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Abstract. This article introduces a novel active contour model that
makes use of non-parametric estimators over patches for the segmenta-
tion of textured images. It is based on an energy that enforces the homo-
geneity of these statistics. This smoothness is measured using Wasser-
stein distances among discretized probability distributions that can han-
dle features in arbitrary dimension. It is thus usable for the segmentation
of color images or other high dimensional features. The Wasserstein dis-
tance is more robust than traditional pointwise statistical metrics (such
as the Kullback-Leibler divergence) because it takes into account the
relative distances between modes in the distributions. This makes the
corresponding energy robust and does not require any smoothing of the
statistical estimators. To speed-up the computational time, we propose
an alternative metric that retains the main qualities of the Wasserstein
distance, while being faster to compute. It aggregates 1-D Wasserstein
distances over a set of directions, and thus benefits from the simplicity
of 1-D statistical metrics while being able to discriminate high dimen-
sional features. We show numerical results that instantiate this novel
framework using grayscale and color values distributions. This allows us
to segment regions with smoothly varying intensities or colors as well as
complicated textures.

1 Introduction

This article considers a variational minimization problem aiming at detecting
objects in textured images. It makes use of a comparison principle between pairs
of neighboring patches. We thus refer to it as a “non-local” approach, following
the terminology initiated in [1]. The resulting method is a general framework to
implement a piecewise smooth segmentation model. To illustrate the generality
of this concept, we make use of statistical distances between distributions. The
resulting method considers that the objects to be segmented are sampled from
a non-stationary distribution with parameters that vary smoothly from pixel
to pixel. Our approach is general when it comes to the use of distributions, in
the sense that it can handle the distributions of general features such as pixel
values, small chunks of pixel values to capture the joint dependancies between
neighboring pixels, multiscale coefficients (e.g. wavelets, Gabor filter banks, etc)
or group of these. We restrict in this article our attention to the distributions of
pixel values (intensities or color values).
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1.1 Previous Works

Region-based active contours. This paper is focused on the class of region-
based approaches to image segmentation. These methods make use of informa-
tion extracted from inside and outside the region to be segmented. Following
the seminal work of Mumford and Shah on optimal partitions [2], several influ-
ential works have proposed to perform image segmentation using a variational
minimization with a region-based energy that seeks for constant features in each
region to be segmented, see for instance [3, 4].

More recently, several models have been introduced to handle a local ho-
mogeneity of the features. They require the estimation of a piecewise smooth
parameter field, see for instance [5–9]. The non-local active contour method, re-
cently introduced in [10, 11], also makes use of such a local homogeneity principle,
but implements the variational minimization using only a pairwise comparison
of features, which might for instance depend on patches extracted around each
pixel. A chief advantage of this approach is that it does not require the estima-
tion of a piecewise smooth set of parameters, and only requires the design of a
metric to compare patches. In this paper, we extend this non-local active con-
tour framework in several directions, to capture locally homogenous statistical
distributions.

Non-local segmentation. Non-local methods have been applied in many image
processing problems such as denoising [1], general inverse problems [12] and
segmentation [13–15], by regularizing the image using comparison of patches
in the image. In this article we define an attraction term pulling the contour
towards the object boundaries, which is contrast to the existing non-local based
segmentation methods that use non-local energy terms only as regularization
terms.

Statistical segmentation. Instead of considering a small set of parameters
(such as the mean value of the features), more general models make use of
statistical distributions to drive the segmentation. These approaches are quite
effective for many natural images or textures that contain complicated random
fluctuations. The resulting statistical region-based active contours make use of
pointwise similarity measures among distributions (such as the Kullback-Leibler
divergence) to compare the distributions, in a parametric or non-parametric
(using Parzen windows) fashion, see for instance [16–19]. In this paper, we also
consider the setting of statistical segmentation, and we propose to use a fully
non-parametric estimator that does not require to compute histograms.

Wasserstein metric. Traditional pointwise statistical distances are simple to
compute, but suffer from several drawbacks, in particular the difficulty to handle
localized distributions. This is because these statistical distances do not take into
account the relative positions between the modes of the distributions. In practice,
a smoothing of the histogram using Parzen windows is required to make these
methods usable on localized distributions. To address these issues, Ni et al.
[20] propose to make use of the L1 Wasserstein distance in order to extend the
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segmentation model of Chan and Vese [3]. This work is extended to color image
segmentation in [21] using a Wasserstein metric only on the brightness channel,
thus resulting in a 1-D optimal transport metric.

The Wasserstein distance is now routinely used in computer vision, for in-
stance as a metric for retrieval, where it improves over more classical pointwise
distances between histograms [22]. It is also used for other image processing ap-
plications such as warping [23] and texture synthesis [24]. This metric is related
to the assignment problem [25]. We use this connection in our work to avoid
computing histograms.

1.2 Comparison with Previous Works

Our work draws connexions between recent works in statistical image seg-
mentation, and extends these works in several directions.

We make use of the non-local active contour variational minimization prob-
lem proposed recently in [10, 11]. We extend it by introducing a pixel-by-pixel
normalization of the energy. This is crucial to obtain a un-biased segmentation
result in the case where the size of patches is large. This is typically required for
statistical segmentation when the distributions have a large variance (such as
for noisy images or for complicated textures). Furthermore, we instantiate this
energy using a Wasserstein metric. This defines a notion of locally homogeneous
statistical distributions, which might be of independent interest.

We follow the work of [20] which is the first to clearly acknowledge the im-
portance of optimal transport for image segmentation. We develop a different
variational model, that does not require a global consistency of the local his-
tograms. This is important to segment images with a slowly varying background,
or complicated non-stationary textures. Furthermore, we extend this method to
distributions in arbitrary dimension, which leads for instance to a 3-D distance
for color distributions. We also make use of the Lp Wasserstein distance using
an assignment formulation of the metric, while previous works restrict their at-
tention to p = 1. To speed up the evaluation of the Wasserstein distance, we
approximate it using a series of 1-D projections, which is a method introduced
in [24] for histogram equalization.

1.3 Contributions

Our first contribution is a novel region-based segmentation method that ex-
tends the non-local active contour method [10, 11] using a pixel-by-pixel nor-
malization. Our second contribution is the definition of a novel segmentation
criteria that requires only a local homogeneity of the statistical distribution of
features. This criteria is handled using Wasserstein metrics, which extends the
global homogeneity criteria introduced in [20, 21].

2 Non-local Active Contours

Section 2 recalls the non-local active contours energy introduced originally
in [10, 11]. We then describe our contribution, which is a normalization of this
model that reduces significantly the bias introduced by the use of patches.
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2.1 Un-normalized Non-local Active Contours [10, 11]

Our goal is to segment an image f : [0, 1]2 → Rd, where d is dimensionality
of the feature space. We make use of a local patch extraction process to design
variational energies.

Pairwise Patch Interaction. A patch in some image f around a pixel x ∈
[0, 1]2 is defined as px(t) = f(x+ t), ∀ t ∈ [−τ/2, τ/2]2.

The non-local interaction between two patches is measured using a metric
d(·, ·) > 0 that accounts for the similarity between patches.

The simplest choice, considered in [10], is a weighted L2 distance

d(px, py) =

∫
t

Ga(t)||px(t)− py(t)||2dt, (1)

where a Gaussian weight Ga(t) = e−
||t||2

2a2 can be used to give more influence to
the central pixel.

More complicated similarity measures can be used, and Section 3 explains
how to use statistical distances.

Level set formulation. The segmentation problem corresponds to the compu-
tation of some region Ω ⊂ [0, 1]2 that should capture the objects of interest.

We represent the segmented region Ω using a level set function φ : [0, 1]2 →
R so that Ω = {x \ φ(x) > 0}. To simplify the exposition, we make use of a
smoothed Heaviside function H(φ) = 1

2 + 1
πatan(φ/ε) to introduce variational

energies and compute their derivatives. The parameter ε should be chosen small
enough to obtain a sharp region boundary, but not too small to avoid numerical
instabilities. In the numerical examples, we use ε = 1/n for a discretized image
of n× n pixels.

A mathematically more rigorous way to derive the corresponding PDE is
to make use of the shape derivative machinery, which is formally equivalent
to letting ε tend to 0, see for instance [18, 19]. Using such a shape gradient
would make the evolution PDE well defined only on the boundary of Ω, and this
evolution is then extended to the whole domain by preserving some distance
function property on φ.

Non-local segmentation energy. Following [10, 11], we introduce an energy
functional E0(φ) enforcing the similarity of features located either inside or
outside Ω,

E0(φ) =

∫∫
ρ(H(φ(x)),H(φ(y)))Gσ(x− y)d(px, py)dxdy. (2)

The function ρ restricts the comparison to pairs of patches that are in the same
region (inside or outside). Since H(φ(x)) is close to being a binary function,
we use ρ(u, v) = 1 − |u − v| for the numerical experiments (but other similar
functionals could be used as well). Note that the parameter σ > 0 is important
since it controls the scale of the local homogeneity one requires for the segmented
object.
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To enforce the regularity of the boundary of the extracted region, following
previous works in active contours, we penalize its length, which is computed as

L(φ) =

∫
||∇H(φ)(x)||dx =

∫
H ′(φ(x))||∇φ(x)||dx

where ∇H(φ)(x) is the gradient at point x of the function H(φ).

The non-local active contour model computes the segmentation as a station-
ary point of the energy

min
φ

E0(φ) + γL(φ) (3)

where γ > 0 is a parameter that should be adapted to the expected regularity
of the boundary of the region.

Limitation and Motivation The non-local active contours model works well
when the size of patches is small. Figure 1 shows examples of segmentation of
piecewise smooth images using the L2 patch distance (1) with patches of width
τ = 3/n for an image of size n × n and a = 0.5/n. The local homogeneity
property of the energy (2) enables the model (3) to correctly detect objects
which are only locally homogeneous, and can deal with separated objects with
different intensities.

This model however suffers from a segmentation bias. The segmented region
is shifted away from the object boundary with an amount proportional to the
patch width τ . This becomes problematic when used with large patches, because
of the lack of precision of the resulting segmentation. Large patches (and large
values of a) are however desirable as the noise level increases, since robustness
requires more pixels to evaluate the local homogeneity. Figures 2 and 3 show that
increasing the size of patches (the value of a) leads to segmented regions with
a smoother boundary, but also reveal that the resulting curve is not located on
the exact boundary of the object. Figure 3, first column, shows how the amount
of bias increases as the size of patch (or the value a) increases.

2.2 Normalized Non-local Active Contour model

Normalized energy. To reduce the segmentation bias introduced by the non-
local active contour energy (2), we define a novel normalized non-local energy

E(φ) =

∫
1

C(φ, x)

∫
ρ(H(φ(x)),H(φ(y)))Gσ(x− y)d(px, py)dydx, (4)

where the local normalization factor is C(φ, x) =
∫
ρ(H(φ(x)),H(φ(y)))Gσ(x−

y)dy > 0. Note that the un-normalized energy E0 defined in (2) is recovered by
setting C(φ, x) = 1.

In practice, the correction factor 1/C(φ, x) is far from being constant, in
particular when the size of patches is large. This normalization is thus crucial to
reduce the disparities that increase as a pixel approaches the boundary of the
segmented region.
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Gradient flow. Our normalized non-local active contour model computes the
segmentation as a stationary point of the energy

min
φ

E(φ) + γL(φ) (5)

where L is defined in (2) and γ > 0 is a regularization parameter.
Introducing an artificial time t > 0, the gradient flow of (5) reads

∂φ

∂t
= − (∇E(φ) + γ∇L(φ)) , (6)

for φ(x, t) parameterized by space and time.
The gradients are computed as

∇E(φ)(x) =
∂f(φ(x))g(φ(x))− f(φ(x))∂g(φ(x))

(g(φ(x)))2
, (7)

∇L(φ)(x) = −div

(
∇φ(x)

||∇φ(x)||

)
H ′(φ(x)), (8)

with the notations

f(u) :=

∫
ρ(H(u),H(φ(y)))Gσ(x− y)d(px, py)dy,

g(u) :=

∫
ρ(H(u),H(φ(y)))Gσ(x− y)dy,

∂f(u) :=

∫
(∂1ρ)(H(u),H(φ(y)))Gσ(x− y)d(px, py)dy H

′(u),

∂g(u) :=

∫
(∂1ρ)(H(u),H(φ(y)))Gσ(x− y)dy H ′(u).

where ∂1 is the gradient with respect to the first variable.

Numerical implementation. The segmentation is applied to a discretized im-
age f of n×n pixels. The length energy (2) is computed using a finite difference
approximation of the gradient.

In a preprocessing step, the distance between neighboring patches d(px, py) is
computed. Depending on the numerical application, one might want to use either
the weighted L2 norm (1) or the sliced Wasserstein distance defined in (11).

The gradient flow (6) is then discretized using a gradient descent

φ(ℓ+1) = φ(ℓ) − µℓ (∇E(φ) + γ∇L(φ)) ,

where µℓ > 0 is a suitable time step size.
To make all the level sets evolve simultaneously, H ′(φ(x)) appearing in (7)

and (8) is replaced by ||∇φ(x)||. To ensure the stability of the level set evolution
(6), one needs to re-initialize it from time to time. This corresponds to replacing
φ by the signed distance function to the level set {x \ φ(x) = 0}.

The width σ of the windowing function Gσ(x− y) typically depends on the
initial curve at time t = 0. If the initial curve is far away from the object
boundary, a large windowing function might be required.
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3 Wasserstein Local Homogeneity

Classical deterministic similarity measures such as the L2 norm (1) are suit-
able to segment piecewise smooth images. They can also be used over a trans-
formed domain (such the output of a Gabor filter bank [10]) to characterize
some simple geometric textures. To handle complicated images containing tex-
tural contents, it is useful to consider similarity measures between statistical
distributions.

3.1 Wasserstein Distance

In this article we consider a Lagrangian discretization of distributions, which
corresponds to treating a distribution X as a points cloud X = {Xi}N−1

i=0 ⊂ Rd.
In our numerical applications, d = 1 for grayscale images and d = 3 for color
images. This is different from the more traditional Eulerian discretization, that
makes use of a fixed set of points (usually a rectangular grid) but where the
points are equipped with a weight to reflect the local density of the distribution.
These histogram-based (Eulerian) discretizations are at the heart of previous
statistical region-based active contours such as [20, 18, 19].

In this Lagrangian setting, for p > 1, the Lp Wasserstein distance between
two distributions X,Y ⊂ Rd is defined as

W p(X,Y ) = min
σ∈ΣN

N−1∑
i=0

∥Xi − Yσ(i)∥p (9)

where ΣN is the set of all the permutations of N elements. For simplicity we
have restricted our attention to distributions having the same number of points,
which is the case for our application to segmentation. Note that W should really
be understood as being a distance between points clouds, since it is invariant
under a permutation of the indexes of the distributions.

The permutation σ minimizing (9) is the optimal assignment between the
two points clouds. This optimal assignment problem can be solved using combi-
natorial optimization schemes in O(N5/2 log(N)) operations, see [25].

3.2 Sliced Wasserstein Distance

1-D Wasserstein Distance. In the 1-D case, the optimal assignment σ that
solves (9) can be computed in O(N log(N)) operations by ordering the points
clouds X and Y

XσX(i) 6 XσX(i+1) and YσY (i) 6 YσY (i+1)

with two permutations σX , σY ∈ ΣN . The optimal permutation is then σ =
σY ◦ σ−1

X . Equivalently, the Wasserstein distance is the Lp norm of the sorted
vectors

W p(X,Y ) =
N−1∑
i=0

|XσX(i) − YσY (i)|p. (10)



8 M. Jung, G. Peyré and L. Cohen

Note the major computational difference between the assignment problem (9)
in dimension d = 1 and in higher dimensions d > 1, where no O(N log(N))
algorithm is available.

Sliced approximation. The numerical complexity of solving (9) in dimension
d > 1 is prohibitive for imaging applications such as our segmentation problem.
To obtain a fast numerical scheme, we follow the work of Rabin et al. [24] that
introduces a sliced Wasserstein distance. It is defined as an aggregation of 1-D
Wasserstein distances of projected distributions

SW p(X,Y ) =
∑
θ∈Θ

W p(Xθ, Yθ) where Xθ = {⟨Xi, θ⟩}N−1
i=1 . (11)

Here Xθ, Yθ ⊂ R are projected 1-D distributions and Θ ⊂ Rd is a discrete set of
directions, sampled on the unit sphere.

Evaluating this sliced distance (11) has a complexity of O(|Θ|N log(N)) op-
erations which is advantageous over the original Wasserstein distance (9) if Θ
is not too large. Although there is no mathematical proof of the quality of the
approximation of W using SW , numerical observations suggest that SW is a
good approximation to solve minimization problems involving the Wasserstein
metric, see [24].

3.3 Wasserstein Non-local Active Contours

The sliced approximation (11) is used to measure the similarity between
patches to perform statistical region-based segmentation. We thus propose to
replace the L2 norm in (1) by

d(px, py) = W p([px], [py])

where the operator [·] maps a vector v = (vi)
N−1
i=0 ∈ RN to a points cloud

[v] = {vi}N−1
i=0 ⊂ Rd.

4 Experimental Results and Comparisons

This section presents experimental results with synthetic and real images.

Chan-Vese and LBF model incorporated with patches. For grayscale images, we
compare our model (5) with extensions of the Chan-Vese (CV) [3] and locally
binary fitting (LBF) models [6]. These extensions make use of patches to enable
a fair comparison with our method.

They are obtained by replacing intensity features by patches in the original
CV or LBF models

min
p1,p2,φ

E(p1, p2, φ) + γL(φ) (12)

where E is either ECV or ELBF defined as

ECV = λ1

∫
d(px, p

1)H(φ(x))dx+ λ2

∫
d(px, p

2)(1−H(φ(x)))dx,
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Fig. 1. Results of the un-normalized model (3) with the weighted L2 distance function
(1), and comparison with Chan-Vese model [3]. Patches of width τ = 3/n (3×3 pixels)
and a = 0.5/n are used. 100× 100 image and 31× 31 windowing function are used.

The un-normalized model (3) Our normalized model (5)

Fig. 2. Comparisons of our new normalized model (5) with the un-normalized model
(3) with the L2 distance (1). 1st-3rd: the un-normalized model with patches of width
τ = 1/n (1st), τ = 3/n and a = ∞ (2-3rd) with two different parameters γ = 0.3 (2nd)
and 0.5 (3rd). 4th-5th: our new normalized model (5) with patches of width τ = 3/n,
τ = 5/n and a = ∞.

ELBF = λ1

∫∫
Gσ(x− y)d(py, p

1
x)H(φ(y))dydx

+λ2

∫∫
Gσ(x− y)d(py, p

2
x)(1−H(φ(y)))dydx,

where λ1, λ2 > 0 are parameters, and p1 and p2 are updated by iteratively cycling
through φ and then (p1, p2). Note that the energy ECV is introduced in [20] in
the special case of the L1-Wasserstein distance. In the numerical examples, we
let λ1 = λ2 = 1, and we tried to choose the best smoothness parameters γ for
each model.

For color images, we compare our model (5) with the vector-valued Chan-
Vese model [26], and the work [21] that uses a Wasserstein metric only on the
brightness channel and the vector-valued Chan-Vese model for the chromaticity
components.

L2 Distance Between Patches. Figure 1 shows the results of the un-normalized
model (3) tested on synthetic images with spatially varying background and/or
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The un-normalized model (3) Our normalized model (5), CV, LBF

Fig. 3. Comparisons of models with the new distance function (10). 1st-2nd columns:
the un-normalized model (3) with two different parameters γ = 0.1, 0.5 (1st row),
γ = 0.2, 0.3 (2nd row). 3rd-5th columns: our new normalized model (5), CV and LBF
models (12) with patches with width τ = 15/n (top row), τ = 11/n (bottom).

object, or with several separated objects with different intensities. Due to the
local homogeneity property, the model correctly detects objects, while the two-
phase Chan-Vese model, requiring a global homogeneity in each region, fails for
the correct segmentation.

Figure 2 presents an example where the un-normalized model (3) does not
provide satisfactory results with any kinds of patches: patches of width τ = 1/n
(1 pixel), τ = 3/n (3×3 pixels) with a = ∞. By using patches of width τ = 1/n,
the un-normalized model (3) produces noisy final curves, and by using patches of
width τ = 3/n, it results in smoother final curves that are however not located
on the object boundaries in spite of adjusting the smoothness parameter γ. On
the other hand, our new normalized model (5) with patches of width τ = 5/n
provides a smooth final curve, located exactly on the boundary. This example
also shows the case when a large size of patch is required because our model
with smaller size (τ = 3/n) of patch also gives noisy final curves.

Wasserstein Distance Between Patches. Figure 3 presents the examples where
the L2 patch distance (1) cannot be applied because the black and white stripe
pattern is a texture that is not homogenous in the pixel domain. Furthermore,
these examples require a large patch size to capture the texture statistics. We
present comparisons of the un-normalized model (3), our new normalized model
(5), CV and LBF models (12), using the 1-D Wasserstein distance (10). The
1st-2nd columns present the results of the un-normalized model with different
smoothness parameters γ with patches of τ = 15/n (1st row) and 11/n (2nd row).
The un-normalized model produces biased final curves near the boundary, and
large values of γ seem to reduce the bias to some extent. However, the bias cannot
be reduced completely by the parameter γ, as well as that large values of γ result
in too smoothed-out curves and slow convergence. However, our model locates
the curves exactly on the boundary. Lastly, the 4th-5th columns show that CV
and LBF models also do not locate the final curves on the exact boundary: the
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Fig. 4. Results of our new normalized model (5) with the Wasserstein distance (10).
1st-5th columns: initial curve (1st), curve evolution (2nd-3rd), final curve (4th), plot
of energy E(φ(ℓ)) vs iteration ℓ (5th). Patches of width τ = 3/n are used.

curves are located a few pixels far away from the boundaries. Although our model
and CV/LBF models have similar behaviors on globally homogeneous textures,
this example highlights the importance of our normalization.

Figure 4 shows that our new normalized model (5) with the Wasserstein
distance (10) detects objects with smoothly varying distributions of intensities
and separated multiple objects with different distributions of intensities. It also
shows the curve evolution of our model starting from given initial curves, and
displays the convergence of the energy E(φ(ℓ)) as a function of the iteration
index ℓ.

Figure 5 presents texture segmentation results of our model (5) and compar-
ison with CV model (12). Again due to the local homogeneity, our model dis-
criminates different textures having different distributions of intensities, while
CV fails for the correct discrimination.

In Figure 6, we present color texture segmentation results of our model us-
ing a sliced Wasserstein distance (11). We considered only |Θ| = 3 projection
directions, i.e. Θ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which was enough to obtain
satisfactory segmentation in all the given examples. We also compare our model
with the vector-valued Chan-Vese model [26], and with the color extension [21]
of the original method proposed in [20]. In all the examples, our model correctly
detects the boundary of objects and segments separated multiple objects with
different distributions of color values, in contrast to the other models that do not
locate the curve on the exact boundaries, detect only part of objects or fail to de-
tect objects. Note that the second example was degraded by the random-valued
implusive noise of density 0.3.

Conclusion

In this article, we have proposed a novel non-local energy for the segmentation
of textured images, making use of non-parametric estimators over patches. The
Wasserstein distance and its sliced approximation can be used as a similarity
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Fig. 5. Texture segmentation using our new normalized model (5) with the Wasserstein
distance (10), and comparison with CV model (12). 1st-3rd rows: initial curves (1st),
results of our model (2nd) and CV model (3rd). 1st, 3rd, 4th columns: patch with width
τ = 11/n, 2nd column: patch with width τ = 7/n. In our model, 31 × 31 windowing
function is used.

measure which allows one to segment complicated textural features in arbitrary
dimension. Due to the local homogeneity property of the energy, our active
contour model is able to detect regions with smoothly spatially varying features.
It can also segment several separated regions with different features. All these
properties are significant extensions of existing region-based models crucial to
solve difficult texture segmentation problems.
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Initial curve Our model (5) Vector-valued CV [26] Extended work [21]

Fig. 6. Texture segmentation using our new normalized model (5) with the sliced
Wasserstein distance (11) with |Θ| = 3 fixed directions, and comparison with the
vector-valued Chan-Vese model [26] and the extended work [21] of [20]. Patches with
width τ = 11/n (1st), τ = 5/n (2nd), τ = 9/n (3rd), τ = 7/n (4th-5th) are used, and
31× 31 windowing functions are used.


