and Φ 0 = h/2e the superconducting quantum of magnetic flux. In the case t ∆ 0 we obtain that H must be lower than H orb Φ 0 / (ξ 0 d). The typical values d 10 Å , ξ 0 100 Å the corresponding field is extremely large H orb 200T

and not restrictive at all as the maximal currently attainable permanent magnetic field are 60T . The orbital effect becomes important in layered system in the case t ∆ 0 when the Pauli limit may be exceeded many times. However in 46 , it was demonstrated that the orbital pair breaking in layered superconductors are switched off in the high field regime and the superconductivity is restored. We may expect that similar situation should be realized in S-N and S-S bilayer.

FIG. 1 :

 1 FIG. 1: Mechanism of compensation of the Zeeman effect by the degeneracy lifting between the bonding and anti-bonding state.

  FIG.3: Graph of T c /T c0 as a function of t/T c0 (solid line). For t

FIG. 5 :

 5 FIG. 5: (h/T c0 , t/T c0 ) diagram for the S-N bilayer in the clean limit (τ → ∞) (solid line). The uniform superconducting state is presented in the grey region. The non-uniform superconducting (FFLO) phase in the S-N bilayer is presented in the dotted region. The line h = ∆ 0 /2 presents the critical magnetic field for a second order superconducting phase transition for a single superconducting layer. The line h = ∆ 0 represents the FFLO paramagnetic limit for a single superconducting layer. The line h = ∆ 0 / √ 2 represents the first order paramagnetic limit for a single superconducting layer.

FIG. 9 :

 9 FIG. 9: Graph of T c /T c0 as a function of t/T c0 . The clean case (1/2τ = 0) is presented by the solid line. The impurity are plotted with repectively (1/2τ ) /T c0 = 0.01( 0.05, 0.097, 1 in dotted (respectively dashed, dashed-dotted and dashed-dottted-dotted) line. We see that the impurities enhance the superconducting transition temperature for weak interlayer coupling. On the other hand superconducting critical temperature decreases quickly in the presence of impurities at strong interlayer coupling.

  FIG. 10: (h/T c0 , t/T c0 ) diagram for the S-N bilayer in the clean case (τ → ∞) (solid line) and with respectively (1/2τ ) /T c0 = 0.05 (0.097, 1) in dashed (respectively dotted, dashed-dotted) line.

  FIG. 12: (h/T c0 , t/T c0 ) diagram for the S-S bilayer in the clean case ((1/2τ ) /T c0 = 0) (solid line) and with respectively (1/2τ ) /T c0 = 0.15 (0.194, 0.1, 0.5, 1) in dashed (respectively dotted,dasheddotted and dashed-dotted-dotted) line. The lines h = ∆ 0 /2, h = ∆ 0 / √ 2 and h = ∆ 0 present

  FIG. 13: (h/T c0 , T c /T c0 )phase transition diagram for the S-S bilayer calculated for t = 2T c0 with the second order transition line in the clean case ((1/2τ ) /T c0 = 0) (solid line) and with respectively (1/2τ ) /T c0 = 0.01 (0.05, 0.1, 0.125, 0.15, 0.175) in dotted (respectively dashed, dashed-dotted, dashed-dotted-dotted, close dashed, close dotted) line. The inset presents a zoom of the superconducting re-entrance phase around h t 2T c0 .
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