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ABSTRACT 

Deviations from Hardy-Weinberg equilibrium (HWE) in control subjects may bias the 

estimates of genetic effects in genetic association studies (GAS) and meta-analyses. A 

large empirical evaluation was carried out to evaluate the impact of HWE deviation 

and explore the effect of variance adjustment for the allele-based odds ratio in 833 

individual GAS and 72 meta-analyses. In individual GAS, the variance adjustment for 

any deviation from HWE resulted in stronger associations, and 10 GAS (1%) became 

significant (P<0.05). One hundred sixteen GAS (14%) showed significant deviation 

from HWE (PHWE<0.05); however, only 37 GAS (4%) had more than 90% power to 

detect significant deviation from HWE at the 5% level. In meta-analyses, adjustment 

for any deviation from HWE improved the significance in 53 meta-analyses (74%). 

Then, a formal statistical significance (P<0.05) was revealed for one previously 

negative meta-analyses whereas one meta-analysis lost its significance. Between-

study heterogeneity was enhanced in 50 meta-analyses (69%). None of the meta-

analyses lost the significance of heterogeneity (PQ<0.10) whereas in one meta-

analysis, the non significant heterogeneity became significant. Sensitivity analysis for 

studies not conforming to HWE (PHWE<0.05) was applied to 45 meta-analyses (69%).  

Then, the significance of association was increased in 26 the meta-analyses (58%) and 

one meta-analysis became significant (P<0.05) whereas seven meta-analyses were no 

longer significant. In five meta-analyses, the heterogeneity lost its significance after 

sensitivity analysis whereas in two meta-analyses it became significant (PQ<0.10). 

Adjustment for HWE deviation could be an effective strategy for dealing with HWE 

violations in GAS and meta-analyses.    
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INTRODUCTION 

Genetic association studies (GAS) assess the association between phenotypic traits 

and genetic variants (gene polymorphisms) in a population. GAS investigate the 

association without requiring information on inheritance, and thus, are conducted on a 

sample of unrelated cases and controls. Variants for GAS can be selected on the basis 

of pathophysiological hypotheses, or alternatively, genome-wide screening without 

any predilection of genes and variants to be tested can be performed (genome –wide 

association studies) [1].   

The genetic association studies usually assess various contrasts of genotypes 

such as the allele contrast, the additive, recessive and dominant models [1]. However, 

the most attractive contrast for researchers is the allele-based because the sample size 

become twice as large (one genotype provides two alleles) providing more power to 

detect significant associations.  In the case of a polymorphism with two alleles 

(mutant type-Mt and wild type-Wt), where Mt is thought to be associated with a 

disease, the allele contrast compares the number of alleles Mt with the number of 

alleles Wt in cases and controls.  The magnitude and significance of a genetic 

association is usually estimated with the odds ratio (OR) and its 95% confidence 

interval (CI).  

Results produced from GAS may be spurious when the genotype distribution 

of controls (disease-free subjects) deviates from Hardy-Weinberg equilibrium (HWE) 

[1].  Inspection of whether genotype frequencies of controls conform to HWE 

provides a surrogate of GAS quality in terms of design and conduct. Deviation from 

HWE can be due to laboratory/genotyping errors, population stratification, selection 

bias in the choice of controls and confounding factors unaccounted for [1].  



When a sample is not from a single population (i.e. it is composed of sub-

samples, each from a population with different frequencies of Mt) then it is expected 

to have an excess of homozygotes and deficiency of heterozygotes than would be 

predicted by the Hardy-Weinberg low (Wahlund effect) [2]. This effect is a common 

cause of the departure from HWE. In population terms, lack of HWE implies 

existence of migration, selection, mutation and absence of random mating. Often, this 

population stratification includes differences between groups of ethnic origin or 

differences between groups of similar ethnic origin but with limited admixture [3].  

 A significant deviation from HWE may indicate genotyping error, because the 

conditions of HWE are generally applicable to the control subjects in a well designed 

study population [4]. Although exceptions to the conditions of HWE may explain 

deviation, a test of HWE is needed, and then, an evaluation of the reasons for any 

observed deviation is required. For example, genopyting error may exist when the 

variant is significantly associated with the disease, the cases are in HWE and in the 

controls exists an excess of homozygotes [4]. It is possible that a departure from 

HWE can be due to some unknown factors other than genotyping errors, especially 

when multiple variants that are in strong linkage disequilibrium deviate from HWE. 

The potential sources for genotyping error may be DNA contamination from plates 

and systematic errors that affect the entire research process differently in cases and 

controls [3]. In addition, lack of blindness may lead to bias during genotyping and 

scoring of the alleles, particularly for ambiguous allele calls, and this is pronounced 

when the inherent failure rates of genotyping are different for homozygous or 

heterozygous genotypes, leading to skewed gene frequencies [4]. 

 In a sample of unrelated subjects, HWE implies that alleles are independent. 

Then for a genetic marker with two alleles (Wt and Mt) the proportions of the 



different genotypes Mt/Mt, Mt/Wt and Wt/Wt are p
2
, 2p(1-p) and (1-p)

2
, respectively. 

An empirical evaluation suggested that testing and reporting for HWE is often 

neglected in GAS and deviations are rarely admitted in published reports [4, 5]. 

Power calculations have shown that most studies conforming to HWE are 

underpowered to detect HWE deviation [5]. 

Lack of HWE in GAS may introduce bias and loss of precision in the 

estimation of genetic effects and potentially question the validity of a study [6]. This 

problem may be overcome when the significance testing is based on a variance 

adjusted for deviation from HWE.  Estimates of adjusted variance have been proposed 

for estimating relative risks of the additive, recessive and dominant models, and 

differences in allele frequency [6, 7]. Sato et al. [8] provided an estimate of variance 

of OR for the allele contrast for GAS in the absence of HWE in cases and controls. 

This estimate was based on fixation indices of cases and controls [8]. Recently, 

Zintzaras proposed an adjustment for the same metric based on the delta method in 

combination with the Woolf’s logit interval and the disequilibrium coefficient (D) [9]. 

In meta-analysis, the most commonly used approach to deal with studies not 

conforming to HWE is sensitivity analysis, i.e. exclusion of these studies and re-

evaluation of the effect size [1]. Adjustment for HWE deviation is rarely performed 

for the genotype-based contrasts [10]. However, a meticulous and large empirical 

study to evaluate the impact of HWE deviation in GAS and the effect of adjustment 

for HWE deviation in meta-analysis based on the allele contrast has not been 

performed to date.      

The present empirical study examines the impact on significance of GAS 

when the variance of OR for the allele contrast is adjusted for departures from HWE.  

The power of GAS to assess HWE is also examined. Finally, the effect of variance 



adjustment in pooled OR and heterogeneity in meta-analysis is demonstrated and 

compared with sensitivity analysis.  

 

METHODS  

Selection of studies and database 

HuGE PubLit Database was searched for published meta-analyses of GAS in the year 

2007. In addition, a database of meta-analyses of GAS archived in our department 

was utilized (http://biomath.med.uth.gr/).  

All retrieved meta-analyses were assessed for their appropriateness for 

inclusion in the present empirical study. A meta-analysis was considered eligible 

when i) it examined biallelic polymorphisms (Wt/Mt), ii) provided the complete 

genotype distribution (MtMt, WtMt, WtWt) for diseased subjects and controls of 

individual studies included in the meta-analysis, iii) controls were non-diseased, iv) 

written in English, v) considered binary outcomes, and vi) contained at least three 

studies. In the case of overlapping meta-analyses of the same 

polymorphism/phenotype, all distinct individual studies were considered.   

Thereafter, all published GAS included in the meta-analyses were catalogued 

and retrieved. Finally, each GAS was further scrutinized for eligibility according to 

the above i) to v) criteria.  

 

Testing for association in GAS and meta-analysis 

For each GAS the association between the gene polymorphism and the disease was 

examined based on the allele contrast (Mt vs. Wt). Then, for each study the OR and 

the corresponding 95% CI were calculated.  



A meta-analysis for each variant by phenotype was then performed and the 

pooled OR for the allele contrast was estimated using random effects (DerSimonian 

and Laird) model [11]. Random effects modelling assumes a genuine diversity in the 

results of various studies, and it incorporates to the calculations a between study 

variance. The heterogeneity between studies was tested using the Q-statistic [1]. If 

PQ<0.10 then heterogeneity was considered statistically significant. Heterogeneity 

was quantified with the I
2
 metric, which is independent of the number of studies in the 

meta-analysis. I
2
 takes values between 0% and 100% with higher values denoting 

greater degree of heterogeneity [1]. The significance level (P-value) of each 

association (in GAS and meta-analysis) was estimated using the z-test.  

 

HWE testing and power 

The distribution of the genotypes of controls of each GAS was statistically tested for 

HWE at PHWE=0.05. A diseased population is expected not to conform with the HWE 

when a true association with the examined polymorphism exists; however an 

independence of alleles is expected in the control group. Thus, a test for HWE was 

performed only for the controls. HWE was tested by using an asymptotic chi-square 

test [12]. 

Then, for each GAS, the power for testing deviation from HWE at 5% level 

was estimated based on the normalization of the non-central chi-squared distribution 

[13] which is given by the following expression:  
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where λ the non-centrality parameter, i.e. λ=Σ [(Ε1i-Ε0i)/Ε0i] (i=1-6) and E0i and E1i 

are the expected cell frequencies under the null and the alternative hypothesis, 

respectively.  

 

Adjustment for HWE deviation 

The precision of the genetic risk effect of each GAS was adjusted for deviation from 

HWE using the method proposed by Zintzaras [9]. This method provides an estimate 

of variance of OR (or ) for the allele contrast in the absence of HWE in cases and 

controls. The method is based on the delta method in combination with the Woolf’s 

logit interval method and the disequilibrium coefficient (D). In the subsequent 

analysis, it was assumed that D was equal to zero for the cases since HWE was 

examined only for the controls.   

Thus, the variance of the allele contrast was adjusted for HWE deviation using 

the D approach. In this approach, the variance of ln  is given by  
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where p is the estimated frequency of mutant type allele among disease cases and p’ is 

the respective value for the controls, n and n’ is the total number of alleles in cases 

and controls, respectively. D’Mt/Mt=p’Mt/Mt-p’
2
, is the disequilibrium coefficient, p’Mt/Mt 

is the frequency of mutant type homozygotes (Mt/Mt) for controls. When there is an 

excess or deficiency of homozygotes, it is expected the adjusted variance to be 

smaller than the observed one.  

 

Sensitivity analysis, HWE adjustment and heterogeneity 



For each GAS, and variant by phenotype meta-analysis, the effect of adjusting the 

variance for HWE was evaluated. For each meta-analysis the effect of sensitivity 

analysis was also examined and compared to HWE adjustment.  Sensitivity analysis 

examines the effect of excluding studies with controls not in HWE and it is usually 

performed to establish the robustness of the estimated pooled OR.   

 

RESULTS 

Database and Summary statistics  

Seventeen two meta-analyses (28 from HuGE PubLit Database and 44 from our 

database) consisted of 833 individual GAS (347 from HUGENet and 486 from our 

database) met the inclusion criteria. Forty seven percent (47%) of the meta-analyses 

involved 10 or more GAS, 6% involved more than 30 GAS (one meta-analysis 

included 108 GAS) and 10% involved just 3 studies. The studies concerned 28 gene 

variants and 26 distinct phenotypes. In GAS, the minimum number of cases and 

controls was seven and six subjects, respectively, and the maximum number was 9826 

and 28113 subjects, respectively.  

One hundred sixteen GAS (14% of the 833 GAS) showed significant deviation 

from HWE (PHWE<0.05) and 44 GAS (6%) showed marginal significance 

(0.05≤PHWE<0.10). The disequilibrium coefficient, D’, of the studies with PHWE<0.05 

ranged from D’=-0.123 to -0.002 whereas in the studies with 0.05≤PHWE<0.10 D’ 

ranged from D’=-0.053 to -0.003.  

 

The significance after adjustment for HWE deviation in GAS 

Two hundred fifteen GAS (26% of the 833 GAS) studies produced significant 

association (P<0.05). Figure 1 shows the level of significance of association for each 



GAS without adjustment and with adjustment for any degree of deviation from HWE 

(i.e irrespectively of the significance for HWE deviation). After adjustment for HWE, 

the status of significance changed for 10 studies (1%), i.e in these studies before 

adjustment the P-value was P≥0.05 and after adjustment it was 0.02≤P≤0.048. The 

adjustment has a greater effect towards the tail of significant studies. Fifty one GAS 

(6%) had a reduction in P-value greater than 30% and 5 GAS (0.6%) had a reduction 

greater than 80%. In 324 GAS (39%) reduction was very small, less than 1%.  

Among the 116 GAS with significant deviation from HWE (PHWE<0.05), 33 

GAS showed a significant association at P<0.05. In six of the 116 GAS (5%), the 

adjustment for HWE changed the associations from non-significant (P≥0.05) to 

significant (P<0.05).  

 

Power of HWE testing in GAS 

Fifty six GAS (7% of the 833 GAS) had a power greater than 75% to detect 

significant deviation from HWE at PHWE=0.05 and 721 (87%) had power less than 

50%. Only 37 GAS (4%) had power more than 90%. Figure 2 shows the power of 

studies in relation to the PHWE. Power was much higher in the studies that were found 

to deviate significantly from HWE than those conforming to HWE.  

 

The impact of HWE deviation in meta-analysis  

Forty five meta-analyses (consisting of minimum three to maximum 108 GAS) from 

the total of 72 meta-analyses involved studies with statistical departure from HWE 

(PHWE<0.05) in controls. In 19 meta-analyses (consisting of three to 30 GAS), the 

proportion of individual studies within each meta-analysis not conforming to the 



HWE rule (PHWE<0.05) was more than 20%, and in five meta-analyses (consisting of 

four to 14 GAS), it was more than 50%.  

Twenty-eight meta-analyses produced significant associations, 46 showed 

large heterogeneity among studies (I
2
≥25%) and 35 of them also showed statistically 

significant heterogeneity (PQ<0.10). Six meta-analyses produced both significant 

pooled estimates and showed lack of heterogeneity (I
2
<25% and PQ≥0.10).      

 

Sensitivity analysis in meta-analysis 

In the 45 meta-analyses involving GAS with statistical departure from HWE 

(PHWE<0.05), a sensitivity analysis was applied to those studies. Then, the significance 

of association (P-value) was increased in 58% of the meta-analyses (in 26 out of 45 

meta-analyses) (Figure 3). Then, one meta-analysis became significant (IL6 -174 G/C 

and peripheral arterial disease), where the P-value changed from P=0.33 to P<0.01, 

and seven meta-analyses were no longer significant: 1) MPO -463G/A and lung 

cancer (three out of 10 GAS were not in HWE), MTHFR C677T and diabetic 

retinopathy (two out of five GAS were not in HWE), MTHFR C677T and acute 

lymphoblastic leukemia (two out of 9 GAS were not in HWE), MTHFR C677T and 

Down syndrome (one out of 11 GAS were not in HWE), MTHFR C677T and diabetic 

nephropathy (three out of 14 GAS were not in HWE), eNOS 4b/a and hypertension 

(four out of 11 GAS were not in HWE), ALOX5AP SG13S89 G/A and stroke (two 

out of four GAS were not in HWE).  In the latter case, the P-values of association of 

the original meta-analyses ranged from P=0.01 to P=0.03 and the P-values after the 

sensitivity analyses ranged from P=0.06 to P=0.39.  

After exclusion of the studies with statistical departure from HWE 

(PHWE<0.05), the heterogeneity (PQ<0.10) among studies lost its significance in five 



meta-analyses: IL6 -174 G/C and peripheral arterial disease (PQ=0.26, two out of four  

GAS were not in HWE, ApaI A/a and osteoporosis (PQ=0.91, four out of seven GAS 

were not in HWE), MTHFR C677T and congenital heart defects (PQ=0.22, one out of 

10 GAS were not in HWE), BDNF G196A and Parkinson ’s disease (PQ=0.11, two 

out of six GAS were not in HWE), and MTHFR C677T and diabetic retinopathy 

(PQ=0.20, two out of five GAS were not in HWE). On the contrary, the heterogeneity 

in two meta-analyses became significant after sensitivity analysis: MTHFR C677T 

and stomach cancer (from PQ=0.12 changed to PQ=0.04, three out of eight GAS were 

not in HWE) and MTHFR C677T and acute lymphoblastic leukemia (from PQ=0.22 

changed to PQ<0.01, two out of nine GAS were not in HWE).  

The sensitivity analysis decreased the between study heterogeneity (I
2
) in 22 

meta-analyses (almost 50% of the meta-analyses). In 11 and five meta-analyses, I
2
 

increased more than 10% and 50%, respectively. However, in 16 and eight meta-

analyses, the decrease in I
2
 was more than 10% and 50%, respectively.  

 

Adjustment for HWE deviation in meta-analysis 

In considering all 72 meta-analyses, the adjustment for any degree of deviation from 

HWE improved the significance (i.e. in terms of P-value) in the majority of meta-

analyses (74%, i.e. 53 out of 72). The adjustment reduced the P-value by more than 

20% in 15 meta-analyses (21% of meta-analyses). In six meta-analyses (8% of meta-

analyses), the change in P-value was greater than 50% (Figure 4).  

In one meta-analysis a non significant association (P=0.09) became strong 

(P=0.02) after adjustment for HWE (the association between MTHFR C677T and 

multiple myeloma). There is also one significant association (P=0.02) in the 

unadjusted analysis that became non significant after HWE adjustment (P=0.08) 



(MTHFR C677T and Down syndrome). The later meta-analysis, included only one 

individual study with statistical departure for HWE (PHWE<0.05).   

When the 45 meta-analyses with at least one study not statistically conforming 

with the HWE (PHWE<0.05) were considered, an improvement in significance was 

shown in 31 studies (69% of the meta-analyses) after adjustment for HWE. In 12 

meta-analyses (27% of the meta-analyses), the improvement in significance was 

greater than 20% (Figure 3).  

Regarding the effect of HWE adjustment in the between study heterogeneity 

of the 72 meta-analyses, the adjustment increased the between study heterogeneity (I
2
) 

in 50 meta-analyses and decreased it in five (Figure 5). In 12 cases, the increase in I
2
 

was more than 10% after adjustment, whereas, in six cases, I
2
 decreased by more than 

50%. Heterogeneity became formally statistically significant (PQ=0.07) in one meta-

analysis where it was previously not formally significant (PQ=0.23) (MTHFR C677T 

and acute lymphoblastic leukemia). In none of the meta-analyses, was the significance 

of testing (PQ<0.10) for heterogeneity lost after adjustment.  

 

DISCUSSION 

 

The present empirical study evaluated the impact of HWE deviation and the effect of 

adjustment for this deviation across a wide range of GAS and meta-analyses in the 

field of genetic epidemiology. In this large dataset consisting of 833 studies, the 

proportion of studies with HWE violations was not high (14%) and of similar 

magnitude to previously reported results (10%) [5]. However, these estimates can be 

misleading since the proportion of adequately powered studies was small.  

In testing the impact of adjustment of HWE deviation on allele-based ORs for 

individual GAS, new significant associations were revealed for a small fraction GAS. 



Although the adjusted variance was lower than the corresponding unadjusted resulting 

in reductions in the P-values [9], the magnitude of these reductions was small for the 

majority of GAS. Adjustment for HWE had more profound effects in studies not 

conforming to HWE. 

 When testing the impact of adjustment for HWE deviation on the meta-

analyses results versus the commonly used sensitivity analysis, changes in P-values 

were observed at similar directions: the adjustment approach resulted in reductions in 

P-values in the majority of the meta-analyses (74%) and the sensitivity analysis 

approach, where applicable, increased the P-values in 58% of the meta-analyses. 

These changes were translated in revealing one formally significant result with the 

adjustment for HWE deviation, whereas the sensitivity analysis approach identified 

another one significant association but masked seven previously significant results. 

The HWE deviation adjustment approach was more influential in meta-analyses with 

a small number of included studies. Regarding heterogeneity statistics, the adjustment 

approach increased the I
2
 metric in the majority of meta-analyses, although shifting in 

the status of formal statistical significance occurred only in one meta-analysis. This 

improved capacity for heterogeneity detection and quantification was not observed 

with the sensitivity analysis approach.   

The power of detecting a significant association based on variance adjusted for 

HWE deviation depends on the magnitude of D’ and is described by a sigmoid 

function; the power is getting greater when the D’ increases [9]. In the current study, 

testing for deviation from HWE was performed by using an asymptotic chi-square test 

[12], since it is the most commonly used method in the literature of GAS and provides 

sufficient estimates [5, 17]. When dealing with low allelic frequencies, the 

performance may not be optimal and then an exact test could be a reasonable 



alternative [5]. However, our dataset included GAS and meta-analyses investigating 

the role of common variants.  

In GAS, an alternative test of association for the allele contrast is the Armitage’s 

trend test, which is asymptotically chi-squared when the studied populations are in 

HWE and in general provides higher P-values. The significance of a genetic 

association when a chi-squared test is used may not be valid when the alleles are not 

independent in the studied population [14]. Therefore, the size of the Armitage’s trend 

test will not be correct if the HWE does not hold and then the type-I error rate would 

also increase [6].    

Testing for HWE is included in guidelines for the critical appraisal of GAS in 

meta-analysis [1, 15]. However, reporting of HWE testing in the GAS literature is 

suboptimal [5] or the genotype distribution of controls is not always provided [16]. 

Additionally, lack of evidence for departure from HWE does not necessarily imply 

conformation with HWE, given the power considerations described above. Different 

strategies have been proposed for dealing with GAS with deviations from HWE in 

meta-analyses. Although the most popular one is to perform a sensitivity analysis for 

the studies violating HWE, the superiority of this commonly used approach over 

others (exclusion of these studies or adjustment of variance of risk effect for HWE 

deviation) has not been demonstrated [5, 9, 16-17]. In performing sensitivity analysis, 

the change in the magnitude of risk effect suggests the extent of bias due to studies 

with departure from HWE. In correcting for departure from HWE, the ORs and the 

corresponding variances of the individual GAS included in the meta-analysis are 

corrected to account for departures from HWE, and then, the meta-analysis is 

performed based on the corrected (adjusted) OR of the individual GAS. Previous 

empirical work was not conclusive regarding the use of sensitivity analysis versus 



exclusion of HWE violating studies, since HWE violation could be considered as a 

red flag of biases [5, 9, 16-17].   

The current analysis demonstrated that an adjustment of variance of ORs 

provided enhanced power to detect significant allele-based estimated of genetic effect, 

compared to sensitivity analysis. This adjustment for HWE deviation resulted in 

revealing new significant associations, especially in borderline cases. The adjustment 

approach also made even more prominent the diversity in the results of studies on the 

same postulated association. The between-study heterogeneity is important to 

describe, quantify, and try to explain and  meta-analysis should aim at more than 

simply arriving to a grand mean, since dissection of heterogeneity can provide some 

valuable information [1].  

In genome-wide association studies, genotypes violating HWE have been 

routinely eliminated during the quality check stages, as possible genotyping miscalls 

[1]. However, recent work based on simulations showed that true disease 

susceptibility loci can be largely out of HWE and, thus, be candidates for removal 

before association testing. It was also shown that these loci may maintain sufficient 

statistical power even under extreme error models. In addition, random miscalls of 

null SNPs, independent of the phenotype, may do not induce bias in GAS and then, a 

significant deviation from HWE may not prevent a variant from being tested when 

conducting genome-wide association studies. [17]. Nevertheless, significant findings 

for variants not conforming with the HWE should be treated with caution.  

 However, when there is indication that genotyping errors may include the 

miscalling of homozygous and heterozygotes, as well as amplification preference of 

alleles, then, we may consider omitting these variants (after retyping them by 

alternative techniques) when they show huge deviation from HWE. Otherwise, the 



chance of false-positive associations is considerably inflated [6]. Since no study can 

really claim immunity to genotyping errors, correction for departures from HWE 

should be applicable even when the probability for substantial genotyping error is low 

[18].  

An adjustment to account for deviations from HWE based on the inbreeding 

coefficient has been proposed to examine difference of the estimated allele 

frequencies between cases and controls when there is excess of homozygotes [6]. Sato 

et al. estimated the variance of allele odds ratio based on an estimate of a fixation 

index [8]. Although, the use of inbreeding or fixation coefficients to describe 

departures from HWE has some merit, it has the disadvantage that the parameters 

involved are estimated as ratios of genotypic frequencies, and it is difficult to estimate 

the statistical properties of ratios [9]. 

In conclusion, the application of the adjusted variance of allele-based OR for 

HWE deviations proved to be an effective strategy in detecting associations in GAS 

and meta-analyses of GAS, which could have been missed by using sensitivity 

analysis. Additionally, significant heterogeneity in meta-analyses of GAS was more 

often detected by the variance adjustment method. Although the impact of the 

variance adjustment method was evident by small size changes, it resulted in shifting 

of significance status in borderline cases. In the era of genome-wide association 

studies, the field has shifted towards consortial efforts that will allow the detection of 

the diminishing, in terms of effect sizes, genetic associations [19]. Eliminating studies 

and datasets on the basis of HWE violations alone seems unjustified and could limit 

the power for new discoveries. The proposed adjustment of variance represents a 

useful technique that can enhance the power to detect associations in GAS and meta-

analyses.   



Figure 1. Level of significance (P-value) of association for the 833 GAS with and 

without adjustment for HWE deviation. 
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Figure 2. Power of studies for detecting significant HWE in relation to the level of 

signifcance (PHWE).  
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Figure 3. Pooled odd ratios (OR) with the corresponding 95% confidence intervals 

(CI) unadjusted (solid square) and adjusted (open square) for deviation from HWE, 

and sensitivity analysis (solid circle) for 45 meta-analysis that included studies 

deviated from HWE. The identification numbers on the y-axis corresponds to the 

meta-analyses. The first author, the publication year, the gene polymorphism, the 

disease and the number of studies included and the number of studies deviated from 

HWE for each meta-analysis are shown.  
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1. Zintzaras et al. 2005 (5/2), MTHFR C677T, diabetic retinopathy 

2. Zintzaras et al. 2005 (6/2), BDNF G196A, Parkinson's disease 
3. Zintzaras et al. 2006 (14/7), VDR BsmI B/b, osteoporosis 

4. Zintzaras et al. 2006 (7/1), TaqI T/t , osteoporosis 

5. Zintzaras et al. 2006 (7/4), ApaI A/a, osteoporosis 
6. Zintzaras et al. 2006 (3/1), FokI F/f , osteoporosis 

7. Zintzaras et al. 2006 (10/1), MTHFR C677T, schizophrenia   

8. Zintzaras et al. 2006 (9/2), MTHFR C677T , acute lymphoblastic leukemia 
9. Zintzaras 2006 (8/3), MTHFR C677T , Stomach cancer 

10. Zintzaras 2006 (4/2), MTHFR A1298C , stomach cancer 

11. Zintzaras et al. 2006 (15/2), eNOS Glu298Asp , hypertension 
12. Zintzaras et al. 2006 (11/4), eNOS 4b/a , hypertension 

13. Zintzaras et al. 2006 (39/3), ADH2 2/1, alcoholism 

14. Zintzaras et al. 2006 (28/6), ADH3 1/2 , alcoholism 
15. Zintzaras et al. 2006 (30/11), ALDH2 2/1 , alcoholism 

16. Zintzaras et al. 2006 (23/2), CYP 2/1 , alcoholism 

17. Zintzaras 2007 (11/1), MTHFR C677T, Down syndrome 
18. Zintzaras 2007 (7/1), MTHFR A1298C, Down syndrome 

19. Zintzaras et al. 2007 (14/3), MTHFR C677T , diabetic nephropathy 

20. Zintzaras 2007 (5/2), BDNF G196A, schizophrenia   
21. Amorim et al. 2008 (37/3), MTHFR C677T, Neural Tube Defects 

22. Banerjee et al. 2008 (10/2), MTHFR C677T, stroke 

23. Banerjee et al. 2008 (6/2), ACE I/D, stroke 
24. Begovich et al. 2008 (13/1), FCRL3 -169T/C, rheumatoid arthritis 

25. Lin et al. 2008 (13/2), 5-HTT S/L promoter, obsessive compulsive disorder 

26. Loza et al. 2008 (12/2), IL4R Q551R, atopic asthma 
27. Loza et al. 2008 (12/1), IL4R I50V, asthma  

28. Medica  et al. 2008 (14/2), AGT Met235Thr, preeclampsia 
29. Medica  et al. 2008 (11/1), ACE I/D, preeclampsia 

30. Naoe et al. 2008 (8/1), BDNF Val66Met, schizophrenia   

31. Pereira et al. 2008 (8/1), TNF G308A, ischemic stroke 
32. Qian et al. 2008 (16/2), BDNF Val66Met, schizophrenia 

33. Taioli et al. 2008 (10/3), MPO -463G/A, lung cancer 

34. Tsantes et al. 2008 (14/1), PAI-1 4G/5G, ischemic stroke 
35. Tsantes et al. 2008 (23/2), PAI-1 4G/5G, Venous Thrombosis 

36. Verkleij-Hagoort et al. 2008 (10/1), MTHFR C677T , congenital heart defects 

37. Zintzaras et al. 2008 (6/1), COMT G472A, panic disorder 
38. Zintzaras et al. 2008 (6/1), MTHFR A1298C, multiple myeloma 

39. Zdoukopoulos et al. 2008 (6/1), FV Leiden R506Q, placental abruption 

40. Zdoukopoulos et al. 2008 (3/1), F II  G20210A , placental abruption 
41. Zintzaras et al. 2008 (108/19), ACE D/I , coronary artery disease 

42. Zintzaras et al. 2009 (4/2), ALOX5AP SG13S89 G/A, stroke 

43. Zintzaras et al. 2009 (6/1), MTHFR C677T , peripheral arterial disease 
44. Zintzaras et al. 2009 (4/2), IL6 -174 G/C, peripheral arterial disease 

45. Zintzaras et al. 2009 (6/1), ACE D/I, peripheral arterial disease 

 



Figure 4. P-values of pooled estimates unadjusted and adjusted for deviation from 

HWE for the 72 meta-analyses.  
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Figure 5. Heterogeneity values (I
2
) without adjustment and after adjustment for 

deviation from HWE for the 72 meta-analyses.  

 

0

20

40

60

80

100

0 20 40 60 80 100

I
2 

I2
 a

ft
e

r 
a

d
ju

s
tm

e
n

t 
fo

r 
H

W
E

 
 

 

 

 



 

REFERENCES 

 

 1.  Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-

disease associations requires appropriate methodological and statistical 

approaches. J Clin Epidemiol. 2008;61:634-45. 

2.  Maynard Smith J. Evolutionary Genetics. Oxford University Press. New York 

1998. 

 3.  Wittke-Thompson JK, Pluzhnikov A, Cox NJ. Rational inferences about 

departures from Hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76:967-

86. 

 4.  Xu J, Turner A, Little J, et al. Positive results in association studies are 

associated with departure from Hardy-Weinberg equilibrium: hint for 

genotyping error? Hum Genet. 2002;111:573-4. 

 5.  Salanti G, Amountza G, Ntzani EE, et al. Hardy-Weinberg equilibrium in 

genetic association studies: an empirical evaluation of reporting, deviations, and 

power. Eur J Hum Genet. 2005;13:840-8. 

 6.  Schaid DJ, Jacobsen SJ. Biased tests of association: comparisons of allele 

frequencies when departing from Hardy-Weinberg proportions. Am J 

Epidemiol. 1999;149:706-11. 

 7.  Lathrop GM. Estimating genotype relative risks. Tissue Antigens 1983;22:160-6 

 8.  Sato Y, Suganami H, Hamada C, et al. The confidence interval of allelic odds 

ratios under the Hardy-Weinberg disequilibrium. J Hum Genet. 2006; 51:772-80 

 9.  Zintzaras E. Variance estimation of allele-based odds ratio in the absence of 

Hardy-Weinberg equilibrium. Eur J Epidemiol. 2008;23:323-6. 



 10.  Zintzaras E, Koufakis T, Ziakas PD, et al. A meta-analysis of genotypes and 

haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute 

lymphoblastic leukemia. Eur J Epidemiol. 2006;21:501-10. 

 11.  DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 

1986;7:177-88. 

 12.  Emigh TH. Comparison of tests for Hardy-Weinberg Equilibrium. Biometrics. 

1980;36:627-42. 

 13.  Severo NC, Zelen M. Normal approximation to the chi-square and non-central F 

probability functions. Biometrica. 1960;47:411-6. 

 14.  Sasieni PD. From genotypes to genes: doubling the sample size. Biometrics. 

1997;53:1253-61. 

 15.  Munafo MR, Flint J. Meta-analysis of genetic association studies. Trends Genet. 

2004; 20:439-44. 

 16.  Minelli C, Thompson JR, Abrams KR, et al. How should we use information 

about HWE in the meta-analyses of genetic association studies? Int J Epidemiol. 

2008;37:136-46. 

 17.  Fardo DW, Becker KD, Bertram L, et al. Recovering unused information in 

genome-wide association studies: the benefit of analyzing SNPs out of Hardy-

Weinberg equilibrium. Eur J Hum Genet. 2009; 17:1676-82. 

 18.  Trikalinos TA, Salanti G, Khoury MJ, et al. Impact of violations and deviations 

in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J 

Epidemiol. 2006;163:300-9. 

 19.  Goldstein DB. Common genetic variation and human traits. N Engl J Med. 

2009; 360:1696-8. 

 


