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COMPLEXIFIABLE CHARACTERISTIC CLASSES

ALEXANDER D. RAHM

Abstract. We examine the topological characteristic cohomology classes of
complexified vector bundles. In particular, all the classes coming from the real
vector bundles underlying the complexification are determined.

1. Introduction and statement of the results

In the theory of characteristic classes (in the sense of Milnor and Stasheff [4],
whom we follow in terminology and notation in this article), it is well-known how
the Chern classes are mapped to even Stiefel-Whitney classes when converting com-
plex vector space bundles to real vector space bundles by forgetting the complex
structure.

In the other direction, we have the fibre-wise complexification: Given a real
vector bundle F → B with fibre Rn, its complexification is the complex vector
bundle FC := F ⊗R C → B obtained by declaring complex multiplication on F ⊕F
in each fibre Rn⊕Rn by i(x, y) := (−y, x) for the imaginary unit i. The Pontrjagin
classes of a real vector bundle are (up to a sign) constructed as Chern classes of its
complexification. Conversely, which classes of a real vector bundle can be attributed
to its complexification? These are the complexifiable characteristic classes which we
determine in this article, under the request that they are characteristic classes in
the sense of [4].

Consider a real vector bundle F → B and a complex vector bundle E → B over
the same paracompact Hausdorff base space B (we keep the latter assumption on B
throughout this article).

Definition 1. A real vector bundle F is called a real generator bundle of E, if its
complexification FC is isomorphic to E. In the case that such a bundle F exists,
we call E real-generated.

Not every complex vector bundle is real-generated; it is an easy exercise to show
that no complex vector bundle with some nonzero and non-2-torsion odd Chern class
can admit a real generator bundle. This makes it seem possible that the subcategory
of real-generated vector bundles could admit information additional to its Chern
classes, in the complexifiable classes of the real generator bundles. However, we will
see that the Chern classes already contain all of the relevant information.

Definition 2. A characteristic class c of real vector bundles is complexifiable if for
all pairs (F , G) of real vector bundles with isomorphic complexification FC ∼= GC,
the identity c(F ) = c(G) holds.
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We will now give a complete classification of the complexifiable characteristic
classes. Denote by Z2 := Z/2Z the group with two elements.

Theorem 1. Let c be a polynomial in the Stiefel-Whitney classes wi. Then the
following two conditions are equivalent:

(i) The class c is an element of the sub-ring Z2[w
2
i ]i∈N∪{0} of the polynomials

in the Stiefel-Whitney classes.
(ii) The class c is complexifiable.

The implication (i)⇒(ii) follows easily from the fact that the square of the n-th
Stiefel-Whitney class of a real vector bundle is the mod-2-reduction of the n-th
Chern class of the complexified vector bundle. The proof of the implication (ii)⇒(i)
is prepared with several intermediary steps leading to it. One ingredient, lemma 1,
follows essentially from work of Cartan on Hopf fibrations. But this only allows to
show that complexifiable characteristic classes in cohomology with Z2–coefficients
are contained in the ideal generated by the squares of the Stiefel-Whitney classes.
To show that they constitute exactly the subring generated by the squares of the
Stiefel-Whitney classes, which is much smaller, we need the technical decomposition
of lemma 2 that we prove by induction.

By their naturality, characteristic classes are uniquely determined on the universal
bundle over the classifying space (BO for real vector bundles). As the cohomology
ring H∗(BO,Z2) is generated by the Stiefel-Whitney classes of the universal bundle,
all modulo–2–classes are polynomials in the Stiefel-Whitney classes, and theorem 1
tells us which of them are complexifiable.

We build on this result to investigate which integral cohomology classes are com-
plexifiable. To express our result, we use Feshbach’s description [3] of the coho-
mology ring of the classifying space BO with Z–coefficients. Consider the Steenrod
squaring operation Sq1 and the mod–2–reduction homomorphism

ρ : H∗(BO,Z) → H∗(BO,Z2).

Feshbach uses as generators Pontrjagin classes and classes VI with index sets I that
are finite nonempty subsets of

{

1
2

}

∪ N, such that

ρ(VI) = Sq1

(

⋃

i ∈ I

ω2i

)

,

where ωi is the i-th Stiefel Whitney class of the universal bundle over BO. We
give the details of Feshbach’s description in the appendix. We will write vI for the
characteristic class that is VI on the universal bundle over BO. Our final result
now takes the following shape.

Theorem 2. Let C be a polynomial in v2I , with I arbitrary, v{ 1
2
} and the Pontrjagin

classes pi. Then C is complexifiable.

And conversely, we can say the following.

Theorem 3. Let C be a complexifiable integral characteristic class. Then for any
real vector bundle ξ, C(ξ) is completely determined by some Chern classes ck(ξ

C),
k ∈ N.



COMPLEXIFIABLE CHARACTERISTIC CLASSES 3

2. Classes in cohomology with Z2–coefficients

In this section, we shall prove theorem 1, after developing all the tools we need
to do so. For the whole of this section, we only consider classes in cohomology with
Z2–coefficients. Let F → B be a real vector bundle over a paracompact Hausdorff
base space. Let c be a complexifiable polynomial in the Stiefel-Whitney classes wi.

Let O be the direct limit of the orthogonal groups, U the direct limit of the
unitary groups and EU the universal total space to the classifying space BU for
stable complex vector bundles. Let BO := EU/O, via the inclusion O ⊂ U induced
by the canonical inclusion R ⊂ C. Let γ(R∞) be the universal bundle over BO, and
denote its Stiefel-Whitney classes by ωi := wi(γ(R∞)).

Lemma 1. Let c be a complexifiable class in cohomology with Z2–coefficients. Then
c(γ(R∞))− c(ε) is contained in the ideal 〈ω2

i 〉i ∈ N\{0}.

Proof. We use the Hopf spaces fibration of Cartan [2, p. 17-22],

U/O
f

// BO
p

// // BU,

where the projection p is the rest class map to dividing the whole group U out of
EU ; and f : U/O → BO embeds a fibre. The cohomology ring H∗(BO,Z2) is the
polynomial algebra Z2[ω1, ω2, ...] with generators the Stiefel-Whitney classes of the
universal bundle. Cartan [2, p. 17-22] has shown that f∗ maps these generators ωi

to the generators νi := wi(f
∗γ(R∞)) of the exterior algebra

H∗(U/O,Z2) =
∧

(Z2[ν1, ν2, ...]),

which is obtained by dividing the ideal 〈ν2i 〉i ∈ N\{0} out of the polynomial algebra

Z2[ν1, ν2, ...]. Hence, exactly the ideal 〈ω2
i 〉i ∈ N\{0} is mapped to zero. So to write

〈ω2
i 〉i ∈ N\{0} = ker f∗.

Composing f with the projection p : BO → BU , we obtain a constant map (the
whole fibre is mapped to its basepoint) and therefore a trivial bundle
(p◦f)∗γ(C∞). This pullback of the complex universal bundle is the complexification
of f∗γ(R∞):

(p ◦ f)∗γ(C∞) = f∗p∗EU ×U C∞ = f∗EO ×O C∞ = f∗(EO ×O R∞)C

= f∗γ(R∞)C = (f∗γ(R∞))C.

So, f∗γ(R∞) admits a trivial complexification, and all of the complexifiable classes
c must treat it like the trivial bundle ε:
c(f∗γ(R∞)) = c(ε). A pullback of the trivial bundle is trivial too, so

0 = c(f∗γ(R∞))− c(f∗ε) = f∗(c(γ(R∞))− c(ε))

by naturality. Whence, c(γ(R∞))− c(ε) is an element of the kernel of f∗, which we
have identified with the ideal 〈ω2

i 〉i ∈ N\{0}. �

The above lemma allows to split off one square of a Stiefel-Whitney class as a
factor the characteristic class c under investigation. But we must inductively split
off squares until we achieve the decomposition in the following lemma.
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Lemma 2. Any complexifiable characteristic class c admits a decomposition

c(γ(R∞))− c(ε)

=
m
∑

j1=1
ω2
ij1

∪
mj1
∑

j2=1
ω2
i(j1,j2)

∪
∑

... ∪

m(j1,...,jk−1)
∑

jk=1
ω2
i(j1,...,jk)

∪ r(j1,...,jk)(γ(R
∞))

+
m
∑

j1=1
ω2
ij1

∪ rj1(ε) + ...+
m
∑

j1=1
ω2
ij1

∪
∑

... ∪

m(j1,...,jk−2)
∑

jk−1=1
ω2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε)

for some m,mj1 , ...,m(j1,...,jk−1) ∈ N ∪ {0}, some ij1 , ..., i(j1 ,...,jk) ∈ N \ {0},

some r(j1,...,jk)(γ(R
∞)) ∈ H∗(BO,Z2),

and some coefficients rj1(ε), ..., r(j1 ,...,jk−1)(ε) ∈ {0, 1},

such that for all ~j := (j1, ..., jk) and I(~j) := {ij1 , ..., i(j1 ,...,jk)}, the following
inequality holds:

2
∑

p ∈ I(~j)

p > deg c.

Once this lemma is established, we use that the degree must be the same on
both sides of its equation, to deduce that the sum over all terms containing a factor

⋃

p ∈ I(~j)

ω2
p of too high degree

(

2
∑

p ∈ I(~j)

p

)

must vanish.

As the classes c(ε), r~j(ε) of the trivial bundle ε are just coefficients in

H0(BO,Z2) ∼= {0, 1}, a polynomial c(γ(R∞)) in some squares ω2
p , p ∈ N ∪ {0} will

remain, so this argument implies theorem 1, (ii)⇒(i).
Before giving the proof of the required lemma 2, we shall introduce two notations

just to make that proof more readable.

Definition 3. An index vector ~j appears in a given decomposition of
c(γ(R∞))− c(ε), if this decomposition admits a summand of the form

r~j(γ(R
∞)) ∪

⋃

p ∈ I(~j)

ω2
p,

and if

(

2
∑

p ∈ I(~j)

p

)

≤ deg c.

Note that the terms

(

r~j(γ(R
∞)) ∪

⋃

p ∈ I(~j)

ω2
p

)

with

(

2
∑

p ∈ I(~j)

p > deg c

)

must

vanish in any decomposition of c(γ(R∞)) − c(ε). That is why we do not let them
contribute in the last definition.

Definition 4. Set ℓ := min
~j appears

max I(~j). Consider an index vector ~j appearing in

a given decomposition of c(γ(R∞))− c(ε).

If max I(~j) = ℓ, then we call r~j(γ(R
∞))− r~j(ε) a low situated rest term.



COMPLEXIFIABLE CHARACTERISTIC CLASSES 5

As seen so far, c(γ(R∞))− c(ε) lies in ker f∗ = 〈ω2
i 〉i∈N\{0}, so there is a decom-

position

c(γ(R∞))− c(ε) =
m
∑

j1=1

ω2
ij1

∪ rj1(γ(R
∞)),

for some m ∈ N ∪ {0}, some ij1 ∈ N \ {0}, and some rj1(γ(R
∞)) ∈ H∗(BO,Z2).

We will show that there is a low situated rest term rj1(γ(R
∞)) − rj1(ε) in this de-

composition that lies in ker f∗. Then, that low situated rest term admits a decom-
position as a linear combination of squares ω2

i(j1,j2)
with coefficients r(j1,j2)(γ(R

∞))

in H∗(BO,Z2), leading to a new decomposition of c(γ(R∞))− c(ε). So, inductively,
we will replace a low situated rest term in any given decomposition of c(γ(R∞))−c(ε)
by a linear combination the coefficients of which are rest terms with longer index
vectors. That is why after a finite number of these steps, the index vectors ~j will

no more appear, because the sums

(

2
∑

p ∈ I(~j)

p

)

will exceed the degree of c. This is

the moment when all low situated rest terms are eliminated and the decomposition
described in lemma 2 is achieved.

To carry out this strategy, we first need to introduce the following truncation
procedure.

Truncated stable invariance. With lemma 3, we shall give a sense to “the trun-
cation of the equation c(F ⊕G) = c(G) at the dimension ℓ”. Define the bundles

F := pr∗1f
∗γ(R∞) −→ U/O ×BO

and

G := pr∗2γ(R
∞) −→ U/O ×BO,

where pri shall be the projection on the i-th factor of the base space U/O ×BO.
Let ℓ ∈ N. Consider the map

(id, embl) : (U/O ×BOℓ) →֒ (U/O ×BO)

where embl : BOℓ →֒ BO shall be the natural embedding, recalling that BO is the
direct limit over all BOℓ, ℓ ∈ N. Then the bundle Gl := (id, embl)

∗G admits Stiefel-
Whitney classes that are in bijective correspondence with those of the ℓ-dimensional
universal bundle γl(R∞) → BOℓ.

To be precise, Gl
∼= prBOℓ

∗γl(R∞) and the situation is

γl(R∞)

��

Gl
∼= prBOℓ

∗γl(R∞)

��

G := pr∗2γ(R
∞)

��

γ(R∞)

��

BOℓ (U/O ×BOℓ)
prBOℓoo �

�
(id,embl)

// (U/O ×BO)
pr2

// BO.

Especially, wp(Gl) vanishes for p > ℓ.

Lemma 3. Under the above assumptions, the following equation holds:

max I(~j) ≤ ℓ
∑

~j appears

r~j(F ⊕Gl)
⋃

p ∈ I(~j)

w2
p(Gl) =

max I(~j) ≤ ℓ
∑

~j appears

r~j(Gl)
⋃

p ∈ I(~j)

w2
p(Gl).

We will call it the equation c(F ⊕G) = c(G) truncated at dimension ℓ.
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Proof. The bundle F inherits from f∗γ(R∞) the property to admit a trivial com-
plexification. As c is complexifiable, we have c(F⊕G) = c(G). Applying the induced
cohomology map (id, embl)

∗ to this equation, we obtain

c(id∗F ⊕ emb∗lG) = c(emb∗lG)

and hence

c(F ⊕Gl) = c(Gl).

By the universality of γ(R∞), and the naturality of all characteristic classes with
respect to the classifying maps of Gl and F ⊕Gl, any given decomposition

c(γ(R∞))− c(ε) =
∑

~j

r~j(γ(R
∞))

⋃

p ∈ I(~j)

ω2
p

gives analogous decompositions

c(Gl)− c(ε) =
∑

~j

r~j(Gl)
⋃

p ∈ I(~j)

w2
p(Gl)

and

c(F ⊕Gl)− c(ε) =
∑

~j

r~j(F ⊕Gl)
⋃

p ∈ I(~j)

w2
p(F ⊕Gl).

By theorem 1, (i)⇒(ii) the square w2
p is complexifiable and hence invariant under

adding the bundle F of trivial complexification :

w2
p(F ⊕Gl) = w2

p(Gl).

Thus, the equation c(F ⊕ Gl) = c(Gl) can be rewritten using that all summands
containing a factor wp(Gl) with p > ℓ vanish:

max I(~j) ≤ ℓ
∑

~j

r~j(F ⊕Gl)
⋃

p ∈ I(~j)

w2
p(Gl) =

max I(~j) ≤ ℓ
∑

~j

r~j(Gl)
⋃

p ∈ I(~j)

w2
p(Gl).

For not to exceed the degree of c, also all terms with 2
∑

p ∈ I(~j)

p > deg c must vanish:

max I(~j) ≤ ℓ
∑

~j appears

r~j(F ⊕Gl)
⋃

p ∈ I(~j)

w2
p(Gl) =

max I(~j) ≤ ℓ
∑

~j appears

r~j(Gl)
⋃

p ∈ I(~j)

w2
p(Gl).

So, this last equation is the equation c(F ⊕G) = c(G) truncated at the dimension ℓ.
�

Proof of lemma 2. We carry out the proof by induction over the index vector pointing
at a low situated rest term.

Base case. Lemma 1 implies c(γ(R∞))− c(ε) =
m
∑

j1=1
ω2
ij1

∪ rj1(γ(R
∞)),

with rj1 some polynomial in the Stiefel-Whitney classes.
Rename i1, ..., im such that i1 < i2 < ... < im.
We truncate the equation c(F ⊕G) = c(G) at the dimension i1, and obtain

ij1 ≤ i1
∑

j1 appears

rj1(F ⊕Gi1) ∪ w2
ij1

(Gi1) =

ij1 ≤ i1
∑

j1 appears

rj1(Gi1) ∪ w2
ij1

(Gi1).
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As i1 < i2 < ... < im, this is just r1(F ⊕Gi1) ∪ w2
i1
(Gi1) = r1(Gi1) ∪ w2

i1
(Gi1).

Injectivity of the multiplication map ∪w2
i1
(Gi1) in H∗(U/O × BOi1 ,Z2) then holds

r1(F ⊕Gi1) = r1(Gi1). Then we pull this back with

(id× const) : U/O → (U/O ×BOi1),

(where the map const takes just one, arbitrary, value), to obtain

r1(f
∗γ(R∞)⊕ ε) = r1(ε).

Due to Whitney sum formula, the Stiefel-Whitney classes in which r1 is a polyno-
mial are stable under adding a trivial bundle, and the above left hand term equals
r1(f

∗γ(R∞)). Using naturality of characteristic classes with respect to pullbacks,
this shows that r1(γ(R∞))− r1(ε) lies in ker f∗. So we can replace it with a linear
combination of quadratic terms, providing a new decomposition,

c(γ(R∞))− c(ε) = ω2
i1

m1
∑

j2=1

ω2
i(1,j2)

r(1,j1)(γ(R
∞)) + ω2

i1
r1(ε) +

m
∑

j1=2

ω2
ij1

rj1(γ(R
∞)).

Induction hypothesis. Consider a given decomposition

c(γ(R∞))− c(ε) =
∑

~j

r~j(γ(R
∞))

⋃

p ∈ I(~j)

ω2
p

+
m
∑

j1=1

ω2
ij1

∪ rj1(ε) + ...+
m
∑

j1=1

ω2
ij1

∪
∑

... ∪

m(j1,...,jk−2)
∑

jk−1=1

ω2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε).

Inductive claim. The decomposition of the induction hypothesis admits a low
situated rest term that lies in ker f∗. We show this in the inductive step.

Inductive step. We truncate the equation c(F ⊕G) = c(G) at the dimension

ℓ := min
~j appears

max I(~j).

Then the remaining terms of c(Gl) − c(ε) do all have the common factor w2
l (Gl).

This is no zero divisor in H∗(U/O × BOℓ,Z2) and further its multiplication map
∪w2

l (Gl) is injective. Now, in c(F ⊕Gl) = c(Gl), this injectivity implies

max I(~j) ≤ ℓ
∑

~j appears

r~j(F ⊕Gl)
⋃

p ∈ I(~j)\{ℓ}

w2
p(Gl) =

max I(~j) ≤ ℓ
∑

~j appears

r~j(Gl)
⋃

p ∈ I(~j)\{ℓ}

w2
p(Gl).

♦ If there is just one low situated rest term r~j(γ(R
∞)) − r~j(ε), then we use the

injectivity of the multiplication map

∪

(

⋃

p ∈ I(~j)\{ℓ}

w2
p(Gl)

)

on H∗(U/O ×BOℓ,Z2)

to obtain r~j(F ⊕Gl) = r~j(Gl). Then we pull this back with

(id× const) : U/O → (U/O ×BOℓ)

to obtain r~j(f
∗γ(R∞) ⊕ ε) = r~j(ε). Using naturality, we see now that the low

situated rest term r~j(γ(R
∞))− r~j(ε) lies in ker f∗.
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♦ Else we truncate the remaining equation again at the dimension

ℓ′ :=
max I(~j)=ℓ

min
~j appears

max(I(~j) \ {ℓ}),

such as to obtain

max(I(~j)\{ℓ}) ≤ ℓ′
∑

~j appears

r~j(F ⊕Gℓ′)
⋃

p ∈ (I(~j)\{ℓ})

w2
p(Gℓ′)

=

max(I(~j)\{ℓ}) ≤ ℓ′
∑

~j appears

r~j(Gℓ′)
⋃

p ∈ (I(~j)\{ℓ})

w2
p(Gℓ′).

Now we proceed analogously with the choice marked with the “♦” signs, and after
finitely many steps, find a low situated rest term in ker f∗.
This low situated rest term can be replaced by a linear combination of squares,
holding a new decomposition of c(γ(R∞))− c(ε).

This completes the induction. �

Proof of theorem 1, (ii)⇒(i). Let c be a complexifiable characteristic class. By the
universality of γ(R∞), the decomposition of lemma 2 yields the decomposition

c = c(ε) +

m
∑

j1=1

w2
ij1

∪ rj1(ε) + ...+ ...

+

m
∑

j1=1

w2
ij1

∪
∑

... ∪

m(j1,...,jk−2)
∑

jk−1=1

w2
i(j1,...,jk−1)

∪ r(j1,...,jk−1)(ε).

As c(ε), rj1(ε), ..., r(j1 ,...,jk−1)(ε) are elements of {0, 1 = w0 = w2
0}, the class c is in

the sub-ring Z2[w
2
i ]i ∈ N∪{0} of the polynomial ring of Stiefel-Whitney classes. �

This completes the proof of theorem 1.

3. Classes in cohomology with integral coefficients

We will build on our results obtained for Z2-coefficients and use the mod–2–
reduction homomorphism

ρ : H∗(−,Z) → H∗(−,Z2)

to prove the theorems with Z–coefficients stated in the introduction. Define the
element VI ∈ H∗(BO,Z) as in appendix A, and let vI be the characteristic class
that is VI on the universal bundle.

Lemma 4. For any real bundle ξ, the mod–2–reduced class ρ(v2I (ξ)) equals






∑

i ∈ I∩{ 1
2
}

w2
1 ∪

⋃

j ∈ I\{i}

w4j +
∑

i ∈ I\{ 1
2
}

(w4i+2 + w2 ∪w4i) ∪
⋃

j ∈ I\{i}

w4j






(ξ ⊕ ξ).
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Proof. By Feshbach’s description (in the appendix), the mod–2–reduction is

ρ
(

v2I (ξ)
)

=

(

Sq1

(

⋃

i ∈ I

w2i(ξ)

))2

.

We expand this expression until it is a polynomial in the Stiefel-Whitney classes,
and use that 2 = 0 in H∗(BO,Z2). Then we rearrange the expression using the
Whitney sum formula and the symmetry of the terms. �

Proof of theorem 2. For v{ 1
2
} and the Pontrjagin classes pi, the result is obvious.

Now let F → B, G → B be real bundles with FC ∼= GC. Forgetting the complex
structure, this is F ⊕ F ∼= G⊕G. By naturality of the Stiefel-Whitney classes, for
any finite nonempty index set I ⊂ ({1

2}∪N\{0}), the polynomial given in lemma 4
is the same for the arguments (F ⊕F ) and (G⊕G). Applying lemma 4, this means
that ρ(v2I (F )) = ρ(v2I (G)).
As V 2

I is in the torsion of H∗(BO,Z), restricted on which ρ is injective [3, p. 513],
this proves the theorem: v2I (F ) = v2I (G). �

Proof of theorem 3. Feshbach [3, p. 513] shows that

H∗(BO,Z) = Z[πi]i ∈ N⊕ {2–torsion},

where πi is the Pontrjagin class pi of the universal bundle. Then C = P (pi) + T
with P a formal polynomial in the Pontrjagin classes and T some 2-torsion class.
So for every real bundle ξ,

ρ(C)(ξ) = P (ρ (pi(ξ))) + ρ(T )(ξ).

By definition of the Pontrjagin classes, pi(ξ) = (−1)ic2i(ξ
C) ; and using the reduc-

tion ρ
(

c2i(ξ
C)
)

= w4i(ξ ⊕ ξ) from Chern classes to Stiefel-Whitney classes, further
the Whitney sum formula and the symmetry of the summands, we deduce

ρ(C)(ξ) = P (w2
2i(ξ)) + ρ(T )(ξ).

It follows from theorem 1 that the mod-2-reduction ρ(C)(ξ) is a polynomial in the
squares of Stiefel-Whitney classes; and hence also ρ(T )(ξ) is a polynomial Q(w2

j (ξ))

in the squares of Stiefel-Whitney classes. As according to [3, p. 513], ρ is injective

on the torsion elements, there is a local inverse ρ|{2−torsion}
−1 lifting ρ(T ) back to

T . So,

T (ξ) = ρ|{2−torsion}
−1 (Q(w2

j (ξ))
)

;

and with the Whitney sum formula and the symmetry of the summands, further
the reduction from Chern classes to Stiefel-Whitney classes, and finally using the
decomposition of C, we obtain

C(ξ) = P
(

(−1)ic2i(ξ
C)
)

+ ρ|{2−torsion}
−1
(

Q
(

ρ(cj(ξ
C))
))

.

�
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Appendix A. The cohomology ring of BO with Z–coefficients

The cohomology ring of BO with Z–coefficients is known since Thomas [5], [6]
and with all relations between its generators since Brown [1] and Feshbach [3]. It
can be obtained as follows. Define the set of generators of H∗(BOn,Z) as in [3,
definition 1]:
It consists of the Pontrjagin classes pi of the universal bundle over BOn, and classes
VI with I ranging over all finite nonempty subsets of

{

1

2

}

∪

{

k ∈ N

∣

∣

∣

∣

0 < k <
n+ 1

2

}

with the proviso that I does not contain both 1
2 and n

2 , for n > 1.
According to [3, theorem 2], H∗(BOn,Z) is for all n ≤ ∞ isomorphic to the poly-
nomial ring over Z generated by the above specified elements modulo the ideal
generated by the following six types of relations.
In all relations except the first, the cardinality of I is less than or equal to that of
J and greater than one. (Most of the restrictions on I and J are to avoid repeating
relations). By convention, p 1

2
where it occurs means V{ 1

2}
. Also, if

{

n
2 ,

1
2

}

⊂ I ∪J ,

then VI∪J shall mean V{n
2}

V(I∪J)\{n
2
, 1
2}
.

1) 2VI = 0.

2) VIVJ + VI∪JVI∩J + VI\JVJ\I

∏

i ∈ I∩J

pi = 0 (for I ∩ J 6= ∅, I * J).

3) VIVJ +
∑

i ∈ I

V{i}V(J\I)∪{i}

∏

j ∈ I\{i}

pj = 0 (for I ⊂ J).

4) VIVJ +
∑

i ∈ I

V{i}V(I∪J)\{i} = 0 (for I ∩ J = ∅; if I and J have the

same cardinality, then the smallest element of I is less than that of J).

5)
∑

i ∈ I

V{i}VI\{i} = 0.

6) V{ 1
2
}pn

2
+ V 2

{n
2
} = 0, if n is even.

Then ρ(VI) = Sq1(
⋃

i ∈ I

w2i), with the Steenrod squaring operation Sq1.
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