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Abstract

In this paper, a unified trajectory model based on the styl-

ization and the modelling of f0 variations simultaneously

over various temporal domains is proposed1. The syllable is

used as the minimal temporal domain for the description of

speech prosody, and short-term and long-term f0 variations are

stylized and modelled simultaneously over various temporal

domains. During the training, a context-dependent model is

estimated according to the joint stylized f0 contours over the

syllable and a set of long-term temporal domains. During the

synthesis, f0 variations are determined using the long-term

variations as trajectory constraints. In a subjective evaluation

in speech synthesis, the stylization and trajectory modelling

of short and long term speech prosody variations is shown

to consistently model speech prosody and to outperform the

conventional short-term modelling.

Index Terms: speech prosody, stylization, trajectory model,

speech synthesis.

1. Introduction

In parallel to the development of high-quality speech synthesis

systems [1], the modelling of speech prosody has raised as a

major concern to improve the naturalness, the liveliness, and

the variety of the synthetic speech. Speech prosody is generally

described as the co-occurrence of acoustic gestures occurring

simultaneously over different temporal domains [2, 3] and

associated to different communicative functions (linguistic,

expressive). A high-quality modelling of speech prosody

is desirable for natural and expressive speech synthesis and

adequate modelling of speaking style, and a prerequisite in real

multi-media applications (e.g., avatars, story telling, dialogue

systems, numeric arts).

A variety of methods has been proposed to model speech

prosody variations (f0 [4], temporal structure [5]), and local

and global variations [6, 7]. However, conventional methods

usually models short-term variations of speech prosody

(frame-based, or instantaneous variations), while long-term

variations of speech prosody are not explicitly considered.

Recent studies have been proposed to integrate long-term

variations into HMM modelling, either for the modelling

of f0 variations [8, 9], or with extension to state-duration

1This study was partially funded by “La Fondation Des Treilles”,
and supported by ANR Rhapsodie 07 Corp-030-01; reference prosody
corpus of spoken French; French National Agency of research; 2008-
2012.

modelling [10]. However, the proposed methods remain a

mixed model, i.e. the conventional model is used to model the

instantaneous variations of f0, while stylization of long-term

variations are used as trajectory constraints only. In particular,

the instantaneous variations remain the minimal and target

temporal domain for the modelling of speech prosody.

In this paper, a unified trajectory model based on the stylization

and the joint modelling of f0 variations over various temporal

domains is proposed. In the proposed approach, the syllable

is used as the minimal temporal domain for the description of

speech prosody, and f0 variations are stylized and modelled

simultaneously over various temporal domains which cover

short-term and long-term variations. During the training, a

context-dependent model is estimated according to the joint

stylized f0 contours over the syllable and a set of long-term

temporal domains. During the synthesis, f0 variations are

determined using the long-term variations as trajectory con-

straints.
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Figure 1: Schematic comparison of frame-based and syllable-

based modelling of f0 variations.

2. Stylization of Speech Prosody

The Discrete Cosine Transform (DCT) is used to stylize the f0

variations over various temporal domains [11] (figure 2). The
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Figure 2: Instantaneous estimation of f0, short-term stylization over syllable, and long-term stylization over prosodic group.

principle of the DCT is to decompose f0 contours on a basis

of slowly time-varying functions defined by zero-phase cosine

functions φ = (cos (ω1) , . . . , cos (ωT )) at discrete frequen-

cies ωk =
π

2T
(2k + 1), where T is the length of the temporal

domain used for stylization.

The stylized f0 contour is then obtained by inverse transform of

the K order truncated DCT (K ≤ T ):

f0(t) =

K
X

k=1

αkck cos (ωkt) (1)

where ck is the k-th term of the DCT, and αk a term used for

normalization.

Two classes of temporal domains are defined for the stylization

of f0 variations:

Syllable context accounts for f0 variations occurring on the

syllable and its immediate context (0-order represents

the f0 variations over the syllable, 1-order the f0 vari-

ations over the 1-left-to-right syllable context, . . . );

Linguistic contexts account for f0 variations occurring on

long-term prosodic units (e.g., minor and major prosodic

groups). A minor prosodic group is defined as the

prosodic unit that ends with an intermediate prosodic

boundary, and is used for rhythmic grouping typical

of French. A major prosodic group is defined as the

prosodic unit that ends with a major prosodic boundary.

F0 variations are stylized using a 5-order DCT. F0 is linearly

interpolated in the logarithmic domain prior to the stylization.

The stylization over various temporal scales aims at represent-

ing f0 variations with more or less details, and to model short

and long term dependencies.

3. Trajectory Model

The Trajectory Model has been introduced in HMM-based

speech synthesis to explicitly model the dynamic (local vari-

ations) of the speech parameters [6]. In this study, syllable

is assumed as the minimal temporal domain for the descrip-

tion of speech prosody, and f0 variations are stylized and mod-

elled simultaneously over different temporal domains: short-

term variations correspond to the stylization of f0 contours over

the syllable, and long-term variations correspond to the styliza-

tion of f0 contours over long-term temporal domains. During

the training, a context-dependent HMM is estimated from the

joint short-term and long-term variations. During the synthesis,

the short-term variations are determined so as to maximize the

conditional probability of the short-term variations under the

constraint of the long-term trajectories.

3.1. Parameters Estimation

Let q = [q1, . . . ,qN ] be the sequence of linguistic contexts,

where qn = [qn(1), . . . , qn(L)]⊤ is a (Lx1) linguistic vector

which describes the linguistic characteristics associated with the

n-th syllable.

Let c = [c1, . . . , cN ] be the static observation sequence of

stylized f0 contours over the syllable-level unit, where cn =
[cn(1), . . . , cn(D)]⊤ is a (Dx1) observation vector which de-

scribes the short-term f0 characteristics associated with the n-th

syllable.

Let ∆(k)c = [∆(k)c1, . . . ,∆
(k)cN ] be the dy-

namic observation sequence of stylized f0 contours

over the k-th long-term temporal domain, where

∆(k)cn = [∆(k)cn(1), . . . , ∆(k)cn(D)]⊤ is a (Dx1) obser-

vation vector which describes the long-term f0 characteristics

associated with the n-th syllable.

Let o = [o1, . . . ,oN ] be the augmented observation sequence,

where on = [c⊤

n ,∆(1)c⊤

n , . . . ,∆(K)c⊤

n ]⊤ is a (KDx1)

observation vector which describes the short-term and long

term f0 characteristics associated with the n-th syllable, and

K the total number of long-term temporal domains being

modelled.

A HMM λq is estimated for each of the linguistic contexts.

Each of the context-dependent HMMs is assumed to be a single-

state HMM with single normal distribution and diagonal co-

variance matrix. Then, a context-dependent HMM λ is derived

based on Maximum-Likelihood Minimum-Description-Length

(ML-MDL). The long-term variations are used as additional tra-

jectory constraints to refine the clustering of the models. A

conventional context-dependent HMM is used to model sylla-

ble durations.

3.2. Parameters Inference

The determination of the sequence of f0 parameters is similar

to that of the Trajectory Model with the exception that the

frame-based static observation is reformulated into the stylized

f0 contour over the syllable, and the frame-based dynamic

observation (partial derivative) is reformulated into the stylized

long-term f0 contours. The sequence of syllable durations is

determined with the conventional static method as the sequence

of mean durations.



The optimal static observation sequence c is determined so as

to maximize the log-likelihood of the short-term observation

sequence o, under the constraint of the long-term trajectories

∆(k)c.

The optimal observation sequence bo = [co1
⊤

, . . . , coT

⊤] is de-

termined so as to maximize the conditional probability of the

observation sequence o given the model λ.

bo = argmax
o

max
q

p(o|q, λ) p(q|λ) (2)

The determination of the optimal observation sequence o di-

vides into the following sub-problems:

bq = argmax
q

p(q|λ) (3)

bo = argmax
o

p(o|bq, λ) (4)

Assuming that each syllable is modelled by a single-state

HMM, the optimal state sequence simply corresponds to the

concatenated sequence of context-dependent models associated

with each syllable of the syllable sequence:

bq = [q1, . . . ,qN ] (5)

where N denotes is the total number of syllables in the syllable

sequence.

The maximization of p(o|bq, λ) with respect to o is equivalent

to the maximization of p(c|bq, λ) with respect to c under the

dynamic constraints ∆(k)c:

bo = argmax
o

p(o|bq, λ) ⇔ bc = argmax
c

p(F(c)|bq, λ) (6)

under the constraint:

o = F(c) =
h

c
⊤

,∆
(k)

c
⊤

, . . . ,∆
(K)

c
⊤

i⊤

(7)

A local solution to this problem is determined recursively us-

ing a quasi-Newton method. Finally, global variance is used to

model global dynamics [7].

4. Evaluation

4.1. Stimuli

The proposed trajectory model was evaluated and compared to

the conventional HMM-based model in a subjective evaluation

in speech synthesis. Four models were compared: 1) the con-

ventional HMM-based model (HTS), and trajectory models us-

ing different long-term temporal domains: 2) syllable + 1-order

syllable-context (1ORDER), 3) syllable + minor prosodic group

(AG), and 4) syllable + major prosodic group (PG). Evaluation

was conducted using the HMM-based speech synthesis system

[1]. Models were trained on 5 hours (1888 utterances) of a

French single-speaker story-telling speech database using con-

ventional linguistic contexts. 8 sentences randomly extracted

from the fairy-tale “Le Petit Poucet” (“Little Tom Thumb”) were

used for the comparison. For each of the trajectory models, the

inferred sequence of stylized f0 parameters was converted into

a sequence of f0 variations with respect to the inferred syllable

durations and the voice/unvoiced sequence as inferred from the

conventional HMM-based f0 model. Finally, speech utterances

were synthesized by the speech synthesizer. Each sentence was

synthesized with the different models.

4.2. Procedure

20 native French speakers (including 13 expert and 7 naı̈ve lis-

teners) participated in the evaluation. The experiment consisted

in a subjective comparison of the different speech prosody mod-

els. A comparison category rating test was used to compare the

naturalness of the synthesized speech utterances. The evalu-

ation was conducted according to a crowd-sourcing technique

using social networks. Pairs of synthesized speech utterances

were randomly presented to the participants. They were asked

to attribute a preference score according to the naturalness of

the speech utterances being compared on the comparison mean

opinion score (CMOS) scale.

5. Results

Overall CMOS and preference score (PS) are presented in figure

3. The 1-order trajectory model significantly outperforms all of
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−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−
0.

38

−
0.

180.
53

−
0.

34

C
M

O
S

0 10 20 30 40

17

22

30

18

preference score (%)

13

PG

AG

1ORDER

HTS

no
pref.

Figure 3: CMOS and PS. Mean and 95% confidence intervals

the other prosodic models whatever is the preference measure.

In particular, the 1-order trajectory model is overally signifi-

cantly preferred to the other prosodic models (CMOS=+0.53,

PS=30%), and is individually significantly preferred to each

of the other prosodic models (MOS=+0.54,+0.51,+0.54 and

PS=52.1%,56.3%,55.1% compared with HTS, AG, and PG

models respectively). The AG trajectory model is preferred to

the HTS model but not significantly (overall: CMOS=-0.18,

PS=22%; pair: CMOS=+0.15, PS=46%); and significantly

preferred to the PG trajectory model. Finally, the HTS model is

preferred to the PG trajectory model, but not significantly (over-

all: CMOS=-0.34, PS=18%; pair: CMOS=+0.10, PS=28.7%).

In particular, trajectory models decrease in preference when

increasing the temporal domain of the trajectory constraint

(CMOS1−order=+0.53,PS1−order=30%; CMOSAG=-0.18,

PSAG=22%; CMOSPG=-0.38, PSPG=17%).



A comparison of the preference scores depending on the exper-

tise of the participant reveals a significant difference in the per-

ception of speech prosody between naı̈ve and expert listeners :

naı̈ve listeners have clearly marked preferences, but with more

variability, while expert listeners have less marked preferences,

but with less variability (table 1).

CMOS naive expert
score rank score rank

HTS -0.77 (± 0.44) 4 -0.20 (± 0.27) 2
1-order +0.88 (± 0.43) 1 +0.41 (± 0.26) 1

AG -0.10 (± 0.50) 2 -0.21 (± 0.28) 3
PG -0.20 (± 0.44) 3 -0.52 (± 0.24) 4

Table 1: CMOS depending on the expertise of the participant.

Mean score and 95% confidence interval.

6. Discussion

A study case of synthesized f0 variations with respect to the

speech prosody model is provided in figure 4 with prior state

duration alignment. Speech prosody differences mostly concern

f0 variations, and no significant differences between state-based

and syllable-based modelling.
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Figure 4: Comparison of synthesized f0, with PSs.

The 1-order trajectory model clearly succeeds to model

the local variations and dynamic of speech prosody. The

synthesized f0 variations presents an expanded dynamics while

less micro-prosodic details than those synthesized by the HTS

model. Thus, naı̈ve listeners may focus on global variations

only, when expert listeners may pay a closer attention to finer

prosodic details. The AG trajectory model appears to model

middle-term prosodic variations such as initial f0 reset and lo-

cal f0 declination, compared with the 1-order trajectory model

and the HTS model. However, dynamics is less expended, and

prosodic phrasing is more flat.

A comparison of the different trajectory models reveals that dif-

ferences in speech prosody concern local (syllable contours and

dynamics) and global f0 variations. However, it is observed

that the increase of the trajectory domain results into noisy lo-

cal f0 variations, and partially (AG) or totally (PG) inadequate

global f0 contours. In particular, the PG trajectory model failed

in modelling global f0 declination. The degradation is proba-

bly due to the increase in the dimensionality of the optimization

problem when accounting for long-term trajectory constraints.

In the absence of an explicit formulation of the gradient, the op-

timization method obviously failed to account for the long-term

dependencies. Not surprisingly, this results both into local and

global degradation in the synthesized f0 variations.

7. Conclusion

In this paper, a trajectory model based on the stylization and

the joint modelling of f0 variations over various temporal

domains was proposed. In the proposed approach, f0 variations

are stylized with a Discrete Cosine Transform, and modelled

simultaneously over various temporal domains which cover

short-term and long-term variations. During the training, a

context-dependent model is estimated according to the joint

stylized f0 contours over the syllable and a set of long-term

temporal domains. During the synthesis, f0 variations are

inferred using the long-term variations as trajectory constraints.

The evaluation consisted in a subjective comparison of different

speech prosody models in speech synthesis.

The 1-order trajectory model was proved to be significantly pre-

ferred to the conventional model, and to the other trajectory

models. Each of the trajectory models succeeds in modelling

f0 contours that are consistent with the considered temporal do-

mains. However, the ability of the trajectory model to account

for long-term variations decreases when the temporal domain

increases, due to the increase in complexity of the optimiza-

tion process. In further studies, the relationship between static

and dynamic trajectories will be explicitly formulated, and dif-

ferent combinations of trajectory constraints will be evaluated.

Finally, the formulation of the trajectory model will be extend

to the modelling of the local speech rate variations.
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