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Abstract—Detection of microemboli is of great clinical im-
portance to prevent cerebro-vascular events and to identify
the causes of such events. As standard detection techniques
implemented in the most commonly used systems cannot detect
all of microemboli events whose energy is lower than the systolic
energy, new techniques are proposed.

By assuming that the Doppler signal is cyclostationary, we
hypothesize that energy is statistically periodic. Furthermore,
we hypothesis that embolic signals are unpredictable. Hence,
the joint use of synchronous and linear prediction techniques
could detect very small microemboli. If we periodically take and
compare the values of the energy of the prediction error (or
autoregressive parameters) at different time points in thecardiac
cycle, we can therefore detect the presence of non-periodicevents
such as microemboli.

In our study, we tested and compared our new technique
to the standard technique (Fourier) using simulated and in
vivo signals from patients with stenosis of high degrees of
severity. From simulations, the standard automatic technique
detected 60% of microemboli detected by our gold standard
technique (audible detection and sonogram visualization)whereas
the synchronous linear prediction technique detects 97% (the
false alarm rate being set at 0%). From clinic examinations,the
standard automatic technique only detects 67% of microemboli
detected by our gold standard technique whereas the synchronous
linear prediction technique detected 100%.

This study demonstrates that our new technique detects
microemboli up to now not identified by classical methods. Large
microemboli are all detected, but small microemboli are only
detected with our new technique. This latter technique opens up
new prospects to detect small emboli, despite the need for further
studies to incorporate “on line” technique.

Index Terms—Microemboli, synchronous detection, linear pre-
diction.

I. I NTRODUCTION

CEREBRAL vascular accidents and particularly cerebral
embolisms represent more than two thirds of all ischemic
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strokes. Indeed, several insoluble bodies (fat, red cell aggrega-
tion, clots...) foreign to blood composition, called emboli, can
move into intracranial arteries and can even block them. The
detection of microemboli (small size emboli) is important for
several reasons such as preventing cerebrovascular accidents,
finding the cause of embolism and validating the effectiveness
of treatment.

The TransCranial Doppler ultrasound (TCD) system is the
most used technique in detecting and counting emboli[1]. This
standard technique seems to be sufficient to detect most of mi-
croembolic events. Nevertheless during clinical examinations,
the medical profession sometimes observes microembolic sig-
natures not detected by the system.

The embolic Doppler signature is an unpredicted high
intensity transient signal (HITS) superimposed on the Doppler
signal backscattered by the blood, the embolus detection must
be therefore based on the energy.

By assuming that the Doppler signal is cyclostationary [2],
we suppose that the energy is statistically periodic. Further-
more, by assuming that HITS are unforcasted events, we
implicitly suppose that linear prediction techniques are unable
to predict the presence of a microembolus. The joint use of
synchronous and linear prediction techniques could be the
foundation of new techniques allowing the detection of very
small microembolus.

By taking and comparing periodically the values of the pre-
diction error and autoregressive (AR) parameters (at different
time points in the cardiac cycle), it is possible to detect the
presence of non-periodic events such as microemboli.

Figure 1. Embolus detection with a constant threshold : spectrogram (top)
and time-varying energy (bottom)
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II. M ATERIALS AND METHODS

A. Materials

The TCD system measures the velocity of blood flow
through the brain’s arteries with a pulsed Doppler probe.
Because the skull bones reduce the transmit ultrasound (US)
power, the recording is performed in the temporal region. The
TCD consists in transmitting, by means of a transducer, an
US wave with frequencyf0 at 2 MHz, to a selected area
of a cerebral artery. The TCD systems that we used was the
WakiTM(Atys Medical, Soucieu en Jarrest, France). The pulse
repetition frequency (PRF) was of 6.4 kHz and the US power
was of150 mW/cm−2. The Doppler signals are sampled with
a frequency of 10 kHz.

Figure 2. Sketch of a solid embolus in the sample volume

The Doppler embolus signal was modeled by using the
method proposed by Giraultet al.[3]. The most of the in-
stantaneous energy of each embolus was chosen in order to
be lower than the highest level of the background Doppler
signal which has a 5 minutes length. As our main objective
was to detect very small embolus signatures from 9 different
Doppler signals.

The in vivo Doppler signals from patients with stenosis of
degrees IV of severity have been analysed.

The position of the Doppler embolus signal has been known
in order to constitute our gold standard. Each Doppler signal
has been listened and analysed from its sonogram.

B. Protocole

Microembolus signals are detected by a binary test. If
the decision informationDI(t) which corresponds to the
instantaneous energy is greater than the thresholdλ then an
embolus is detected (hypothesisH1), otherwise no embolus is
detected (hypothesisH0). This formulation can be expressed
in equation 1.

DI(t)
H1

≶

H0

λ (1)

Each method requests a preliminary step where statistical
thresholds are computed. During the first minute, the statistic
parameters are collected in order to establish the threshold λ.
After that, the threshold is updated from the statistic parame-
ters of the last minute. In the case of the standard detection, the
instantaneous energy was computed with a Hamming slidding
window (128 samples). As the instantaneous energy follows a
Gaussian law, the constant threshold can be set toλ = µ+5σ
whereµ is the mean andσ is the standard deviation.

In the case of the synchronous detector, the algorithm is the
following :

• From an examination, we compute first the energy over a
Hamming slidding window of 128 samples and second the
maximal cardiac cyclic period.

• Then all the cardiac cycles are extracted at each beginning
of the systole phase. In order to establish some statistic
parameters from data having the same number of samples,
we resample and interpolate the whole cardiac cycles.

C. standard method

1) standard energy estimator: The standard energy
estimator implemented in the most commonly used systems
is based on the spectrogram or Short Time Fourier Transform
(STFT). The basic idea is to find the power spectrum density
P (t, f) (eqn 2) of the signal at timet by analyzing a small
segment of the signal around it.

P (t, f) =

∣
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∣

∣
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−∞

x(τ)g∗(t− τ)e−j2πfτdτ

∣

∣

∣

∣

2

(2)

wherex(t) represents the analysed Doppler signal. The signal
is multiplied by a window functiong in order to reduce the
random effects resulting from the computation ofP (t, f). The
superscript asterisk denotes complex conjugation. While along
analysis window may improve frequency resolution, it com-
promises the assumption of stationarity within the window.
The Doppler signal can be regarded as locally stationary over
a duration lower than 10 ms.

The decision information (DI) is the same as in commercial
devices, i.e. it isDI1 the mean of the power spectrum orDI2
the maximum power spectrum :

DI1(t) = P (t, f)
∣

∣

∣

f
or DI2(t) = max(P (t, f))|f (3)

Though these DI are time-varying all commercial devices are
based on a constant threshold.

2) standard energy detector: The DI on which is performed
the microembolus detection is the instantaneous energy.

1) Due to both the random nature of the Doppler signal and
the limit central theorem, energy can be approximated by a
Gaussian random variableN(µ, σ2) whereµ andσ denote
respectively the mean and the standard deviation of the
energy. Note this case as the hypothesisH0.

2) If we hypothesis that a patient provides only one type
of emboli whose size is constant (for example 100µm),
then the embolic energetic information can be viewed as
a Gaussian random variableN(µe, σ

2
e), whereµe andσe

respectively denote the mean and the standard deviation
of the energy in presence of embolus. This case, noted
hypothesisH1, is not a realistic hypothesis but largely con-
tributes to simplify the reasoning leading to the decision
defined by the equation (1).

This means thatµe is also a random variable and conse-
quently that the threshold has to be chosen empirically or
statistically. The value of this thresholdλ was set just above
the highest detected energy of the observed Doppler signal
without embolus in the preliminary setting phase at 1 minute..
The time position of this maximum energy always happens
during the systole phase and its value largely depends on
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the patient but also of the duration of the examination. In
order to have a weak false alarm probability, the threshold
can be chosen just above the highest intra-individual energy,
i.e. during the entire examination. However, the price to pay is
that this threshold choice forbids all detections of microemboli
events whose energy would be lower than this maximum value,
i.e. during the systolic phase.

Most of the time, for a manual detection this empirical
threshold is set around 3 dB above the maximal energy in
order first to reduce the false alarm probability and secondly
to take into account the inter individual variability. In contrast,
for an automatic detection it is set between 3 to 9 dB and it
depends on the TCD system calibration [4].

D. Synchronous linear prediction technique

1) Autoregressive modeling: Unlike used methods for em-
bolus detection, parametric autoregressive (AR) modelingcon-
sists of working on a model of the signal and not directly on
the signal. This filter is a linear combination of the previous
samples (regressive) of the output itself (auto).

Considering a discrete time complex Doppler signalx(n) =
x(t = nTe) sampled at frequency1/Te and assuming that it is
the output of a p-order AR model, the signal can be expressed
by the equation (4).

x(n) = −

p
∑

i=1

ai(n)x(n− i) + η(n) (4)

whereai(n) are complex coefficients defining the AR model,
p is order of the model (number of coefficients) andη(n)
is a complex white noise. An order test shows thatp = 2
may be sufficient. For convenience, the previous equation is
expressed in matrix form (eqn 5).

x(n) = ϕT (n)θ(n) + η(n) (5)

where

ϕT
n = [−x(n− 1),−x(n− 2)]

θ = [a1, a2]
T

The vector̂θ(n) which is an estimate of the vectorθ(n) was
obtained by an AR process from the signalx. This estimation
can be performed using the Recursive Least Squares (RLS)
algorithm to minimize the prediction errorε(n).

ε(n) = x(n) − x̂(n) (6)

The time-variant algorithm is accomplished by updating
the previously evaluated parameter using the prediction error
and weighting by means of a forgetting factor. In fact, using
a forgetting factor is equivalent to the introduction of an
exponential window. The length of this window indicates
which of the last samples are in fact taken into account to
compute AR parameters. For example, if the forgetting factor
is equal to 0.95, the last 20 samples are mainly accounted
for in the window, whereas if it is equal to 0.99 the last 100
samples are taken into account. This adaptive least-squares
method evaluates the parameters by minimizing the cost

function (eqn 7)

Jk =

k
∑

n=1

λk−n (x(n)− x̂(n))
2 (7)

where in practice0.80 < λ < 1 andk is the index of the last
sample considered.

The recursive adaptive algorithm is given by [3] :

Pn =
Pn−1

λ

(

1−
Pn−1φnφ

T
nPPn− 1

λ+ φT
nPn−1φn

)

εn = xn − φT
n θ̂n−1

θ̂n = θ̂n−1 + Pnθnεn

whereθ̂ is estimated parameters vector,Pn gain,φn observa-
tion vector andεn prediction error.

The prediction error tends in probability to white noise,
when the number of observation data extends to infinity. Since
the autocorrelation function (AF) of a white noise equals
zero at any lag, except for the initial lag (n = 0), the
AF of prediction error therefore provides interesting Decision
Information (DI), i.e. information containing the embolus
signature for this parametric method. Indeed, when an embolus
crosses the sample volume, the prediction error will no longer
be a white noise, and its AF at lag 1 (for example) will no
longer be zero. The AF can be expressed by :

Γεε(n) =

+∞
∑

m=−∞

ε(m)ε∗(m− n) (8)

Note thatΓεε will be almost zero for a normal Doppler signal
and the presence of an embolus will be characterized by an
abrupt change. The monitoring of the AF which seems to be
a valuableDI constitutes the novelDI

DI = ‖Γεε(n)‖ (9)

2) Synchronous energy detector: The synchronous detec-
tion is a detection synchronized with the cardiac cycle. This
synchronization is very important because it detects low en-
ergy events during the cardiac cycle. The specificity of this
detector is that the threshold is time-varying [5]. In this case,
the comparison of the instantaneousDI(t) (energy) with a
time-varying thresholdλ(t) leads to the decision :

DI(t)
H1

≶

H0

λ(t) (10)

As it is previously mentioned DI(t) is statically periodic in-
volving the adaptive thresholdλ(t) periodically time-varying.

In this case, as an embolus is a random event, it is possible
to detect the presence of microemboli. From this energetic
information, the “instantaneous” meanµ(t) and standard
deviationσ(t) of the cyclic energy have been computed. In
order to have a weak probability of false alarm, it seems
reasonable to choose an adaptive threshold defined by the
equation 11.

λ(t) = µ(t) + βσ(t) (11)

whereβ is an empiric constant fixed to3.8.

3



c© 20009 IEEE. Reprinted, with permission, from S. Ménigot, L.Dreibine, N. Meziati and J.-M. Girault, Automatic detection of microemboli by means of a synchronous linear
prediction technique, 2009 IEEE International Ultrasonics Symposium (IUS), 20—23 Sept. 2009.

Figure 3. Synchronous AR parameters (top and middle) and synchronous
error autocorrelation (bottom) with their time-varying thresholdGold standard SLP

standard a1 error
embolus
detection (%) 100 100 100 100
false alarm
rate (%) 0 32.37 7.49 5.80

Table I
COMPARISON WITH STANDARD TECHNIQUE AND SYNCHRONOUS LINEAR

PREDICTION TECHNIQUE(SLP)FORa1 PARAMETER AND THE

AUTOCORRELATED ERROR FROM9 SIMULATED SIGNALS

III. R ESULTS& D ISCUSSIONS

A. Simulation comparison

An ideal detector is a technique which gives 100 % of
detection and 0 % of false alarm. In this section, the threshold
was set to give a detection rate of 100 %. The standard tech-
nique have detected 32% of false alarm for a detection rate of
100 %compared with the gold standard. The new synchronous
linear prediction technique (SLP) can reach a 5.8% false
alarm rate with the autocorrelated error. The detector based
on the error autocorrelation gives the best results becauseit
includes the AR parametersa1 and a2 of AR modeling into
account. Note that for synchronous detector the threshold is no
more constant but rather time-varying. Note also that unlike
synchronous AR parameters error autocorrelation seems to
be not time-varyin. In case of the simulated signals, there
exists inaudible events whose presence in the spectrogram is
ambiguous. Our detectors allow us to detect such events.

B. In vivo signal comparison

In this section, the threshold was set to give a false alarm
rate of 0%. From clinic examinations, the standard automatic

Gold standard SLP
standard

embolus
detection (%) 100 67 100
false alarm
detection (%) 0 0 0

Table II
COMPARISON WITH STANDARD TECHNIQUE AND SYNCHRONOUS LINEAR

PREDICTION TECHNIQUE(SLP)FROM in vivo SIGNALS

technique only detects 67% microemboli compared with the
gold standard. The new synchronous linear prediction tech-
nique (SLP) reaches the ideal detector with detection rate of
100%.

Our detector has a high potential to detect microemboli up
to now undetectable, but unfortunately it has a high potential
to detect artifacts as well.

IV. CONCLUSION

The examination quality was improved. The new SLP
allows us either to decrease the false alarm rate if all microem-
boli were detected, or to improve the microemboli detection
with any false alarm.
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