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Abstract In this paper we offer a complete methodology for sufficient dimension reduction called the
test function (TF). TF provides a new family of methods for the estimation of the central subspace
(CS) based on the introduction of a nonlinear transformation of the response. Theoretical background
of TF is developed under weaker conditions than the existing methods. By considering order 1 and 2
conditional moments of the predictor given the response, we divide TF in two classes. In each class we
provide conditions that guarantee an exhaustive estimation of the CS. Besides, the optimal members
are calculated via the minimization of the asymptotic mean squared error deriving from the distance
between the CS and its estimate. This leads us to two plug-in methods which are evaluated with several
simulations.
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1. Introduction

Dimension reduction in regression aims at improving poor convergence rates derived from the
nonparametric estimation of the regression function in large dimension. It attempts to provide
methods that challenge the curse of dimensionality by reducing the number of predictors. A
specific dimension reduction framework, called the sufficient dimension reduction (SDR) has
drawn attention in the last few years. Let Y be a random variable and X a p-dimensional
random vector. To reduce the number of predictors, it is proposed to replace X = (X1, ...,Xp)

T

by a number smaller than p of linear combinations of the predictors. The new covariate vector
has the form PX, where P can be chosen as an orthogonal projection on a subspace E of Rp.
Clearly, this kind of methods relies on an alchemy between the dimension of E, which needs to
be as small as possible, and the preservation of the information carried by X about Y through
the projection on E. In the SDR literature, mainly two kind of spaces have been studied. First
a dimension reduction subspace (DRS) [Li (1991)] is defined by the conditional independence
property

(1.1) Y ⊥⊥ X | PcX,
where Pc is the orthogonal projection on a DRS. With words, it means that knowing PcX, there
is no more information carried by X about Y . It is possible to show that (1.1) is equivalent to

(1.2) P(Y ∈ A|X) = P(Y ∈ A|PcX),

for any measurable set A. Moreover under some additional conditions [Cook (1998)], the inter-
section of all the DRS is itself a DRS. Consequently, there exists a unique DRS with minimal
dimension and we call it the central subspace (CS). In this article the CS is noted Ec. Secondly,
another space called a mean dimension reduction subspace (MDRS) has been defined in Cook
and Li (2002) as

(1.3) E[Y |X] = E[Y |PmX],
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where Pm is the orthogonal projection on a MDRS. Clearly, the existence of a MDRS requires a
weaker assumption than the existence of a DRS and therefore it seems to be more appropriate
to the context of regression. Because of the analogous equation of (1.3),

(1.4) Y ⊥⊥ E[Y |X] | PmX,
the definition of a MDRS imposes that all the dependence between Y and its regression function
on X is carried by PmX. If the intersection of all the MDRS is itself a MDRS, then it is called
the central mean subspace (CMS) [Cook and Li (2002)]. In the following the CMS is noted Em.
Finally, notice that because a DRS is a MDRS, the CS contains the CMS.
There exists many methods for estimating the CS and the CMS and these methods can be di-
vided into two groups, those who require some assumptions on the distribution of the covariates
and those who do not. The second group includes structure adaptive method (SAM) [Hristache,
Juditsky, Polzehl, and Spokoiny (2001)], minimum average variance estimation (MAVE) [Xia,
Tong, Li, and Zhu (2002)], and structural adaptation via maximum minimization (SAMM)
[Dalalyan, Juditsky, and Spokoiny (2008)]. Those methods are free from conditions on the
predictors but require a non parametric estimation of the regression function E[Z|X = x]. In
this article we are concerned only with methods of the first group and we quote them in the
following.

To be more comprehensive, from now on we work in term of standardized covariate Z =

Σ− 1
2 (X − E[X]) with Σ = var(X). Hence we define the standardized CS as Σ

1
2Ec. Since there

is no ambiguity, we still note it Ec and we still denote by Pc the orthogonal projection on it.
For any matrix M , we note span(M) the space generated by the columns of M .

All the methods of the first group derive from the principle of inverse regression : instead of
studying the regression curve which implies high dimensional estimation problems, the study is
based on the inverse regression curve E[Z|Y = y] or the inverse variance curve var(Z|Y = y).
To infer about the CS, order 1 moment based methods require that

Assumption 1. (Lineariy condition)

QcE[Z|PcZ] = 0 a.s.,

where Qc = I − Pc. Under the linearity condition and the existence of the CS, it follows that
E[Z|Y ] ∈ Ec a.s. and then if we divide the range of Y into H slices I(h), we have for every h,

(1.5) mh = E[Z|Y ∈ I(h)] ∈ Ec,

and clearly, the space generated by some estimators of the mh’s estimate the CS, or a subspace
of it. To obtain a basis of this subspace, Li (1991) proposed a principal component analysis and
this leads to an eigendecomposition of the matrix

(1.6) M̃SIR =
∑

h

phmhm
T
h ,

where ph = P(Y ∈ I(h)). Many methods relying on the inverse regression curve such as sliced
inverse regression (SIR) [Li (1991)] have been developed. Other ways to estimate the inverse
regression curve are investigated in kernel inverse regression (KIR) [Zhu and Fang (1996)] and
parametric inverse regression (PIR) [Bura (1997)]. Instead of a principal component analysis,
the minimization of a discrepancy function is studied in inverse regression estimator (IRE)
[Cook and Ni (2005)] to obtain a basis of the CS. For a complete background about order 1
methods, we refer to Cook and Ni (2005).

Otherwise, in addition to the linearity condition order 2 moments based methods require that

Assumption 2. (Constant conditional variance (CCV))

var(Z|PcZ) = Qc a.s.,
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then under the linearity condition, CCV and the existence of the CS, it follows that span(var(Z|Y )−
I) ∈ Ec a.s. and by considering a slicing of the response, we have

(1.7) span(vh − I) ⊂ Ec,

where vh = var(Z|Y ∈ I(h)). Since the spaces generated by the matrices (vh− I)’s are included
in the CS, sliced average variance estimation (SAVE) in Cook and Weisberg (1991) proposed
to make an eigendecomposition of the matrix

M̃SAV E =
∑

h

ph(vh − I)2,

to derive a basis of the CS. Another combination of matrices based on the inverse variance curve
is developed in sliced inverse regression-II (SIR-II) [Li (1991)]. More recently, contour regres-
sion (CR) [Li, Zha, and Chiaromonte (2005)], and directional regression (DR) [Li and Wang
(2007)] investigate a new kind of estimator based on empirical directions. Besides, methods for
estimating the CMS also require Assumptions 1 and 2. They include principal Hessian direction
(pHd) [Li (1992)], and iterative Hessian transformation (IHT) [Cook and Li (2002)]. To clear
the failure of certain methods when facing pathological models and keep their efficiency in other
cases, some combinations of the previous methods as SIR and SIR-II, SIR and pHd or SIR and
SAVE have been studied in Gannoun and Saracco (2003) and Ye and Weiss (2003).

As we have just highlighted, Assumptions 1 and 2 are necessary to respectively characterize
the CS with the inverse regression curve and the inverse variance curve. A first point is that the
linearity condition and CCV assumed together are really close to an assumption of normality
on the predictors. Moreover for each quoted method, these assumptions guarantee only that
the estimated CS is included asymptotically in the true CS. A crucial point in SDR literature
and a recent new challenge is to propose some methods that allow an exhaustive estimation of
the CS under mild conditions. Some recent research are concerned with this problem, Li, Zha,
and Chiaromonte (2005) and Li and Wang (2007) proposed a new kind of assumptions that
guarantee the exhaustivity.

There exists a large range of methods aiming at the estimation of the CS. In this paper, we
try to propose a general point of view about SDR by introducing the test function method (TF).
The original basic idea of TF is to investigate the dependence between Z and Y by introducing
nonlinear transformations of Y , and inferring about the CS through their covariances with Z
or ZZT . Actually, an important difference between TF and other methods is that neither the
inverse regression curve and nor the inverse variance curve are estimated as it is suggested by
equation (1.5) and (1.7). In this paper, these two curves are a working tool but the inference
about the CS is obtained through some covariances. More precisely, the CS is obtained either
by inspection of the range of

E[Zψ(Y )],

when ψ varies in a well chosen finite family of function or either by an eigendecomposition of

E[ZZTψ(Y )],

where ψ is a well chosen function. Hence two kind of methods can be distinguished, the order 1

test function methods (TF1) and the order 2 test function methods (TF2). Notice that M̃SIR

is an estimate of E[ZE[Z|Y ]T ], hence SIR may be seen as a particular case of TF1. In this
paper, we show that TF allows to relax some hypotheses commonly assumed in the literature,
especially we alleviate the CCV hypothesis for TF2. Moreover for each methods, we provide mild
conditions ensuring an exhaustive characterization of the CS. Finally, an asymptotic variance
analysis leads us to the optimal transformation of Y for the estimation of the CS. As a result a
significant improvement in accuracy is targeted by TF. The present work is divided in the three
following principal parts :

• Existence of the CS
• Exhaustivity of TF
• Optimality for TF
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More precisely, it is organized as follows. In section 2, we investigate some new conditions
ensuring the existence of the CS and the CMS. In section 3, we introduce TF1 and TF2 by
providing some basic results. Conditions for an exhaustive characterization of the CS are
presented in section 4. The choice of the optimal transformation of the response for TF1 and
TF2 is detailed in section 5. Accordingly, we propose two plug-in methods deriving from the
minimization of the MSE. And finally, in section 6 we compare both methods to existing ones
through simulations.

2. Unicity of the central subspace and the central mean subspace

Conditions on the unicity of subspaces that allow a dimension reduction are investigated in
this section. This problem has drawn the attention early in the literature but it seems not to
be the case anymore. As a consequence of the definition of the CS (resp. CMS), its existence
is equivalent to the unicity of a DRS (resp. MDRS) with minimal dimension. In Cook (1998),
proposition 6.4 p.108, it is shown that the existence of the CS can be obtained by constraining
the distribution of X. More precisely, the CS exists under the assumption that X has a convex
density support. Moreover, in Cook and Li (2002), the existence of the CMS is ensured under
the same condition than the CS. We prove in Theorem 2.2 and Corollary 2.3 below that the
convexity assumption can be significantly weakened. Here, the standardization of the predictors
do not change the presentation of our results, hence we present it for X. For a comprehensive
proof of our theorems we need the following lemma.

Lemma 2.1. If the restriction of X to the ball of Rp with radius r and center x0 has a strictly
positive density, then the intersection of all the MDRS is a MDRS on this ball, i.e.

(E[Y |X] − E[Y |RX])1{X∈B(x0,r)} = 0,

where R denotes the orthogonal projection onto the intersection of all MDRS.

Proof. It suffices to show the theorem for two MDRS. We first make the proof for a ball centered
in 0, and then we apply it to X−x0. Let E and E′ be two MDRS and P and P ′ their respective
orthogonal projections. Denote by R the orthogonal projection onto the subspace E

⋂
E′. Using

the definition of a MDRS,

E[Y |X] = E[Y |PX] = E[Y |P ′X] a.s..

Let g(PX) and h(P ′X) denote the last two functions of the preceding equation. Using that X
has a strictly positive density on the unit sphere, we can write

(2.1) g(Px) = h(P ′x) a.e. on B(0, r).

Let ε > 0, and ϕk be a unit approximation with compact support B(0, ε), we define the function
fk : B(0, r) → R such that

fk(x) = (g ◦ P ) ∗ ϕk (x).

Then, we have for all x,

fk(x) =

∫
g(P (x − y))ϕk(y)dy

= fk(Px).

Moreover, for all x ∈ B(0, r−ε) since in the above integral x−y ∈ B(0, r), using (2.1) we derive

fk(x) = (h ◦ P ′) ∗ ϕk (x),

and similarly we obtain fk(x) = fk(P
′x). Since fk(x) = fk(Px) = fk(P

′x), a simple iteration
process provides for all x ∈ B(0, r − ε),

fk(x) = fk((PP
′)nx).

Since fk is a continuous function and (PP ′)n −→
n→∞

R,

fk(x) = fk(Rx), x ∈ B(0, r − ε).
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To conclude, the unit approximation theorem gives us the convergence

fk ◦R L1−→ g ◦ P.

Thus, from fk(RX) we can derive a subsequence fnk(RX) that converge almost surely to g(PX),
proving that E[Y |X] is a function of RX. This completes the first part of the proof.

Now suppose that X has a strictly positive density onto the ball of radius r and center x0.

Define X̃ = X −x0, it is clear that a MDRS for X is also a MDRS for X̃ and conversely. Then,

since X̃ is centered in 0, the intersection of two MDRS is still a MDRS for X̃ and obviously for
X. �

The following theorem provides us the existence of the CMS under a weaker condition than
in Cook (1998). The same result on the existence of the CS is presented in a corollary that
follows the theorem.

Theorem 2.2. If X has a density such that the Lebesgue measure of the boundary of its support
is equal to 0, then the CMS exists.

Proof. Denote by F ⊂ R
p the support of the density of X. A first step consists in showing that

its interior F̊ can be covered by a countable number of balls included in F̊ . Secondly, we apply
Lemma 2.1 to each of this balls to obtain that the intersection of two MDRS on F̊ is a MDRS
on F̊ . Finally, the unicity is shown.
Let x ∈ F̊ , then it exists r > 0 such that B(x, r) ⊂ F̊ . It is possible to find a ball with rational

center and radius included in B(x, r) and containing x. Thus any x of F̊ is contained in a ball

with rational center and radius included in F̊ . In other words, the set A formed by all the balls
B(q, r0) ⊂ F̊ with q and r0 rational covers F̊ . Therefore, by applying Lemma 2.1, we have for
all B(q, r0) ∈ A,

|E[Y |X] − E[Y |RX]|1{X∈B(q,r0)} = 0,

Since A is a countable set,

∑

(q,r0)∈A
|E[Y |X] − E[Y |RX]|1{X∈B(q,r0)} = 0,

then,

|E[Y |X] − E[Y |RX]|
∑

(q,r0)∈A
1{X∈B(q,r0)} = 0.

By assumption P(X ∈ F̊ ) = 1, then the right-hand side is almost surely strictly positive, and
thus

E[Y |X] = E[Y |RX] a.s..

Consequently, the intersection of two MDRS is a MDRS. To complete the proof, all the MDRS
with minimal dimension have the same dimension and their intersection is still a MDRS with
minimal dimension. Hence a MDRS with minimal dimension is unique and the CS exists. �

Corollary 2.3. If X has a density such that the Lebesgue measure of the boundary of its support
is equal to 0, then the CS exists.

Proof. Supposed it exist two different DRS with minimal dimension. By equations (1.2) and
(1.3), these DRS are MDRS for the random variables 1Y ∈A and X, for any measurable set A.
Because we can apply Theorem 2.2, it is impossible.

�
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3. Test function methodology and assumptions

In the previous section, we focused on conditions that guarantee the existence of the CS and
the CMS under the respective Assumptions (1.1) and (1.4). Since TF is only concerned about
the CS estimation, we assume from now on that X satisfies the condition of Corollary 2.2. As
it is detailed in the introduction the estimation of the CS raised two kind of conditions. Those
that guarantee a characterization of the CS, and those that permit to cover the entire subspace.
In this section we are concerned about the first one. Moreover, we explain our next results in
a simple way using the standardized covariates. We denote by d the dimension of Ec.

3.1. Order 1 test function. Model (1.1) implies that all the information detained by Z about
Y is carried by PcZ. To find Ec, as pointed out by Li (1991) and explained in many articles
on the subject, a natural idea is to focus on the inverse regression curve E[Z|Y ]. Actually if
(1.1) holds, we can write the inverse regression curve as E[E[Z|PcZ]|Y ]. Clearly, the linearity
condition implies that E[Z|PcZ] ∈ Ec and then E[Z|Y ] is with probability 1 a vector of Ec. To
our knowledge, all the order 1 methods target an estimation of the subspace drawn by E[Z|Y ].
As described in the introduction, TF1 does not rely on this idea but also requires the linearity
condition. Let us have few words about this assumption.

Remark 1. The linearity condition is often equated with an assumption of sphericity on the
distribution of the predictor. This is well known that if Z is spherical then it satisfies the
linearity condition but the converse is false. Actually, linearity condition and sphericity are not
so closely related: in Eaton (1986), it is shown that a random variable Z is spherical if and
only if E[QZ|PZ] = 0 for every rank 1 projection P and Q = I − P . Clearly, at this stage,
the sphericity seems to be a too large restriction to obtain the linearity condition. However
unlike the sphericity, since we do not know Pc the linearity condition could not be checked. An
assumption closely related to the linearity condition is to ask the distribution of Z to be invariant

by the orthogonal symmetry to the space Ec, i.e. Z
d
= (2Pc − I)Z. Then for any measurable

function f ,

E[QcZf(PcZ)] = −E[QcZf(PcZ)],

which implies the linearity condition. Recalling that sphericity means invariance in distribution
by every orthogonal transformation, we have just shown that an invariance in distribution by
a particular one suffices to get the linearity condition. Moreover, the assumption of sphericity
suffers from the fact that if we add to Z some independent components then, the resulting vector
is no longer spherical whereas the linearity condition is still satisfied.

A way to introduce TF1 is to consider some relevant facts of the SIR estimation. As explained
in the introduction, SIR consists in estimating the matrix

MSIR = E
[
ZE[Z|Y ]T

]
.

which column space is included in the CS. To make that possible, a slicing approximation of the

conditional expectation E[Z|Y ] is conducted and it leads to M̃SIR of equation (1.6). Because
ph > 0, it is clear that

(3.1) span(M̃SIR) = span
(
E[Z1{Y ∈I(h)}], h = 1, ...,H

)
,

and it follows that SIR estimates a subspace spanned by the covariances between Z and a family
of Y -measurable functions. The first goal of TF1 is to extend SIR to other families of functions
ΨH by estimating Ec through span (E[Zψ(Y )], ψ ∈ ΨH). Moreover, notice that

(3.2) M̃SIR = E [Z (ψ1(Y ), ..., ψp(Y ))] ,

where ψk(y) =
∑

h αk,h1{y∈I(h)} and αk,h = E[Zk|Y ∈ I(h)]. It follows from (3.2) and (3.1) that

span
(
E[Z1{Y ∈I(h)}], h = 1, ...,H

)
= span (E[Zψk(Y )], k = 1, ..., p) ,

and clearly SIR synthesizes the information contains in a subspace generated by H vectors into
one generated by p vectors. Although each of these spaces are equal, it is not the case for their
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respective estimators. Accordingly, another issue for TF1 is to choose the p functions ψk in
order to minimize the variance of the estimator.

The following theorem is not really new. Yet, it makes a simple link between TF1 and the CS.
An important fact is that Theorem 3.1 provides a vector in Ec for every measurable function.

Theorem 3.1. Assume that Z satisfies Assumption 1 and has a finite first moment. Then, for
every measurable function ψ : R → R such that E[Zψ(Y )] <∞, we have

E[Zψ(Y )] ∈ Ec.

Proof. Thanks to the existence of the CS, E[Zψ(Y )] = E [E[Z|PcZ]ψ(Y )], and thanks to the
linearity condition, QcE[Zψ(Y )] = 0. �

3.2. Order 2 test function. TF2 relies exactly on the same approach than TF1 with the
difference that it involves higher conditional moments of Z knowing Y . Indeed, we are interested
in the space generated by the columns of the matrix E[ZZTψ(Y )] where ψ denote a measurable
function. The same issues are addressed : many functions ψ are considered in a first time, and
then we look for an optimal function.

Let us recall a known fact often presented as the SIR pathology. Consider the regression
model

(3.3) Y = g(Z1, Z2, ε),

where ε ⊥⊥ Z ∈ R
p and g is symmetric with respect to its first coordinate. Assume also that

(Z1, Z2)
d
= (−Z1, Z2). Then thanks to the linearity condition we have QcE[Zψ(Y )] = 0 whereas

the previous assumptions clearly imply that E[Z1ψ(Y )] = E[−Z1ψ(Y )]. Therefore for any
measurable function ψ, we have that E[Zψ(Y )] = E[(0, Z2, 0, ..., 0)Tψ(Y )] and consequently the
first direction (1, 0, ..., 0)T cannot be reached by any method based on the inverse regression
curve. Clearly, TF1 is sensitive to the SIR pathology. Facing this difficulty an idea developed
first in Li (1991) and Cook and Weisberg (1991) is to explore some higher conditional moments
of Z given Y . Thus methods as SIR-II, SAVE, CR, or DR are interested in some properties of
the matrix E[ZZT |Y ]. It is also the case for TF2. Nevertheless we do not follow the same path
specially concerning the assumptions required to explore this second order moment. These kind
of method assume first that Z has an elliptical distribution or at least satisfies the linearity
condition, and secondly that var(Z|PcZ) is a constant, i.e. CCV. The following proposition
shows how strong are the last two assumptions.

Proposition 3.2. Let Z be a random vector of Rp (p ≥ 2) with a finite second order moment.
If Z is spherical and if var(Z|PZ) = const. for some orthogonal projection P , then Z is normal
and conversely.

Proof. This proposition follows from Theorem 4.1.4, p.48 of Bryc (1995). �

Accordingly, assumptions required for order 2 methods are realy close to the assumption of
normality on the distribution of the predictors. TF2 works under weaker conditions. Actually,
the CCV condition is no longer needed and we substitute it by the following assumption.

Assumption 3. (Diagonal conditional variance (DCV))

var(Z|PcZ) = λ∗ωQc a.s.,

with λ∗ω a real random variable.

In Remark 2 we attempt to compare CCV and DCV. To facilitate futures proofs and for a
better understanding of such a condition we provide an equivalent form in the following lemma.

Lemma 3.3. Assume that Z has a finite second moment. Then the following assertions are
equivalent,

(1) for any orthogonal transformation H such that HPc = Pc, we have

var(Z|PcZ) = var(HZ|PcZ),
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(2) var(Z|PcZ) = λ∗ωQc with λ
∗
ω a real random variable.

Moreover, under the linearity condition necessarily λ∗ω = 1
p−dE

[
‖QcZ‖2|PcZ

]
.

Proof. Let us begin by the easiest way : (2) ⇒ (1). Let H be any orthonormal matrix as
described in (1). Because HQcH

T = I −HPcH
T = Qc, by multiplying (2) on the left side by

H and on the right side by HT , we find that

var(HZ|PcZ) = λ∗ωQc = var(Z|PcZ).

The other way is based on a good choice of the matrix H. Let γ be a unit vector of E⊥
c , and

define H = I − 2γγT . Clearly, H is symmetric and satisfies to the requirement of (1). So that,
we have the equation

var(Z|PcZ) = (I − 2γγT ) var(Z|PcZ)(I − 2γγT ),

developing the right hand side, it follows that

var(Z|PcZ)γγT = 2 var(γTZ|PcZ)γγT − γγT var(Z|PcZ),

and finally, multiplying by γ on the right, we find

(3.4) var(Z|PcZ)γ = var(γTZ|PcZ)γ.

Therefore, any γ ∈ E⊥
c is an eigenvector of var(Z|PcZ) and thus, Ec is an eigenspace of this

matrix. Denote by λ∗ω the eigenvalue associated to E⊥
c . Since the columns of Qc are vectors of

E⊥
c , we have

var(Z|PcZ)Qc = λ∗ωQc,

which implies that

var(Z|PcZ) = var(QcZ|PcZ) = λ∗ωQc,

and (1) ⇒ (2) is completed.
The value of λ∗ω can be given by equation (3.4). Clearly, under the linearity condition we

have for every unit vector γ ∈ E⊥
c ,

λ∗ω = var(γTZ|PcZ) = E[(γTZ)2|PcZ],

and hence it suffices to take γ = 1√
p−d

∑p−d
k=1 γk where (γ1, ..., γp−d) is an orthonormal basis of

E⊥
c , to obtain

λ∗ω =
1

p− d
E
[
‖QcZ‖2|PcZ

]
.

�

Remark 2. Here we compare CCV and DCV. Each existing method being based on close but
sometimes different assumptions, it is difficult to build a complete sketch of the assumption sets
used. Let us have a look to the interaction with the spherical assumption. First, Proposition
3.2 informs us that coupling the CCV condition and the spherical assumption is equivalent to
normality. But in our case, the sphericity implies DCV. Indeed, if Z is spherical, then its
distribution is invariant by any orthogonal transformation, and we have for any measurable
function f and for any orthogonal matrix H,

E[ZZTf(PcZ)] = E[HZZTHT f(PcHZ)].

In particular, the previous equation is true for any H which leaves invariant vectors of Ec and
we obtain (1) of Lemma 3.3 which is equivalent to DCV. Thus, we have just proved that the
spherical assumption implies DCV.

Theorem 3.4 is the analogue of Theorem 3.1 for TF2.
8



Theorem 3.4. Define the matrix Mψ = E[ZZTψ(Y )]. Assume that Z satisfies Assumptions 1
and 3 and has a finite second moment. Then, for every measurable function ψ : R → R such
that E[ZZTψ(Y )] <∞, we have

span(Mψ − λ∗ψI) ⊂ Ec,

with λ∗ψ = 1
p−dE

[
‖QcZ‖2ψ(Y )

]
.

Proof. To make a complete proof, we need to show that all the vectors in E⊥
c are eigenvectors

of the symmetric matrix Mψ − λ∗ψI associated to the eigenvalue 0. The existence of the CS
ensures that

Mψ − λ∗ψI = E[(E[ZZT |PcZ] − λ∗ωI)ψ(Y )],

besides, thanks to the linearity condition and DCV, we have

E[ZZT |PcZ] = λ∗ωQc + PcZZ
TPc.

Thus, for any γ ∈ E⊥
c we have (Mψ − λ∗ψI)γ = 0 and the proof is completed. �

In practice, because λ∗ψ is unknown, it seems difficult to use Theorem 3.4. Nevertheless, we do
not really need to know this particular eigenvalue because a consequence of Theorem 3.4 is that
E⊥
c is an eigenspace of the matrix Mψ associated to the eigenvalue equal to λ∗ψ. Therefore, if the

dimension of E⊥
c is large, then the spectrum of Mψ would have an accumulation of eigenvalues

equal to λ∗ψ. What we expect is that the other eigenvalues will be different from λ∗ψ. If it is
true, all the directions of Ec could be recovered and this eigenvalue problem is the topic of the
next section.

4. Covering the central subspace

In this section, we find that a way to obtain an exhaustive characterization of the CS for TF1
and TF2 is to consider many ψ function. As usual, we begin with TF1 and conclude by TF2.

4.1. Order 1 test function. As a consequence of Theorem 3.1, spaces generated by (E[Zψ1], ...,E[Zψk])
are included in Ec. Our goal is to obtain the converse inclusion. Because TF1 is an extending of
SIR, this one has a central place in the following argumentation. We start by giving a necessary
and sufficient condition for covering the entire CS with SIR. Then under the same condition we
extend SIR to a new class of methods.

Assumption 4. For every nonzero vector η ∈ Ec, E[ηTZ|Y ] has a nonzero variance.

Equation (3.3) provides a regression model for which a direction of Ec is almost surely or-
thogonal to E[Z|Y ]. It is clear that this kind of situation is no longer allowed by the previous
assumption. However, TF2 is designed to handle such pathological cases.

Lemma 4.1. If Z satisfies Assumption 1 and has a finite second moment, then Assumption 4
implies that span(MSIR) = Ec and conversely.

Proof. Under the linearity condition, span(MSIR) = Ec is equivalent to ηTMSIR η > 0 for every
η ∈ Ec, which is another formulation of Assumption (4). �

We now extend Lemma 4.1 to TF1, the aim is to provide the same results replacing the
conditional expectation E[Z|Y ] in MSIR by some known family of functions. To state the
following theorem, we introduce the function space L1 (θ(y)µ(dy)) defined as

L1 (θ(y)µ(dy)) = {u : R → R;

∫

R

|u(y)|θ(y)µ(dy) < +∞},

where θ : R → R+ and µ a real measure.
9



Theorem 4.2. Assume that Z and Y satisfy Assumptions 1 and 4. Assume also that Z has a
finite second moment. If Ψ is a total countable family in the space L1(E[‖Z‖|Y = y]PY (dy)),
then we can extract a finite subset ΨH of Ψ such that

span (E[Zψ(Y )], ψ ∈ ΨH) = Ec.

Proof. Lemma 4.1 provides that {E[ZE[Zk|Y ]], k = 1, ..., p} is a generator of Ec. First, let
us show that any vector of this family can be approximated by E[Zφ(Y )], where φ is a linear
combination of functions in Ψ. Let ε > 0 and k ∈ {1, ..., p}. Since Ψ is a total family in
L1(E[‖Z‖|Y = y]PY (dy)), there exists φk a finite linear combination of functions in Ψ such that

E [E[‖Z‖|Y ] |φk(Y ) − E[Zk|Y ]|] ≤ ε,

besides, we have

‖E[Zφk(Y )] − E[ZE[Zk|Y ]]‖ = ‖ E [E[Z|Y ] (φk(Y ) − E[Zk|Y ])]‖
≤ E [E[‖Z‖ |Y ] |φk(Y ) − E[Zk|Y ]| ] ,

and therefore,

(4.1) ‖E[Zφk(Y )] − E[ZE[Zk|Y ]]‖ ≤ ε.

Here an important point is that E[Zφk(Y )] ∈ Ec, it implies that

(4.2) span (E[Zφk(Y )], k = 1, ..., p) ⊂ span(MSIR),

Moreover, (4.1) and the continuity of the determinant involve that the rank of the set of vectors
E[Zφk(Y )] is equal to d if ε is small enough. Then, instead of an inclusion (4.2) become an
equality and we complete the proof by recalling that each φk is a linear combination of a finite
number of functions in Ψ. �

Theorem 4.2 assumes that the family is total. Some mild conditions can be found in Coudène
(2002). Let us recall their main result.

Theorem. (Y. Coudène) Let p ∈ [0,∞[, µ a borelian probability measure on [0, 1], and fn :
[0, 1] → R a family of bounded measurable functions that separates the points :

∀x, y ∈ [0, 1], x 6= y, ∃n ∈ N such that fn(x) 6= fn(y).

Then the algebra spanned by the functions fn and the constants is dense in Lp([0, 1], µ).

Remark 3. Accordingly, we can apply Theorem 4.2 with any family of functions that separates
the points, for example polynomials, complex exponentials or indicator functions. To make
possible a simple use of this theorem we need to recall this result. If u = (u1, ..., uH ) is a R

p

vector family, then span(uuT ) = span(u). Thus, if we denote by ψ1, ..., ψH some elements of a
family that separates the points, then the CS can be obtained by making an eigendecomposition
of the order 1 test function matrix associated to the functions ψ1, ..., ψH defined as

MTF1 =

H∑

h=1

E[Zψh(Y )]E[Zψh(Y )]T .

Especially, the eigenvectors associated to a nonzero eigenvalue of any order 1 test function
matrix span the CS. Moreover, as pointed out in Cook and Ni (2005), for H large enough

span(M̃SIR) = span(MSIR). A proof of this result can be obtained by Theorem 4.2. By applying
it with the indicator family of functions, it gives that

span
(
E[Z1{Y ∈I(h)}], h = 1, ...,H

)
= span(M̃SIR) = span(MSIR) = Ec,

if H is sufficiently large. Also, SIR can be understood as a particular TF1. Expression (1.6)
implies that

M̃SIR =

H∑

h=1

1

ph
E[Z1{Y ∈I(h)}]E[Z1{Y ∈I(h)}]T ,

10



hence, SIR is equivalent to TF1 realized with the weighted family of indicator functions
(
1{Y ∈I(h)}√

ph

)
.

More generally for any family of functions, the space spanned by MTF1 is not change by a
weighting with positive weight. Nevertheless it is no longer the case for the estimated space, and
intuitively it seems that such a weighting could influence the convergence rate. The choice of the
weights for the family of indicators is debated is section 5.1 thanks to a variance minimization.

4.2. Order 2 test function. As described before, an important tool in this section is the
eigendecomposition of the matrix Mψ, therefore we try to be more comprehensive in introducing
the following notation. Let λψ and λY be the functions R

p → R respectively defined by

λψ(η) = E[(ηTZ)2ψ(Y )] and λY (η) = E[(ηTZ)2|Y ],

and notice that if η is a unit eigenvector of Mψ (resp. E[ZZT |Y ]), then λψ(η) (resp. λY (η)) is

equal to the eigenvalue of the matrix Mψ (resp. E[ZZT |Y ]) associated to η. However, recalling

that E⊥
c is an eigenspace of Mψ and E[ZZT |Y ], the functions λψ and λY are both constant on

the centered spheres of E⊥
c . Their respective values on the unit sphere of E⊥

c are noted λ∗ψ and
λ∗Y .

Definition 1. Let ψ be a measurable function. We call ψ-space and note Eψ the space

Eψ = span(Mψ − λ∗ψ) = span
(
η ∈ B(0, 1) ⊂ R

p, Mψη = λ∗ψη
)⊥
.

Thanks to Theorem 3.4 we have already proved that under Assumption 1 and 3 any ψ-space
is included in Ec. However, nothing guarantees the existence of a ψ-space equal to Ec. We
follow the same idea than for the order 1 method, i.e. we consider some transformations of Y
belonging to a dense family. Nevertheless, the results are a little different because we provide
the existence of a ψ-space equal to Ec. A unique additional assumption is needed.

Assumption 5.

∀η ∈ Ec, ‖η‖ = 1 P

(
E
[
(ηTZ)2|Y

]
= E

[ ‖QcZ‖2
p− d

∣∣∣∣Y
])

< 1.

Remark 4. Assumption 5 takes the same approach as Li and Wang (2007). As it is high-
lighted in Remark 2, our set of assumptions is weaker than their beacause DCV has replaced
CCV. To match their context, assume that CCV condition is satisfied. Then clearly, Assump-
tion 5 becomes “E[(ηTZ)2|Y ] is nondegenerate”, i.e. is not a.s. a constant. Otherwise, TF1
allows an exhaustive estimation of the CS provided that E[(ηTZ)|Y ] is nondegenerate. Thus the
exhaustiveness condition of TF is the union of the two previous and it gives

E[(ηTZ)2|Y ] or E[(ηTZ)|Y ] is nondegenerate,

which is the same than the one provided for DR in Li and Wang (2007). Accordingly, TF evolved
in a more general context given by DCV but the assumptions ensuring its exhaustiveness are as
weak as the one in the literature.

In the proof of the following theorem we will need Lemma .1 and Proposition .2 which are
stated and demonstrated in the appendix.

Theorem 4.3. Assume that Z and Y satisfy Assumptions 1, 3 and 5. Assume also that Z
has a finite second moment, then if Ψ is a total countable family in the space L1(E[‖Z‖2 |Y =
y]PY (dy)), there exists ψ a finite linear combination of functions in Ψ such that

Eψ = Ec.

Proof. Let Ψ be a total countable family in L1(E[‖Z‖2 |Y = y]PY (dy)). By Theorem 3.4,
E⊥
c ⊂ E⊥

ψ for any ψ. Then it suffices to show that there exists ψ a finite linear combination of

functions in Ψ such that dim(Eψ) = rank(Mψ − λ∗ψI) = d. In the basis (P1, P2), where P1 and

P2 are respectively basis of Ec and E⊥
c , the matrix Mψ − λ∗ψI can be written as

(
Nψ 0
0 0

)
,
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with Nψ = P T1 (Mψ − λ∗ψ)P1. Notice that the space

M = {Nψ, ψ =
∑

h

αhψh},

is a linear subspace of the symmetric matrices with dimension d × d. In the basis (P1, P2),
Assumption (5) becomes

∀η ∈ R
d, P(ηTNY η = 0) < 1,

with NY = P T1 (MY − λ∗Y )P1. Clearly, this implies that

(4.3) ∀η ∈ R
d, ∃ψ, ηTNψη 6= 0,

and because Ψ is a total family in L1(E[‖Z‖2 |Y = y]PY (dy)), the function ψ in the previous
equation could be a finite linear combination of functions in Ψ and then Nψ ∈ M. Thus the

proof consists in showing that given a linear subspace M ⊂ R
d×d of symmetric matrices, if (4.3)

is checked, then there exists an invertible matrix in M. The contrapositive is the statement of
Proposition .2. �

Theorem 4.3 states the existence of a ψ-space equal to Ec, yet it does not provide an explicit
form of such a ψ. Hence, we set out the following corollary.

Corollary 4.4. Assume that Z and Y satisfy Assumptions 1, 3 and 5. Assume also that Z
has a finite second moment then, if Ψ is a total countable family in the space L1(E[‖Z‖2 |Y =
y]PY (dy)), we have

⊕
ΨH
Eψ = Ec,

where ΨH is a finite subset of Ψ.

Proof. From Theorem 4.3 we have Eψ = Ec where ψ =
∑H

h=1 αhψh. Hence, we need to show
that Eψ ⊂ ⊕Eψh since the other inclusion is trivial. Suppose that it exists η ∈ Eψ with norm 1
such that η ⊥ ⊕Eψh . Then by definition, for every h = 1, ...,H,

Mψhη = λ∗ψhη,

and we obtain

Mψη =
H∑

h=1

αhλ
∗
ψh
η = λ∗ψη.

which is impossible because η ∈ Eψ. �

Corollary 4.4 is the counterpart of Theorem 4.2 for TF2. Nevertheless, it seems difficult
to use it in practice because it requires an eigendecomposition of a large number of matrices.
Besides, Theorem 4.3 is the cornerstone of TF2. Using the theorem quoted in Remark 3, we
provide order 2 methods based on families of functions that separate the points. For each such
family, it exists a function ψ such that the associated ψ-space is equal to the CS.

5. Choice of the test function. Asymptotic variance minimization

This section is divided into two paragraphs. First, we study the case of the family of indicator
functions for TF1 and secondly, we are interested in finding the best ψ for TF2. Clearly, for
the order 1 method we need at least d functions to recover the CS whereas for the order 2, as
we showed before, we can expect to find a function ψ such that Mψ covers all the directions of
the CS. This is the reason why we fix the class of function in the first paragraph and we search
a unique function in the second paragraph.

12



5.1. Order 1 test function: optimality among the indicators. In this section, we develop
a test function plug-in method based on the minimization of the variance estimation in the case
of the family of indicator functions for ΨH . Theorem 4.2 and Remark 3 imply that the whole
subspace Ec can be covered by the family of vectors {E[Z1{Y ∈I(h)}], h = 1, ...,H} for a suitable
partition I(h). Actually, it is possible to extract d orthogonal vectors living in the space spanned
by this family, and then it provides us a basis of the CS. This procedure is realized by SIR.
Nevertheless, the issue here is somewhat more complicated, we want to find d orthogonal vectors
that have the minimal asymptotic mean squared error for the estimation of the projection Pc.
We define

(5.1) MSE = E

[
‖Pc − P̂n‖2

]
,

where ‖ · ‖ stands for the Frobenius norm and P̂n is derived from the family of vector η̂ =
(η̂1, ..., η̂d) defined as

η̂k =
1

n

n∑

i=1

Ziψk(Yi) with ψk(Y ) = (1{Y ∈I(1)}, ...,1{Y ∈I(H)})αk = 1
T
Y αk,

where αk ∈ R
H . Besides, we introduce η = (η1, ..., ηd) with ηk = E[Zψk(Y )]. Consequently,

we aim at minimizing MSE according to the family (ψk)1≤k≤d, or equivalently according to the

matrix α = (α1, ..., αd) ∈ R
H×d. Moreover, since we have

MSE = E[tr(P − P̂n)2]

= d+ E[d̂− 2 tr((I −Qc)P̂n)]

= E[d− d̂] + 2E[tr(QcP̂n)],(5.2)

and we suppose that d is known, the minimization of MSE results only on the minimization of
the second term in the previous equality. Hence, this naturally leads us to the minimization
problem

min
α

lim
n→∞

nE[tr(QcP̂n)],

under the constraint of orthogonality of the family (ηk)1≤k≤d. For a more comprehensive ap-
proach, we choose to minimize the expectation of the limit in distribution, instead of the limit

of the expectation when n goes to infinity, of the sequence n tr(QcP̂n). To set out clearly the
next proposition, let us introduce some notations. Define the matrices

C = (C1, ..., CH ) with Ch = E[Z1{Y ∈I(h)}],

D = diag dh with dh =
(
E[‖QcZ‖21{Y ∈I(h)}]

)
,

and

G = D− 1
2CTCD− 1

2 .

The matrix G is the Gram matrix of the vector family (Ch/
√
dh)1≤h≤H , Theorem 4.2 and

Remark 3 ensure that its rank is equal to d. Besides, G is diagonalisable and so we define
P = (P1P2) ∈ R

p×(d+(p−d)) such that

P TGP =

(
D0 0
0 0

)
,

where D0 ∈ R
d×d.

Proposition 5.1. The random variable n tr(QcPn) has a limit in law Wα as n → ∞. The
minimization problem

(5.3) min
α

E [Wα] u.c. ηT η = Id,

has a unique solution, up to orthogonal transformations, given by

α = D− 1
2P1D

− 1
2

0 .
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Proof. We first calculate the expectation of the limit in law of the sequence n tr(QcP̂n) and then
we solve the optimization problem. Since

n tr(QcP̂n) = n tr(η̂TQcη̂ (η̂T η̂)−1)

= tr(
√
n(η̂T − ηT )Qc

√
n(η̂ − η)(η̂T η̂)−1),

Slutsky’s theorem and the continuity of the operator tr(·) provides that n tr(QcP̂n) converges
to tr(δTQcδ) in distribution, where δ ∈ R

p×d is the limit in law of the sequence
√
n(η̂ − η), i.e.

a normal vector with mean 0. Thus it remains to calculate the expectation of this limit, notice
that

E [Wα] = E
[
tr(δTQcδ)

]
=

d∑

k=1

tr
(
QcE[δkδ

T
k ]
)
,

where δk stands for the limit in law of the sequence
√
n(η̂k − ηk). Finally, since its variance is

equal to var(Zψk(Y )) and using the linearity condition, we have

(5.4) E [Wα] =
d∑

k=1

E
[
‖QcZ‖2ψk(Y )2

]
.

Now let us reformulate the minimization problem in terms of matrix α. First, from (5.4) and
using that the I(h) are pairwise disjoint, we have

(5.5) E [Wα] =

d∑

k=1

αTk E[‖QcZ‖21Y 1TY ]αk = tr(αTDα),

and also,

(5.6) ηT η = αTCTCα = (D
1
2α)TGD

1
2α.

From (5.5) and (5.6) we set out the equivalent minimization problem

min
α

tr
(
αTDα

)
u.c. (D

1
2α)TGD

1
2α = Id,

then, from the variable change U = P TD
1
2α we derive

min
U

tr(UTU) u.c. UT
(
D0 0
0 0

)
U = Id.

By writing UT = (UT1 , U
T
2 ) we notice that there is no constraint on U2, which implies that

U2 = 0. Consequently, it remains to solve

(5.7) min
U1

tr(U1U
T
1 ) u.c. U1U

T
1 = D0,

where U1 ∈ R
d×d. Clearly, in (5.7) the quantity to minimize is fixed by the constraint. Then, a

solution of it is given by U1 = D
− 1

2
0 H where H is any orthogonal matrix. Hence, the solution

of (5.3) is

α = D− 1
2PU = D− 1

2P1D
− 1

2
0 H,

where H is any orthogonal matrix. �

To make a link with other methods and facilitate the programming of TF1, let us explain
the solution in another way. Instead of explaining the solution in terms of weight we put on
the indicator functions, we explain it in terms of vectors ηk associated to these weights. First
notice that, with the chosen notation

D− 1
2CTCD− 1

2P1 = P1D0,

multiplying by CD− 1
2 on the left and by D

− 1
2

0 on the right, it gives

CD−1CTCD− 1
2P1D

− 1
2

0 = CD− 1
2P1D

− 1
2

0 D0.
14



Defining an order 1 test function matrix M̃TF1 = CD−1CT , and noting that η = CD− 1
2P1D

− 1
2

0 ,
the previous equation is equivalent to

M̃TF1η = ηD0.

Thus, since M̃TF1 has the same rank as G, we have showed that the vectors ηk derived from the

optimal weight family, are the eigenvectors of M̃TF1 associated to nonzero eigenvalues. Besides,
it is easy to verify that the previous development is still true when each quantity is replaced by
its estimate. Therefore in practice, we have to make the eigendecomposition of an estimator of

the matrix M̃TF1.
As it is stated in the introduction of section 3.1, the SIR estimator is obtained thanks to an

eigendecomposition of the matrix M̃SIR, while our matrix of interest here is M̃TF1. To compare
both methods, we write there expressions as follows

(5.8) M̃SIR =

H∑

h=1

ChC
T
h

ph
, M̃TF1 =

H∑

h=1

ChC
T
h

dh
.

As we noticed before, SIR is really closed to the order one test function method proposed
here, both methods try to obtain the information contains in the slices through the Ch. This
information is collected more rapidly thanks to TF1 because it minimizes the criterion (5.1),
and as a consequence the convergence rate would be better. This idea is supported by the

expression of M̃TF1 in which bad slices are less weighted. When H → ∞, M̃SIR → MSIR and

clearly M̃TF1 converge to

MTF1 = E

[
Z

E[Z|Y ]

E[‖QcZ‖2|Y ]

]
.

As a consequence of (5.8), the TF1 variance minimization with indicators requires the knowledge
of Qc. Therefore we set out a plug-in method to estimate Qc.

TF1 Algorithm:

(0) Standardization of X into Z. Initialize Q̂c = I.
(1) Compute

d̂h =
1

n

n∑

i=1

‖Q̂cZi‖21{Yi∈I(h)}, Ĉh =
1

n

n∑

i=1

Zi1{Yi∈I(h)}

and M̂ =

H∑

h=1

ĈhĈ
T
h

d̂h
.

(2) Extract η̂ = (η̂1, ..., η̂d): the d eigenvectors of M̂ with largest eigenvalues.

(3) Q̂c = I − η̂η̂T .

Steps 1 to 3 are repeated until convergence is achieved and then η̂ is the estimated basis of the

standardized CS derived from TF1. The estimated directions of the CS are Σ̂− 1
2 η̂. At the end

of the paper, this method is tested and compared to SIR using simulations.

5.2. Order 2 test function: Optimality among the measurable functions. Here we
have a different approach than for TF1, we aim at finding the optimal ψ such that the variance
error is minimal. Recall that Mψ = E[ZZTψ(Y )], we have already proved that the eigenvectors
of this matrix can be decomposed into two blocks : the one associated to the eigenvalue λ∗ψ
and the other which necessarily belongs to Ec. Therefore, P̂n is derived from the eigenvectors

associated to the eigenvalues different from λ∗ψ, and so we decided to express P̂n in the following
way. Theorem 4.3 guarantees the existence of ψ such that Eψ = Ec. Based on this result,
suppose that we are able to differentiate each eigenvalue associated to an eigenvector in Ec
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from λ∗ψ. Then we can find a contour C which encloses the eigenvalues different from λ∗ψ, and

finally we can write Pc and its estimator P̂n as

Pc =

∮

C
(Iz −Mψ)−1dz and P̂n =

∮

C
(Iz − M̂ψ)−1dz,

where M̂ψ = 1
n

∑n
i=1 ZiZ

T
i ψ(Yi). As we did for TF1, we aim at minimizing the MSE through

the quantity E[tr(QcP̂n)] (see equation (5.2)). We first calculate the limit in law of the ran-

dom variable n tr(QcP̂n), as n goes to infinity and then we derive its expectation. The next
proposition is dedicated to this calculus.

Proposition 5.2. Let Wψ be the limit in law of the random variable n tr(QcP̂n), then

E[Wψ] = tr
(
E
[
ZZT‖QcZ‖2ψ(Y )2

]
Pc(PcMψ − Iλ∗ψ)−2

)
.

Proof. We have

QcP̂n = Qc(P̂n − Pc)

= Qc

∮

C
(Iz − M̂ψ)−1 − (Iz −Mψ)−1dz

= Qc

∮

C
(Iz − M̂ψ)−1(Mψ − M̂ψ)(Iz −Mψ)−1dz,

and then, we derive

(5.9) QcP̂n = Qc

∮

C
(Iz −Mψ)−1(Mψ − M̂ψ)(Iz −Mψ)−1dz

+Qc

∮

C
(Iz − M̂ψ)−1(Mψ − M̂ψ)(Iz −Mψ)−1(Mψ − M̂ψ)(Iz −Mψ)−1dz.

Consider the trace of the first term of equation (5.9), since Qc and (Iz −Mψ)−1 commute we
have

tr

(
Qc

∮

C
(Iz −Mψ)−1(Mψ − M̂ψ)(Iz −Mψ)−1dz

)
=

tr

(
(Mψ − M̂ψ)

∮

C
Qc(Iz −Mψ)−2dz

)
.

Besides, it is clear that

(5.10) Qc(Iz −Mψ)−1 =
Qc

(z − λ∗ψ)
,

and recalling that λ∗ψ is outside C, we have
∮
C

1
(z−λ∗

ψ
)−2 dz = 0 and then (5.9) implies that

tr
(
QcP̂n

)
= tr

(
Qc

∮

C
(Iz − M̂ψ)−1(Mψ − M̂ψ)(Iz −Mψ)−1

(Mψ − M̂ψ)(Iz −Mψ)−1dz

)
.

Denote by ∆ the limit in law of
√
n(Mψ − M̂ψ), since M̂ goes to M in probability, Slutsky’s

Theorem implies the convergence n tr
(
QcP̂n

)
d−→Wψ with

Wψ = tr

(
Qc

∮

C
(Iz −Mψ)−1∆(Iz −Mψ)−1∆(Iz −Mψ)−1dz

)

Here we use equation (5.10) to derive

(5.11) Wψ = tr

(
Qc∆

∮

C

(Iz −Mψ)−1

(z − λ∗ψ)2
dz∆Qc

)
,
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and the integral inside (5.11) can be calculated the following way. Splitting it into two terms
and using (5.10), we obtain

∮

C

(Iz −Mψ)−1

(z − λ∗ψ)2
dz =

∮

C

Pc(Iz −Mψ)−1

(z − λ∗ψ)2
dz +

∮

C

Qc(Iz −Mψ)−1

(z − λ∗ψ)2
dz

=

∮

C

Pc(Iz −Mψ)−1

(z − λ∗ψ)2
dz +Qc

∮

C

1

(z − λ∗ψ)3
dz,

the last term in the previous equation is clearly equal to 0. Concerning the first term, since for
all k = 1, ..., d, we have

Pc

∮

C

(Iz −Mψ)−1

(z − λ∗ψ)2
dzηk = ηk

∮

C

(z − λψ(ηk))
−1

(z − λ∗ψ)2
dz

=
ηk

(λψ(ηk) − λ∗ψ)2

= Pc(PcMψ − Iλ∗ψ)−2ηk,

and since all the vectors in E⊥
c belong to the kernel of this matrix, we get

Pc

∮

C

Iz −Mψ)−1

(z − λ∗ψ)2
dz = Pc(PcMψ − Iλ∗ψ)−2.

Injecting it in (5.11), this leads us to

Wψ = tr
(
∆Qc∆Pc(PcMψ − Iλ∗ψ)−2

)
,

and it remains to calculate its expectation. The linearity condition implies that QcMψPc = 0,
and we have

E[∆Qc∆Pc] = − lim
n→∞

nE
[
(Mψ − M̂ψ)QcM̂ψPc

]

= lim
n→∞

nE
[
M̂ψQcM̂ψPc

]

= E[ZZTPc‖QcZ‖2ψ(Y )2],

which complete the proof of the proposition. �

Proposition 5.2 provides us the expression of the quantity to minimize with respect to the
function ψ. The next lines are attached to find ψ such that E[Wψ] is minimal. This informal
calculation leads us to a fixed point equation whose solution is expected to be the minimum of
E[Wψ]. Thanks to proposition 5.2 the quantity to minimize can be written as

E[Wψ] = tr(E[ZZTPc‖QcZ‖2ψ(Y )2](PcMψ − Iλ∗ψ)−2),

or with the notations A = ZZTPc‖QcZ‖2 and B = PcZZ
T − ‖QcZ‖2

p−d I,

E[Wψ] = tr
(
E[Aψ(Y )2] E[Bψ(Y )]−2

)
.

Thus we are looking for ψ such that for every bounded measurable function δ,

∂

∂t
E[Wψ+tδ ]

∣∣∣∣
t=0

= 0,

or equivalently,

E

[
2 tr

(
AδψE[Bψ]−2

)

− tr
(
E[Aψ2]E[Bψ]−1{BδE[Bψ]−1 + E[Bψ]−1Bδ}E[Bψ]−1

) ]
= 0,
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where δ and ψ stand for δ(Y ) and ψ(Y ). Define the functions A(Y ) = E[A|Y ] and B(Y ) =
E[B|Y ]. Since the previous equation should be true for any Y -measurable random variable
δ(Y ), we derive

2 tr
(
A(Y )ψ(Y )E[Bψ]−2

)

− tr
(
E[Aψ2]E[Bψ]−1{B(Y )E[Bψ]−1 + E[Bψ]−1B(Y )}E[Bψ]−1

)
= 0 a.s.,

which leads to the implicit equation

(5.12) ψ(y) =
tr
(
E[Bψ]−1

E[Aψ2]E[Bψ]−1{E[Bψ]−1B(y) +B(y)E[Bψ]−1}
)

2 tr(A(y)E[Bψ]−2)
.

This solution describes the optimal ψ function to perform TF2. To find this ψ, we propose
an iteration of the point fixed equation (5.12). Before we state a more accurate algorithm to
compute TF2, we set out a new way to express (5.12). As we highlighted at the beginning of
the section, based on Theorem 4.3 we suppose that ψ is such that we can reach the eigenvectors
ηψ = (η1, ..., ηd) ∈ R

p×d of Mψ that are in Ec. Therefore we can write Pc = ηψη
T
ψ and by

definition of ηψ, we have

(5.13) E[Bψ(Y )]−1ηψ = ηψDψ,

where Dψ = diagk(λψ(ηk) − λ∗ψ)−1. Besides, a simple use of the linearity condition provides

that E[ηTZZT |Y ] = E[ηTZZTPc|Y ] for every η ∈ Ec. Consequently, we derive that

(5.14) ηTψB(y) = ηTψB(y)Pc.

Then with the introduced notations and using (5.13) and (5.14), we obtain this other formulation
of (5.12),

ψ(y) =
tr
(
DψAψDψ{DψB̃(y) + B̃(y)Dψ}

)

2 tr
(
Ã(y)D2

ψ

) ,

where

Aψ = E
[
ηTψZZ

Tηψ‖QcZ‖2ψ(Y )2
]
, Ã(Y ) = ηTψA(y)ηψ , B̃(y) = ηTψB(y)ηψ,

are d × d matrices. Using the symmetry of the matrices Aψ and B̃(y), and some well-known
properties of the trace, we obtain

(5.15) ψ(y) =
tr
(
DψAψDψB̃(y)Dψ

)

tr
(
Ã(y)D2

ψ

) .

Since Ã and B̃ are unknown function, we use a slicing approximation and it gives

(5.16) ψ(y) =
∑

h

tr
(
DψAψDψB̃hDψ

)

tr
(
ÃhD

2
ψ

) 1{y∈I(h)},

where Ãh = E[Ã(Y )1{y∈I(h)}] and B̃h = E[B̃(Y )1{y∈I(h)}]. Now we set out the TF2 method
based on the family of indicator functions. In practice, the fixed point equation (5.15) gives
better results than (5.12), therefore we use (5.16) to compute TF2. We propose the following
algorithm that describes the iteration needed to implement our method. To be more comprehen-
sive, we based the algorithm on the weights αh instead of the function ψh(y) =

∑
h αh1{y∈I(h)}.

Besides Â
ψ̂

and D̂
ψ̂

are noted Â and D̂, and we will need

Mh = E[ZZT1{Y ∈I(h)}] and λh = E

[‖QcZ‖2
p− d

1{Y ∈I(h)}

]
.

Because λh is the eigenvalue associated to the space E⊥
c , we estimate it the following way,

supposing that dim(Ec) < dim(E⊥
c ).
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TF2 Algorithm:

(0) Each I(h) contains n
H

observations. Compute

M̂h =
1

n

n∑

i=1

ZiZ
T
i 1{Yi∈I(h)}, λ̂h = median(λ ∈ spectrum(M̂h)),

and initialize α̂h ∼ U [0, 1] for every h = 1, ...,H.

(1) Identify the eigenvectors η̂ = (η̂1, ..., η̂d) ∈ Ec of M̂ =
∑

h α̂hM̂h.

(2) Derive D̂ = diagk(λ̂ψ̂(η̂k) − λ̂∗
ψ̂

)−1, Q̂c = I − η̂η̂T and

Â =
∑

h

α̂hη̂
T Âhη̂, with Âh =

1

n

n∑

i=1

ZiZ
T
i ‖Q̂cZi‖21{Yi∈I(h)}.

(3) Compute

α̂h =
tr
(
D̂2ÂD̂ (η̂T M̂hη̂ − λ̂hI)

)

tr
(
D̂2 η̂T Âhη̂

) .

Repeat the last three steps until the convergence is achieved. The resulting function ψ̂ is an
estimate of the solution of the fixed point equation. Finaly the set of vectors η̂ form an estimated

basis of the standardized CS. The space generated by Σ̂− 1
2 η̂ provides an estimation of the CS

by TF2.

Remark 5. A crucial point need to deserve our attention. It concerns the way we identify the
eigenvectors of Mψ that belong to Ec and a fortiori their associated eigenvalues. It intervenes
at each iteration of our algorithm to estimate Dψ and ηψ. The theoretical background of the
TF2 method advocates for an identification process based on the eigenvalues more than the
eigenvectors. Indeed, as it is pointed out at the end of section 3 the eigenvalues of Mψ associated

to eigenvectors of E⊥
c are all equal. We tried to base an algorithm on this fact but it appeared

that it was not robust to small samples. So that we choose to develop another one which takes
into account the nature of the eigenvectors of Mψ. Let η be an eigenvector of Mψ, we based a

new identification process on the dependence between (ηTZ) and Y . We propose to compare the
Pearson’s chi-square statistic of the test of independence between (ηTZ) and Y . Therefore, for
each eigenvector we divide the range of (ηTZ) into H slices noted J(h) and we calculate

(5.17) S(η) =
∑

h,h′

(
phh′ − phh′

h phh′
h′
)2

phh′
h phh′

h′

where ph,h′ = 1
n

∑n
i=1 1{Yi∈I(h)}1{(ηTZi)∈J(h′)}. Then the d eigenvectors of Mψ associated to

the largest values of S are identified as being in Ec. As a consequence, at step 2 of the TF2

Algorithm, the λ̂
ψ̂

(η̂k)’s are the eigenvalues of M̂ associated to the eigenvectors η̂k’s with the d

largest values of S, λ∗
ψ̂
is the median over the other eigenvalues. In the next section dedicated

to simulations, criterion (5.17) has been used to compute TF2.

6. Simulations

In this section, we first compare the performance of the order 1 test function variance mini-
mization with the performance of the SIR estimator. Then, we compare some order 2 methods
through pathological models for order 1 methods (see example 3.3). To measure the perfor-
mance of a method we evaluate the error between the CS and its estimate with the following
distance: for two subspace E1 and E2, if P1 and P2 are their respective orthogonal projection,
the distance between E1 and E2 is

(6.1) Dist(E1, E2) = ‖P1 − P2‖2,
where ‖ · ‖ stands for the Frobenius norm.
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Figure 1. Comparison of TF1 and SIR when X has a spherical distribution.

Besides, since TF1 and TF2 are performed with the family of indicator functions, we have to
discretize the response into H slices. The slices are built in such a way that each slice contains
the same number of observations.

6.1. Order 1 test function. Let us consider the case where the predictors have a gaussian dis-
tribution. Clearly PcZ and QcZ are two independent random vectors and then E[‖QcZ‖2|Y ] =
E[E[‖QcZ‖2|PcZ]|Y ] = p − d. Therefore span(MTF1) = span(MSIR) and TF1 provides exactly
the same estimator as SIR. Simulations made in this case highlight the similarity between both
methods and are not presented here.

Consequently, to point out the differences between these two methods, we generate non-
gaussian predictors. Taking X = ρU where U is a uniformly distributed vector on the unit
sphere of Rp independent of ρ, which is a real random variable. A first point is that X has a
spherical distribution. Moreover, we take

(6.2) ρ = ǫ |10 + 0.05W1| + (1 − ǫ) |30 + 0.05W2|,
with W1 ∼ N (0, 1), W2 ∼ N (0, 1) and ǫ ∼ B(12). We performed SIR and TF1 on the following
two models. Model I is derived from Li (1991) and considered in many articles on the subject,

Model I: Y =
X1

0.5 + (X2 + 1.5)2
+ 0.5ε

Model II: Y = sign(X2)|X1/2 + 5| + 0.5ε,

where ε ∼ N (0, 1). We have to standardize X into Z to compute TF1. Clearly, the variance
of X is proportional to the identity matrix, then the standardized directions are the same than
the non-standardized one. For models I and II, directions to estimate are (1, 0, ..., 0)T and
(0, 1, 0, ..., 0)T .

To be more comprehensive, for each model we compute both methods with some differ-
ent configuration of the parameters (n, p,H) which are taken as (100, 6, 5), (500, 10, 10) and
(1000, 20, 20). For each configuration, we perform 100 simulated random samples. Some box-
plots of the distances measured between the estimated and the true CS are presented in figure
1.

For each model and in all the parameters configurations, TF1 performs better than SIR.
Model II reflects a suitable situation for order 1 methods because its regression function is not
symmetric with respect to any of its coordinates. As a consequence the measured errors are
quite small for both methods. Model I indicates a more difficult situation. Indeed, because the
standard error of X2 is near 16 ≫ 1.5, the regression function associated to model I is almost
symmetric with respect to its second coordinate (see model 3.3). It appears that both methods
have difficulties in finding this coordinate. Figure 1 shows that in each situation the difference
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Figure 2. Comparison of TF1 and SIR when there is nonlinearity between the predictors.

between the performance of both methods increases with the sample size. Nevertheless, because
of the high level of similarity between the theoretical background of these two methods, the
distances presented are really close. Especially for n = 100, where the improvement of TF1 is
not really significant.

To reach a point of view developed in the simulation study of Cook and Ni (2005), we are
interested in the link between the variation of var(Z|Y ) and the performance of the presented
method. First, according to equation (5.8), the variation of the random variable E[‖QcZ‖2|Y ] is
essential in studying the differences between SIR and TF1. Indeed if this one is a constant, then
dh = E[‖QcZ‖21{Y ∈I(h)}] = (p − d)ph and TF1 is the same method than SIR. Consequently,

SIR estimates near optimal with respect to criterion (6.1) when the variations in E[‖QcZ‖2|Y ]
are near 0. Besides, if this random variable is nonconstant then also the dh and the differences
between both methods are highlighted. Secondly, we can notice that E[‖QcZ‖2|Y ] and var(Z|Y )
are strongly linked. Thanks to the well-known variance decomposition formula, we have

var(Z|Y ) = E[var(Z|PcZ)|Y ] + var(E[Z|PcZ]|Y ),

and using the linearity condition, we obtain that

tr(var(Z|Y )) = E[‖QcZ‖2|Y ] + tr(var(PcZ|Y )).

Thus, as it was the case to distinguish IRE from SIR, it seems that the variations of var(Z|Y )
has an important role to differentiate TF1 from the SIR.

As it has been studied in some recent papers like Li and Dong (2009) and Dong and Li (2010),
we introduce nonlinearity in the distribution of the predictors. Although it does not correspond
to the set of assumptions required in SIR and TF1 theoretical background, it is interesting to
provide the following results as an indicator of the robustness of each method. Here, predictors
are generated as previously but we change X1 and X2 as follows,

X1 = 0.2X3 + 0.2(X4 + 10)2 + 0.2u,

X2 = 0.1 + 0.1(X3 +X4) + 0.3X2
3 + 0.2u,

where u ∼ N (0, 1). Model III is the same than model I but with the above predictors distribu-
tion. We provide boxplots of the estimation error of the 100 simulated random sample in figure
2.

In this case, figure 2 shows a large difference between the estimation error of SIR and TF1.
TF1 performed better in each case and the difference between both methods increases as n is
large.

6.2. Order 2 test function. Symmetric model. We now compare several well-known order
2 dimension reduction methods with TF2. Order 2 methods we have computed include SAVE,
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Figure 3. Comparison of TF2, SAVE and DR when X has a gaussian distribution.

pHd, SIR-II and DR. For the models we consider here, pHd and SIR-II do not work as well as
the others. Therefore we focus on a comparison between SAVE, DR and TF2.

TF2 estimation is not as close to DR and SAVE than the order TF1 estimation is closed to
SIR. The following simulations highlight this fact and as a consequence we begin this section
by providing the results obtained with gaussian predictors. We considerer the following three
regression models, note that model V is derived from Li and Wang (2007),

Model IV: Y = 4 tanh

( |X1|
2

)
+ 0.5ε

Model V: Y = 0.4X2
1 +

√
|X2| + 0.2ε

Model VI: Y = 1.5X1X2 ε

with ε ∼ N (0, 1) and X ∼ N (0, Ip). The CS of model IV is spanned by the direction (1, 0, ..., 0),
whereas in Model V and VI, it is a two dimensional subspace generated by (1, 0, ..., 0) and
(0, 1, 0, ..., 0). As the simulations for the order 1, we consider different parameter configurations
where each of the presented method is in a convenient situation. We simulate SAVE, DR and
TF2 with (n, p,H) equal to (100, 6, 5), (500, 10, 5) and (1000, 20, 10). For each configuration, 100
simulated random samples have been performed and the resulting boxplots with their averages
are presented in figure 3.

For all the selected models, TF2 perform better than DR and SAVE. The most significant
improvement happens for model IV in which our method perform better than the others around
90% of the time in each (n, p,H) configuration. Note that for n = 100, 500, the mean of the
TF2 is two times smaller than the mean of DR or SAVE. For n = 1000 this factor goes to three.
The results of the simulation for model VI are really close from model IV. Model V is a more
complicated one for each method. Moreover, we have to wait n = 1000 to remark substantial
differences in the distribution of the criterion. In every model, the criterion mean of TF2 is the
smallest and as n is large, as the improvement of TF2 looks substantial. Besides, it is clear that
for the selected models, SAVE and DR perform in a similar way.

Remark 6. For our study and the development of TF2, model V was a really interesting one.
In figure 3, for n = 100 the mean is less than the median, and it is no longer the case for n larger
than 100. This marked change in the boxplots is explained by the presence of small outliers in the
first situation and large outliers in the second one. Indeed as n is large, TF2 performs better
but however, the mean is shifted by the presence of outliers that reflects uncommon difficult
situations. As it is explain in section 5.2, TF2 relies on the way to identify eigenvectors of
Mψ that belong to Ec. To make that possible, a test of independence between the response and
the projected predictors is conducted. Outliers of model V for n equal to 500 and 1000 are the
consequence of a bad eigenvector choice realized by this test. When n is sufficiently large this
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Figure 4. Comparison of TF2, SAVE and DR when X has a spherical distribution.

no longer occurs. When the TF2 algorithm is iterated a larger number of times, it happens only
very few times.

To conclude this simulation section we present the results obtained with spherical predictors.
Here, X is generated with the equation X = ρU where U is a uniformly distributed vector on
the unit sphere of Rp, independent of ρ defined by equation (6.2). Again we study the model
IV and also the following ones,

Model VII: Y = |X1| +

(
X2

4

)2

+ 0.5ε

Model VIb: Y = X1X2 ε

where ε ∼ N (0, 1). Model VI has been changed to reduce the signal to noise ratio. The directions
to estimate, the parameter configuration and the number of simulated random sample are the
same than in the Gaussian case studied previously. Boxplots and their associated averages are
presented in figure 4.

Model I still reflects the most important improvement of TF2 with respect to SAVE and DR.
When n is large, it performs around height times better than the other. In model VIb, TF2
estimation deteriorates by changing distribution of the predictors from gaussian into spherical.
Finally, model VII provides a standard new situation where the improvement of TF2 is highly
significant.

7. Concluding remarks

This article introduces the basis of a new methodology about SDR. Although the theoretical
background of TF1 and TF2 is quite the same than SDR methods, the methods proposed work
under weaker conditions than the ones of the literature. Moreover, the resulting estimation
methods are not at all the same. Indeed, the introduction of some transformation of the
response was the original idea of this work and has led us to some new way of investigation in
SDR. A surprising point was the similarity between SIR and the TF1 variance minimization.
For TF2, the simulation study underlines its high accuracy over other order 2 methods and
legitimates the use of TF. However, the framework develop here is not yet completed.

First, the estimation of the dimension of the CS has been avoided in the present work.
Prospects can be find in the Pearson’s chi-square statistic used to select a basis of the CS: this
statistic could also be employed to estimate the dimension of the CS. Simulations about such a
dimension estimation method provided until now some good results. Moreover, an idea which
is still under development, is to incorporate such a test in the TF2 algorithm.

Secondly, TF offers a lot of different methods deriving from the choice of a family of functions
that separates the points (see Remark 3 and Corollary 4.4). Here we attached to study TF with
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indicators. The Fourier basis or a polynomial family could also be considered to derive some
new methods. Besides for TF1 and TF2, a smooth kernel estimation of the function ψ may lead
to better convergence rates.

Finally, we have some few words about a set of methods called hybrid. Some regression
function has different kind of components. Consequently, in many cases a particular method
would provide a good estimate of some components but another one would be needed to infer
about the remaining components. This clearly argues for methods that are a mixing of the
existing ones. This kind of methods are usually called hybrid method, they can be summarized
by the equation

M = αM1 + (1 − α)M2,

where M1 and M2 are the associated matrix of two different methods. A spectral decomposition
of M gives an hybrid estimation of the CS. This kind of consideration were recommended by
Gannoun and Saracco (2003), and Ye and Weiss (2003) proposed a bootstrap method to select
the parameter α. This includes the combination of SIR and SAVE, SIR and pHd, and SIR and
SIR-II. Besides, it is commonly known that

MSAV E = M2
SIR +MSIR−II ,

and that

MDR = E[E[(ZZT |Y ] − I)2] +M2
SIR + tr(MSIR)MSIR,

making SAVE and DR some combinations of SIR and order 2 moments based methods. There-
fore SAVE and DR do not only involve order 2 moments of the predictors given the response.
Thus it seems more realistic to develop hybrid methods based on TF1 and TF2 matrices and
specifically, a choice of the parameter α could be realized by the optimization of a well chosen
criterion as it has been done independently in TF1 and TF2. Work along this line is in progress.

appendix

The following lemma is a simplified version of a result about subspaces of non-invertible
matrices (see Draisma (2006), proposition 3).

Lemma .1. Let M , N ∈ R
d×d and α0 > 0. If ∀α ≤ α0, rank(N + αM) ≤ rank(N), then

M ker(N) ⊂ Im(N).

Proof. Denote by Pα the characteristic polynomial of N + αM and define rα = rank(N + αM)
and kα = dim(ker(N + αM)) = d − rα. Because of the continuity of the determinant, the
coefficients of Pα converge to the coefficients of P0, then Pα converges uniformly to P0 on every
compact. By definition of k0, P0 is such that

P0(x) = xk0Q0(x) with Q0(0) 6= 0.

Now we use the uniform convergence. First for α small enough we have P
(k0)
α (0) 6= 0, and this

gives the upper bound kα ≤ k0. Using the assumption we obtain k0 = kα. Therefore, again
from the uniform convergence, for some α0,

Qα(0) 6= 0, α ≤ α0.

Clearly, there exists a contour C such that none of the nonzero eigenvalues of N + αM belong
to C, α ≤ α0. Using the residue Theorem, this allows us to recover the respective projections
Π0 and Πα on the kernel of the matrices N and N + αM in the following way

Π0 =

∮

C
(N − zI)−1dz, and Πα =

∮

C
(N + αM − zI)−1dz,

and we can see that

Π0 − Πα = α

∮

C
(N − zI)−1M(N + αM − zI)−1dz.
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Because as α goes to 0, none of the eigenvalues of N and N + αM crosses C, the integral
converges and then we derive that Πα → Π0 as α→ 0. Besides, we have

(N + αM)Πα = 0, and NΠ0 = 0,

which lead us to N(Π0 − Πα) = αMΠα, and we obtain

Im(MPα) ⊂ Im(N).

Using the continuity of Πα, we conclude the proof. �

Proposition .2. Let M ⊂ R
d×d be a linear subspace of noninvertible symmetric matrices.

Then

∃u ∈ R
d, ∀M ∈ M, uTMu = 0.

Proof. Since M is a linear subspace, we can apply Lemma .1 with N a matrix of maximal rank
in M and any M ∈ M. This gives, for every M and every u ∈ ker(N),

Mu = Ny,

with y ∈ R
d. Because N is symmetric, by multiplying the left-hand side by uT , we obtain

uTMu = 0. �
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