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Abstract

+ The water ascent in tall trees is subject to controversy: the vegetal biologists
debate on the validity of the cohesion-tension theory which considers strong negative
pressures in microtubes of xylem carrying the crude sap. This article aims to point
out that liquids are submitted at the walls to intermolecular forces inferring density
gradients making heterogeneous liquid layers and therefore disqualifying the Navier-
Stokes equations for nanofilms. The crude sap motion takes the disjoining pressure
gradient into account and the sap flow dramatically increases such that the watering
of nanolayers may be analogous to a microscopic flow. Application to microtubes
of xylem avoids the problem of cavitation and enables us to understand why the
ascent of sap is possible for very high trees.

Key words: nanofilms; disjoining pressure; cohesion-tension theory; interface
motions; Navier length; ascent of sap.

1 Introduction

The model we develop makes it possible to investigate the behavior of the fluids
in the nanofilms, and its applications extend to life sciences. A particularly
interesting example concerns vegetable biology: the rise and the motion of sap
in the highest trees focus many polemics and debates between biologists. Many
of them regard the approach known as the cohesion-tension theory (CTT)
proposed at the end of the nineteenth century by Dixon and Joly as the only
valid one [1].
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As an obvious fact, Flindt reports huge trees as eucalyptus and giant sequoias
of more than 130 meters [2], but the biophysical determination of maximum
size to which trees can grow is not well understood and calculated. The main
problem with the understanding of water transport is why the sap is able to
irrigate up very high levels in tall trees.
The crude sap contains diluted salts but its physical properties are roughly
comparable with the water ones. Hydrodynamics, capillarity and osmotic pres-
sure create a ascent of sap of only few tens of meters [3]. To explain the sap
ascent phenomenon, Dixon and Joly proposed a cohesion-tension model, fol-
lowed by a quantitative attempt [4]: liquids are assumed to be subjected to
tensions generating negative pressures compensating gravity effects.
As pointed out in [5], a turning-point in the confidence of the opponents to the
cohension-tension theory for the sap ascent was the experiment which demon-
strated that tall trees survive by overlapping double saw-cuts made through
the cross-sectional area of the trunk to sever all xylem elements [6]. This result
confirmed by several authors does not seem in agreement with the possibil-
ity of strong negative pressures in microtubes [7,8]. Using a xylem pressure
probe, the apparatus does not measure any water tension in many circum-
stances: xylem tension exceeding 0.6 Mpa seems not to be observed and in
normal state most vessels may be embolized at a level corresponding about
sixty meter height. Moreover, gas-vapor transportation in xylem tubes seems
to appear at the top of high trees ([5] and its references herein).
As comments and questions, M.H. Zimmerman wrote in 1983 [3]:
”We don’t yet fully understand all aspects of xylem-water supply to leaves and
have here a wide-open filed of potential very interesting future research. The
heartwood is referred to as a wet wood. It may contain liquid under positive
pressure while in the sapwood the transpiration stream moves along a gradient
of negative pressures. Why is the water of the central wet core not drawn into
the sapwood? Free water, i.e. water in tracheids, decreases in successively older
layers of wood as the number of embolized tracheids increases. The heartwood
is relatively dry i.e. most tracheids are embolized. It is rather ironic that a
wound in the wet wood area, which bleeds liquid for a long period of time,
thus appears to have the transpiration stream as a source of water, in spite of
the fact that the pressure of the transpiration stream is negative most of the
time! It should be quite clear by now that a drop in xylem pressure below a
critical level causes cavitations and normally puts the xylem out of function
permanently. The cause of such a pressure drop can be either a failing of water
to the xylem by the roots, or excessive demand by transpiration.”
Many proponents of the CTT wrote a letter [9] to protest against the recent
review [5]. They said that ”the CTT is widely supported by biological scien-
tists as the only theory consistent with the preponderance of data on water
transport of plant”.
Nonetheless, the problem of possible cavitation in trees remains. Such liquids
are strongly metastable and can generate cavitations causing embolisms in
xylem tubes made of dead cells [10]. For example, it is interesting to note that
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in xylem tube - where diameters range between 50 and 400 µm - the crude sap
has a surface tension γ lv lower than the surface tension of pure water which
is 72 cgs at 20◦ Celsius. If we consider a microscopic gas-vapor bubble inside
the crude sap with diameter 2R, the difference between the gas-vapor pres-
sure Pvapor and the liquid sap pressure Pliquid can be expressed by the Laplace
formula: Pvapor−Pliquid = 2 γlv/R. But Pvapor being positive, unstable bubbles
must appear when R ≥ −2 γlv/Pliquid. For a negative pressure Pliquid ≤ −0.6
MPa corresponding to more than sixty meters height, we get R ≥ 0.24µm. In
such a case, dynamical bubbles spontaneously appear from germs naturally
existing in a crude liquid and cavitation makes the tubes embolized. Conse-
quently, without any biological known process it is difficult to be convinced
that xylem tubes are not embolized when they are filled enough with sap up to
altitude significantly more important than one hundred meters corresponding
to the highest trees.

Our understanding of the ascent and the motion of sap in very high trees differs
from the CTT : at a higher level than a few tens of meters - corresponding to
the pulling of water by capillary and osmotic pressure - we assume that xylem
microtubes are embolized. In addition, we also assume that a thin liquid film
- with a thickness of a few nanometers [11,12] - wets xylem walls up to the
top of the tree. At this scale, long range molecular forces stratify liquids and
the ratio between tube diameter and sap film thickness allows us to consider
tube walls as plane surfaces.
In Section 2, using the calculations presented in [13,14], we reconsider the an-
alytic expression in density-functional theory for a thin heterogeneous liquid
film which takes account of the power-law tail behavior dominant in a thin
liquid film in contact with a solid [15]. The effects of the vapor bulk bordering
the liquid film are simply expressed with an other density-functional located
on a mathematical surface. With such a functional, we obtained the equations
of equilibrium, motion and boundary conditions [16] for a thin vertical liquid
film wetting a vertical solid wall and we computed the liquid layer thickness as
a function of the film level; these previous results can be extended to mixtures
of fluid and perfect gas [13]. Then, the so-called disjoining pressure of thin
liquid layers yields a natural tool for very thin films [11]. The minimal thick-
ness for which a stable wetting film wets a solid wall is associated with the
pancake layer when the film is bordering the dry solid wall and corresponds to
the maximal altitude [11,17,18]. The normal stress vector acting on the wall
remains constant through the liquid layer and corresponds to the gas-vapor
bulk pressure which is currently the atmospheric pressure and consequently,
no negative pressure appears in the liquid layer. At the top of very high trees,
the thickness of the sap layer is of a few number of nanometers. The negative
pressure is only present for the liquid bulk in micropores. Numerical calcula-
tions associated with physical values for water yield the maximal film altitude
for a wood material corresponding to a good order of the height of the tallest
trees.
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In Section 3, we consider the flow of sap at high levels. For shallow water, the
flows of liquids on solids are mainly represented by using the Navier-Stokes
equations associated with adherence conditions at the walls. Recent experi-
ments in nanofluidics seem to prove, also for liquids, that at nanoscales cor-
responding to sap layers at very high tree levels, the conditions of adherence
are disqualified [19,20]. With the aim of explaining experimental results, we
reconsider the fluids as media whose motions generate slips along the walls; so,
we can draw consequences differing from results of classically adopted models
as reconsidered in [21]. The new model we are presenting reveals an essential
difference between the flows of microfluidics and those of nanofluidics. In the
latter, simple laws of scales cannot be only taken anymore into account.
The transpiration in the leaves induces a variation of the sap layer thickness in
microtubes. Consequently, the gradient of thickness along microtubes creates
a gradient of disjoining pressure which induces driving forces along the layer.
For thin layers, the sap flow depending on the variations of the layer thickness
can be adapted to each level of leaves following the tree requirement. This is
an important understanding why the flow of sap can be non negligible at a
level corresponding to the top of the tallest trees. Moreover, we notice that
the stability criterium of the flow issued from the equation of motion fits with
the results of Derjaguin’s school [11].

2 A study of inhomogeneous fluids near a solid wall

In this section, we recall the main results presented in [13,14]. Thanks to these
results, in Section 3, we shall consider sap layers of the highest trees with a
thickness of some nanometers only.
The density-functional of an inhomogeneous fluid in a very thin isothermal
layer domain (O) of wall boundary (S) and liquid-vapor interface (Σ) was
chosen in the form:

F =
∫ ∫ ∫

(O)
ε dv +

∫ ∫

(S)
φ ds+

∫ ∫

(Σ)
ψ ds. (1)

• The first integral is associated with a square-gradient approximation when
we introduce a specific free energy of the fluid at a given temperature T as a
function of density ρ and β = (grad ρ)2 such as [22,23]:

ρ ε = ρα(ρ) +
λ

2
(grad ρ)2,

where term (λ/2) (grad ρ)2 is added to the volume free energy ρα(ρ) of a com-
pressible fluid and scalar λ is assumed to be constant at a given temperature
[24]. Specific free energy α enables liquid and vapor bulks to be continuously
connected and the pressure P (ρ) = ρ2α′

ρ(ρ) is similar to van der Waals one.
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• For a plane solid wall (S), the solid-liquid surface free energy is in the form
[15,25]:

φ(ρ) = −γ1ρ+
1

2
γ2 ρ

2. (2)

Here ρ denotes the fluid density value at surface (S); constants γ1, γ2 and λ
are generally positive and given by the mean field approximation:

γ1 =
πcls

12δ2mlms

ρsol, γ2 =
πcll

12δ2m2
l

, λ =
2πcll
3σlm2

l

, (3)

where cll and cls are two positive constants associated with Hamaker constants;
σl and σs denoting fluid and solid molecular diameters, δ = 1

2
(σl + σs); ml,

ms denote masses of fluid and solid molecules; ρsol is the solid density.

• For the plane liquid-vapor interface (Σ) the surface free energy ψ is reduced
to [13,14]:

ψ(ρ) =
γ4
2
ρ2,

where ρ is the density of the liquid bounding the interface and γ4 is associated
with the interfacial thickness of the order of the fluid molecular diameter
(γ4 ≃ γ2).

In case of equilibrium, functional (1) is stationary and yields the equation of
equilibrium and boundary conditions [16,26].

2.1 Equation of equilibrium

The equation of equilibrium is [16,27]:

div σ + ρ g i = 0 , (4)

where σ = −
(

ρ2ε′ρ − ρ div (λ grad ρ)
)

1 − λ grad ρ ⊗ grad ρ, g is the ac-
celeration of gravity and i, of coordinate x, is the downward direction. Let
us consider an isothermal vertical film of liquid; then in orthogonal system,
the coordinate z being external and normal to the flat vertical solid wall, spa-
tial density derivatives are negligible except in direction of z. In the complete
liquid-vapor layer (we call interlayer) and along direction z, Eq. (4) yields a
constant value at each level x:

P (ρ) +
λ

2

(

dρ

dz

)2

− λ ρ
d2ρ

dz2
= Pvbx

,

where Pvbx
= P (ρvbx ) denotes the pressure in the vapor bulk of density ρvbx

bounding the liquid layer at level x. In the fluid, Eq. (4) can be written [27]:

grad (µo − λ∆ρ− g x) = 0, (5)
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where µo is the chemical potential (at temperature T ), chosen null in the
liquid and vapor bulks of phase equilibrium densities ρl and ρv, respectively;
∆ denotes the Laplacian. Thanks to Eq. (5), we obtain in all the fluid and not
only in the interlayer :

µo(ρ)− λ∆ρ− g x = µo(ρb), (6)

where µo(ρb) is the chemical potential value of a liquid mother bulk of density ρb
such that µo(ρb) = µo(ρvb), where ρvb is the density of the vapor bulk bounding
the layer at level x = 0 [11]. Equation (6) is valid in the interlayer and yields
the equation of density profile:

λ
d2ρ

dz2
= µbx

(ρ), with µbx
(ρ) = µo(ρ)− µo(ρbx). (7)

where ρbx is the liquid mother bulk density at level x.

2.2 The disjoining pressure for vertical liquid films

The disjoining pressure at level x can be written as [11]:

Π = Pvbx
− Pbx ,

where Pbx = P (ρbx). At a given temperature T , Π is a function of ρbx . The
reference chemical potential linearized near ρl is µo(ρ) = (c2l /ρl)(ρ − ρl)
where cl is the isothermal sound velocity in liquid bulk ρl at temperature T
[28]. In the liquid part of the liquid-vapor film, Eq. (7) writes:

λ
d2ρ

dz2
=
c2l
ρl
(ρ− ρb)− g x ≡

c2l
ρl
(ρ− ρbx) with ρbx = ρb +

ρl
c2l
g x. (8)

At level x = 0, the liquid mother bulk density is closely equal to ρl and because
of Rel. (8), Π can be considered as a function of x [13]:

Π(x) = −ρl g x

(

1 +
g x

2 c2l

)

. (9)

Now, we consider a film of thickness hx at level x; the density profile in the
liquid part of the liquid-vapor film is solution of the system:



















λ
d2ρ

dz2
=
c2l
ρl
(ρ− ρbx),

with λ
dρ

dz |z=0

= −γ1 + γ2 ρ|z=0
and λ

dρ

dz |z=hx

= −γ4 ρ|z=hx
.
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Let quantities τ , d and γ3 be defined as:

τ ≡
1

d
=

cl
√

λρl
and γ3 ≡ λτ , (10)

such that d is a reference length. Due to the fact that ρbx ≃ ρb ≃ ρl [11], the
disjoining pressure reduces to [14]:

Π(hx) =
2 c2l
ρl

[

(γ1 − γ2ρl)(γ3 + γ4)e
hxτ + (γ2 − γ3)γ4ρl

]

×

[

(γ2 + γ3)γ4ρl − (γ1 − γ2ρl)(γ3 − γ4)e
−hxτ

]

[(γ2 + γ3)(γ3 + γ4)e
hxτ + (γ3 − γ4)(γ2 − γ3)e

−hxτ ]2
. (11)

The disjoining pressure of the mixture of liquid and perfect gas is the same
than for a single van der Waals fluid and calculations and results are identical
to those previously obtained [13].

2.3 Water wetting a vertical plane wall of xylem

Our aim is to point out an example such that previous results provide a value
of maximum height for a vertical water film wetting a plane wall of xylem and
to estimate the sap layer thickness at this altitude.
As proved by Derjaguin et al in [11], (Chapter 2), the Gibbs free energy per
unit area G can be expressed as a function of hx:

G(hx) =
∫ +∞

hx

Π(h) dh,

where hx = 0 is associated with the dry wall in contact with the vapor bulk
and hx = +∞ is associated with a wall in contact with the liquid bulk. The
spreading coefficient is S = γ

SV
− γ

SL
− γ

LV
, where γ

SV
, γ

SL
, γ

LV
are the

solid-vapor, solid-liquid and liquid-vapor free energies per unit area of inter-
faces, respectively. The energy of the liquid layer per unit area can be written
E = γ

SL
+ γ

LV
+G(hx).

The coexistence of two film segments with different thicknesses is a phe-
nomenon interpreted with the equality of chemical potentials and the equality
surface tensions of the two films. A spectacular case corresponds to the co-
existence of a liquid film of thickness hp and a dry solid wall associated with
hx = 0. The film is the so-called pancake layer corresponding to the condition
[11,17]:

G(0) = G(hp) + hpΠ(hp).

Liquid films of thickness hx > hp are stable and liquid films of thickness
hx < hp are metastable or unstable. For a few nanometer range, the film
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thickness is not exactly hx; we must add the thickness estimated at 2 σl of the
liquid part of the liquid-vapor interface bordering the liquid layer and the film
thickness is ex ≈ hx + 2 σl [23,24].
When hx = 0 (corresponding to the dry wall), the value of G is the spread-
ing coefficient S. Point P associated with the pancake layer is observed on
the curve to be closely an inflexion point of graph Π(hx) [13]. To obtain the
pancake thickness corresponding to the smallest film thickness, we draw the
graphs of Π(hx) and G(hx) when hx ∈ [(1/2) σl, ℓ], where ℓ is a distance of few
tens of Amgström.

For the numerical calculations, we considered water at T = 20◦ Celsius
wetting a wall in xylem. The experimental estimates of coefficients are ob-
tained in c.g.s. units [12,14,29]:
ρl = 0.998, cl = 1.478×105, cll = 1.4×10−58, σl = 2.8×10−8 (2.8 ångströms),
ml = 2.99× 10−23. From Rel. (3), we deduce λ = 1.17× 10−5, γ2 = γ4 = 54.2.
From Rel. (10), we get γ3 = 506, d = 2.31× 10−8.
We consider a material such that the Young angle between the liquid-vapor
interface and the solid material surface is θ ≈ 50◦. This Young angle is an
arithmetic average of Young angles for water wetting different xylem walls
[30]. The coefficient cls is obviously not given in the physical tables and γ1
cannot be obtain from Rel. (3); due to Rel. (2), we immediately get the un-
known coefficient γ1 in Rel. (11): γ1 ≈ 75.

In Fig. 1 - left graph, we present the disjoining pressure graph Π(hx). The
physical part of disjoining pressure graph corresponding to ∂Π/∂hx < 0 is a
plain line and is associated with thickness liquid layer of several molecules.
The dashed line has no real existence.
In Fig. 1 - right graph, we present the free energy graph G(hx). Due to
hx > (1/2) σl, it is not possible to obtain the limit point W corresponding to
the dry wall. This point is obtained by an interpolation associated with the
concave part of the G-curve. Point P follows from the drawing of the tangent
line issued fromW to the G-curve. The limit of the film thickness is associated
to the pancake thickness ep ≈ hp + 2 σl when the liquid film coexists with the
dry wall. The reference length d is of the same order than σl, σs and δ and
is a good length order for very thin films. The total pancake thickness ep is
of one nanometer order corresponding to a good thickness value for a high-
energy surface [18]. We deduce S ≈ 40 cgs. However, crude sap is not pure
water. Its liquid-vapor surface tension has a lower value than surface tension
of pure water (72 cgs at 20◦C) and it is possible to obtain the same spreading
coefficients with less energetic surfaces.
When |x| is of some hundred meters, Eq. (9) yields Π(x) ≃ −ρl g x.
The maximum of altitude |x

M
| corresponds to the pancake layer. To this alti-

tude, we add 20 meters corresponding to the ascent of sap due to capillarity
and osmotic pressure and we obtain a film height of 140 meters which is of
the same order than the topmost trees. We also note the important result: in
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the trees, the thickness of the layer is of some nanometers at high level.
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Fig. 1. Left graph: Π(hx)-graph. The unit of x−axis is d = 2.31 × 10−8 cm; the

unit of y−axis is one atmosphere. Right graph: G(hx)-graph. The unit of x−axis

is d = 2.31 × 10−8 cm ; the unit of y−axis is one cgs unit of surface tension.

3 Dynamics of liquid nanofilms

The idea of xylem tubes completely filled with sap induces that the flow of
liquid along vessels can be compared with a flow through capillaries [3]. The
flow rate through capillary tubes is proportional to the applied pressure gra-
dient and the hydraulic conductivity. Parabolic flow causes the flow rate to
be proportional to the fourth power of capillary radius [31]. One of the most
important design requirements is that vapor blockage does not happen in the
stem. Consequently, to be efficient for the transport of sap, the xylem tube
radius must be as larger as possible, which is not the case.
The dynamics of such liquid nanofilms is always studied in isothermal case.
Our model of sap nanolayer implies different consequences:
- The classical model by Navier-Stokes is unable to describe fluid motions in
very thin films,
- The notion of surface free energy of a sharp interface separating gas and
liquid layer must be reconsidered,
- The equation of fluid motions along the nanofilm is obtained by adding the
forces of viscosity to the conservative forces,
- The evolution equation of the film thickness takes account of the variation
of the disjoining pressure along the layer.
At equilibrium, the different fluid quantities are ρbx , ρvbx , Pbx , Pvbx

, hx . . . For
the motion, the corresponding quantities are denoted by ρ∗bx , ρ

∗
vbx
, P ∗

bx
, P ∗

vbx
, h∗x . . .

When the liquid layer thickness is small with respect to transverse dimensions
of the wall, it is possible to simplify the Navier-Stokes equation which governs
the flow of classical viscous fluids.
When h≪ L, where L is the wall transversal characteristic size,
i) The velocity component along the wall is large with respect to the normal
velocity component which can be neglected,
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ii) The velocity vector mainly varies along the direction orthogonal to the wall
and it is possible to neglect velocity derivatives with respect to coordinates
along the wall compared to the normal derivative,
iii) The pressure is constant in the direction normal to the wall. It is possible
to neglect the inertial term when Re≪ L/h, where Re is the Reynolds num-
ber of the flow.
Equation of hydrodynamics is not valid in a liquid nanolayer because the fluid
is heterogeneous and the liquid stress tensor is not anymore scalar. However,
it is possible to adapt the results obtained for viscous flows to motions in
liquid nanolayers: due to ǫ = h/L ≪ 1, we are also in the case of long wave
approximation.
We denote the velocity by V = (u, v, w) where (u, v) are the tangential
components. Due to the fact that e = sup (|w/u| , |w/v|) ≪ 1, we also are
in the case of approximation of lubrication. The main parts of terms as-
sociated with second derivatives of liquid velocity components correspond
to ∂2u/∂z2 and ∂2v/∂z2. The density is constant along each stream line

(
�

ρ = 0 ⇐⇒ divV = 0) and isodensity surfaces contain the trajectories. Then,
∂u/∂x, ∂v/∂y and ∂w/∂z have the same order of magnitude and ǫ ∼ e.
As in [24], we assume that the kinematic viscosity coefficient ν = κ/ρ only
depends on the temperature. In motion equation, the viscosity term is

(1/ρ) div σv = 2ν [ div D + D grad {Ln (2 κ)} ] ,

where D is the velocity deformation tensor and D grad{Ln (2 κ)} is negligible
with respect to divD .
In both lubrication and long wave approximations, the liquid nanolayer motion
verifies [27]:

Γ+ grad[µo(ρ)− λ∆ρ ] = ν∆V + g i with ∆V ≃
[

∂2u

∂z2
,
∂2v

∂z2
, 0

]

.

This equation corresponds to the equation of equilibrium (4) with addition of
inertial (acceleration) term Γ and viscous term ν∆V.
In approximation of lubrication, the inertial term is neglected:

grad[µo(ρ)− λ∆ρ ] = ν∆V + g i. (12)

Equation (12) separates into tangential and normal components to the solid
wall.

- The normal component - following z - of Eq. (12) writes in the same form
than for equilibrium:

∂

∂z
[ µo(ρ)− λ∆ρ ] = 0,

and consequently,

µo(ρ)− λ∆ρ = µo(ρ
∗
bx
), (13)
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where ρ∗bx is the dynamical liquid mother bulk density at level x (different
from the liquid bulk density ρl of the plane interface at equilibrium and also
from ρbx , liquid mother bulk density at level x at equilibrium).
To each density ρ∗bx is associated a liquid nanolayer thickness h∗x. We can write
µo(ρb)− λ∆ρ = η(h∗x), where η is such that η(h∗x) = µo(ρ

∗
bx
).

- For one-dimensional motions colinear to the solid wall (direction i and veloc-
ity u i), by taking account of Eq. (13), the tangential component of Eq. (12)
yields:

i . grad µo(ρ
∗
bx
) = ν

∂2u

∂z2
+ g ,

which is equivalent to:

∂µo(ρ
∗
bx
)

∂ρ∗bx

∂ρ∗bx
∂x

= ν
∂2u

∂z2
+ g. (14)

For the most practical situations, simple fluids slip on a solid wall only at a
molecular level [32] and consequently, the kinematic condition at solid walls is
the adherence condition (z = 0 ⇒ u = 0). Nevertheless, with water flowing
on thin hydrophobic nanolayers, there are some qualitative observations for
slippage. With water flowing in thin, hydrophobic capillaries, there are also
some early qualitative evidences for slippage [33]. De Gennes said: ”the results
are unexpected and stimulating and led us to think about unusual processes
which could take place near a wall. They are connected with the thickness h
of the film when h of an order of the mean free path” [19].
Recent papers in nonequilibrium molecular dynamics simulations of three di-
mensional micro-Poiseuille flows in Knudsen regime reconsider microchannels:
the influence of gravity force, surface roughness, surface wetting condition and
wall density are investigated. The results point out that the no-slip condition
can be observed for Knudsen flow when the surface is rough. The roughness
is a dominant parameter as far as the slip of fluid is concerned. The surface
wetting condition substantially influences the velocity profiles [20].
In fluid/wall slippage, the condition at solid wall writes:

u = Ls

∂u

∂z
at z = 0,

where Ls is the so-called Navier length. The Navier length is expected to be
independent of h and may be as large as a few microns [20].
At the liquid-vapor interface, we also assume that vapor viscosity stress is
negligible; from the continuity of fluid tangential stress through a liquid-vapor
interface, we get:

∂u

∂z
= 0 at z = h∗x .
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Consequently, Eq. (14) implies:

ν u =

(

∂µo(ρ
∗
bx
)

∂ρ∗bx

∂ρ∗bx
∂x

− g

)

(

1

2
z2 − h∗x z − Lsh

∗
x

)

.

The mean spatial velocity u of the liquid in the nanolayer at level x is:

u =
1

h∗x

∫ h∗

x

o
u dz.

Previous computations yield:

ν u = −h∗x

(

h∗x
3

+ Ls

)

[

grad µo(ρ
∗
bx
)− g i

]

with u = u i .

Let us note that:

∂µo(ρ
∗
bx
)

∂x
=
∂µo(ρ

∗
bx
)

∂ρ∗bx

∂ρ∗bx
∂h∗x

∂h∗x
∂x

≡
1

ρ∗bx

∂P (ρ∗bx)

∂ρ∗x

∂ρ∗bx
∂h∗x

∂h∗x
∂x

.

Due to the fact the vapor bulk pressure P ∗
vbx

is constant along the xylem tube,
by using relation Π(h∗x) = P ∗

vbx
− P ∗

bx
, we get along the flow motion:

∂µo(ρ
∗
bx
)

∂x
= −

1

ρ∗bx

∂Π(h∗x)

∂h∗x

∂h∗x
∂x

and consequently,

χ∗
bx
u = h∗x

(

h∗x
3

+ Ls

)

[ grad Π(h∗x) + g i] , (15)

where χ∗
bx

= ρ∗bxν is the liquid kinetic viscosity. Consequently, the mean liq-
uid velocity is driven by the variation of the disjoining pressure along the
solid wall and the film thickness. Equation (15) differs from the classical film
hydrodynamic one. Indeed, for a classical thin liquid film, the Darcy law is
u = −K(h) grad p, where p is the liquid pressure andK(h) is the permeability
coefficient. In Eq. (15), the sign is opposite and the liquid pressure is replaced
by the disjoining pressure. We note that χ∗

bx
≃ χ , where χ is the liquid kinetic

viscosity in the liquid bulk at phase equilibrium. Moreover, when h∗x/Ls ≪ 1,

χu = h∗x Ls [ grad Π(h∗x) + g i] ,

which is strongly different from the case Ls = 0 corresponding to the adherence
condition:

χu =
h∗2x
3

[ grad Π(h∗x) + g i] .

The mass equation averaged over the liquid depth is:

∂

∂t

(

∫ h∗

x

0
ρ dz

)

+ div

(

∫ h∗x

0
ρu dz

)

= 0.
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Since the variation of density is small in the liquid nanolayer, the equation for
the free surface is:

dh∗x
dt

+ h∗x div u = 0. (16)

By replacing (15) into (16) we finally get:

∂h∗x
∂t

+
1

χ
div

{

h∗2x

(

h∗x
3

+ Ls

)

[

gradΠ(h∗
x) + g i

]

}

= 0. (17)

It is easy to verify that Eq. (17) is a non-linear parabolic equation.
If ∂Π(h∗x)/∂h

∗
x < 0 the flow is stable. This result is in accordance with the

static criterium of stability for thin liquid layers [11].
When Ls 6= 0 we notice the flow is multiplied by the factor 1 + 3Ls/h

∗
x. For

example, when h∗x = 3nm and Ls = 100nm which is a Navier length of small
magnitude with respect with experiments, the multiplier factor is 102; when
Ls is 7µm as considered in [20], the multiplier factor is 104, which seems pos-
sible in nanotube observations [30].
Equation (15) yields the flow rate per unit of length of xylem tubes. We may
remark that Eq. (15) is mainly valid at the top of highest trees where the
xylem tube network is strongly ramified.
A main difference between Poiseuille flow and motion in a thin film is the
versatility of the liquid layer flow with respect to Poiseuille’. An hydraulic
Poiseuille flow is very rigid due to the liquid incompressibility, the pressure
effects are fully propagated in all the tube. For a thin layer flow, the flow
rate can increase or decrease due to the spatial derivative of h∗x and strongly
depends on the locally defined disjoining pressure. Trees can adapt the disjoin-
ing pressure effects by opening or closing the stomatic cells with the object of
changing the evaporation in its leaves so that the bulk pressure in micropores
can be negative and the transport of water can be differently dispatched in
the tree parts; this seems an important aspect of the model.

4 Discussion and conclusions

Our model is essentially different from the cohesion-tension theory; it allows
a new explanation of biofluidics by using methods of the Russian school of
Derjaguin and using non-adherence conditions for nanofluid flows at xylem
walls. It precisely gives the possible height of the tallest trees. In the very
thin layers, we obtain rates of flows strongly larger than those obtained with
traditional Navier-Stokes models. The explanation of irrigation of the leaves
in the tallest trees supplementary justifies our model of biomimetism.
The motor of the sap motion is induced by the transpiration across microp-
ores located in tree leaves [3]. It is natural to conjecture that the diameters
of xylem tubes must be the result of a competition between evaporation in
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tubes which reduces the flow of sap and the flux of transpiration in micropores
inducing the motion strength.
We notice that the negative pressure only appears in the liquid mother bulk.
The microlimbs, micropores and stomates have a diameter a little smaller
than the bubble size considered in the introduction; consequently, they can be
filled without any cavitation by the liquid mother bulk at a suitable negative
pressure associated with the height of the tallest trees.
It is interesting to note that if we switch the microtube surfaces to wedge
geometry or to corrugated surface, it is much easier to obtain the complete
wetting requirement; thus, plants can avoid having very high energy surfaces.
Nonetheless, they are still internally wet if crude sap flows pass through wedge
shaped corrugated pores; this fact also answers to questions in [3]. The wedge
does not have to be perfect on the nanometer scale to significantly enhance
the amount of liquid flowing at modest pressures corresponding to nanosized
planar films. It is bound to improve on the calculation because it enhances
the surface to volume ratio. In such a case, we remark that the wall boundary
can always be considered as a plane surface endowed with an average surface
energy as in Wenzel’s formula [34].
Finally, it will be interesting to confirm our theoretical predictions with addi-
tional experimental data.
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