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Introduction

Due to practical implications, the velocity distribution of open-channel flows has interested engineers and researchers for many years. The vertical velocity profile is well described by the classical log law in the inner region ξ<0.2, where ξ = y/h is the ratio of the distance from the bed to flow depth [START_REF] Nezu | Open-channel measurements with a laser Doppler anemometer[END_REF][START_REF] Cardoso | Uniform flow in a smooth open channel[END_REF][START_REF] Nezu | Turbulence in open-channel flows[END_REF][START_REF] Li | Turbulent flows in smooth-wall open channels with different slope[END_REF]. However, the log law normally deviates from experimental data in the outer region ξ>0.2. This deviation is accounted for by adding Coles' wake function [START_REF] Coles | The law of the wake in turbulent boundary layer[END_REF][START_REF] Hinze | Turbulence[END_REF]). In two-dimensional (2D) open-channel flows, in addition to the simple power law [START_REF] Afzal | Scaling of power law velocity profile in wall-bounded turbulent shear flows[END_REF][START_REF] Castro-Orgaz | Hydraulics of developing chute flow[END_REF], the log-wake law appears to be the most reasonable extension of the log law [START_REF] Nezu | Turbulence in open-channel flows[END_REF]. However, in narrow open-channels involving an aspect ratio Ar < 5, where Ar = b/h is the ratio of the channel width b to flow depth, and near side walls or corner zones even for wide open-channels [START_REF] Vanoni | Velocity distribution in open channels[END_REF], the maximum velocity appears below the free surface producing the velocity-dip-phenomenon, involving a deviation from the log-wake law. This phenomenon, which was reported more than a century ago [START_REF] Francis | On the cause of the maximum velocity of water flowing in open channels being below the surface[END_REF][START_REF] Stearns | On the current meter, together with a reason why the maximum velocity of water flowing in open channel is below the surface[END_REF], was observed both in open-channels and rivers. It is related to secondary currents generated in three-dimensional (3D) open-channel flows [START_REF] Imamoto | Measurement of secondary flow in an open channel[END_REF]Ishigaki 1988, Wang and[START_REF] Wang | Secondary flows over artificial bed strips[END_REF]. Coles' wake function is unable to represent this behavior since it predicts a velocity increasing with distance from the bed.

The standard two-equation k-ε model is unable to predict secondary currents and the related velocity-dip-phenomenon since it assumes isotropic turbulence. Accurate predictions of velocity-dip-phenomena require therefore more sophisticated Reynolds-Averaged Navier

Model equations

For steady uniform open-channel flows, using the continuity equation, the RANS momentum equation reads in the streamwise direction x (Fig. 1)
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where x, y and z are respectively streamwise, vertical and lateral directions and U, V and W the three corresponding mean velocities with u, v and w as turbulent fluctuations, ν the fluid kinematic viscosity, g the gravitational acceleration, and θ is the angle of the channel bed to the horizontal (Fig. 1b). Equation ( 1) may be written with S=sinθ as channel bed slope as
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In the central channel zone (Fig. 1a), it is assumed that the vertical gradients (d/dy) are dominating, allowing to therefore neglect the horizontal gradients (d/dz) [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF]). Since for large values of y the viscous part (νdU/dy) of the shear stress τ/ρ=(ν dU/dy) v u , where ρ is fluid density, is small versus the turbulent part  v u [START_REF] Absi | Comments on "Turbulent velocity profile in fully-developed open channel flows[END_REF], Eq. (2) becomes 
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where u * is friction velocity and α 1 =(gSh)/u * 2 1. By assuming [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF])
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where α 2 is a positive coefficient, Eq. (4) becomes
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where α=α 1 +α 2 . With the Boussinesq assumption
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Eq. ( 6) gives Absi, R. (2011), Journal of Hydraulic Research, IAHR, Taylor and Francis, Vol. 49, N° 1, pp. 82-89. DOI: 10.1080/00221686.2010.535700, URL: http://dx.doi.org/10.1080/00221686.2010.535700

               h y h y u y U t   1 d d 2 * (8)
Equation ( 8) contains two unknowns, namely dU/dy and ν t . Since the aim of this study is to predict velocity profiles in open-channel flows, the eddy viscosity ν t is required.

3 Dip-modified laws 3.1 Dip-modified log law With a known eddy viscosity profile ν t (y), integration of Eq. ( 8) provides the velocity distribution. [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF] obtained a DML-law based on Eq. ( 8) and a parabolic eddy viscosity
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where κ ≈ 0.41 is the von Karman constant. Equation ( 9) allows to express Eq. ( 8) as
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Integration of Eq. ( 10) gives [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF])
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where y 0 is the distance at which the velocity is hypothetically equal to zero. Since y 0 /h<<1 and with U a =U/u * , ξ=y/h and ξ 0 =y 0 /h, Eq. ( 11) simplifies to
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The dip-modified log law predicts the velocity-dip-phenomenon by the term ln(1y/h) of Eq. ( 12), and α as dip-correction parameter [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF]). This law contains only α and reverts to the classical log law for α=0. [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF] proposed the empirical formula α(z)=1.3exp(z/h), where z is the lateral distance from the side wall. On the channel axis at z=b/2 and therefore z/h=Ar/2, this equation reads α(Ar)=1.3exp(Ar/2). A single general formula may be expressed as
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where Z=z/(b/2)=(2z)/b is dimensionless lateral distance from the side wall. From calibration [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF] found for the two coefficients C 1 =1.3 and C 2 =0.5. For wide open-channels (Ar > 5), α  0 (Eq. 13) and the DML-law (Eq. 12) reverts to the log-law. However, the loglaw is valid only in the inner region (ξ=y/h<0.2).

Simple dip-modified-log-wake law

In the outer region (ξ>0.2), the log-law deviates from experimental data. In 2D open-channel flows, this deviation is accounted for by adding [START_REF] Coles | The law of the wake in turbulent boundary layer[END_REF] wake function (2Π/κ)sin 2 (πy/2h) as (Hinze 1975) (14) where Π is Coles" parameter expressing the strength of the wake function. This log-wake law appears to be the most reasonable extension of the log-law. However, the value of Π seems to be not universal. [START_REF] Cebeci | Analysis of turbulent boundary layers[END_REF] found experimentally that Π increases with the Reynolds number in zero-pressure-gradient boundary layers, attaining an asymptotic value of Π=0.55 at high Reynolds numbers. Laser Doppler Anemometry (LDA) velocity measurements in 2D fully-developed open-channel flow over smooth beds [START_REF] Nezu | Open-channel measurements with a laser Doppler anemometer[END_REF] indicated that Π increases from zero with the friction Reynolds number R * =u * h/ν and becomes nearly constant Π≈0.2 for R * >2,000 or R h =4hU m /ν>10 5 , where U m is the mean bulk velocity. [START_REF] Cardoso | Uniform flow in a smooth open channel[END_REF] observed for uniform flow in a smooth open channel in the core of the outer region (0.2<y/h<0.7) a wake of a relatively small strength (Π≈0.08), followed in the near-surface-zone (0.7<y/h<1) by a retarding flow associated with weak secondary currents. Velocity measurements by [START_REF] Kirkgoz | The turbulent velocity profiles for smooth and rough channel flow[END_REF] In 3D open-channel flows with secondary currents, the log-wake law is unable to predict the velocity-dip-phenomenon. A suitable simplification results by adding both Eq. ( 14) and the term ln(1y/h) of Eq. ( 12) to the log law as [START_REF] Absi | Analytical methods for velocity distribution and dip-phenomenon in narrow open-channel flows[END_REF] (15) Equation ( 15) is referred as the simple dip-modified-log-wake law (sDMLW-law) of which the advantage is that it reverts to the log-wake law (α=0) in 2D open-channel flows.

Ordinary differential equation for velocity distribution and dip phenomenon 4.1 Ordinary differential equation

Instead of the parabolic profile for eddy viscosity (Eq. 9), a more appropriate approximation in accordance with the log-wake law given by Nezu and Rodi ( 1986) is ( 16) Inserting Eq. ( 16) into Eq. ( 8), the ODE for velocity distribution reads (17) For α=0, Eq. ( 17) gives the log-wake law. Equation ( 17) may also be written as (18) For Π=0, Eq. ( 18) reverts to Eq. ( 10) providing Eq. ( 12). In dimensionless form Eq. ( 18) reads ( 19) For α=0 and Π=0, integration of Eq. ( 19) gives the log law, providing. Eq. ( 19) provides the dip (subscript dip) distance ξ dip or the dimensionless distance from the bed corresponding to the maximum velocity U a,max =U a (ξ=ξ dip ). Since dU a /dξ=0 at ξ=ξ dip , α is given from Eq. ( 19) by

1 1   dip   (20)
The maximum velocity occurs therefore at ξ dip =1/(α+1). Eq. ( 6) shows that the Reynolds shear stress is equal to zero at ξ dip . This seems indicate that zero Reynolds stress corresponds to maximum velocity. The numerical solution of Eq. ( 19) is found by using the 4 th -order Runge-Kutta scheme or by the "ode45" function of MATLAB (MATLAB 2003).

Full dip-modified-log-wake law

Integration of Eq. ( 19) for ξ 0 <<1 gives (21) Equation ( 21) is referred as the full dip-modified-log-wake law (fDMLW-law). This equation differs from the simple dip-modified-log-wake law (sDMLW-law, Eq.15) only by the additional term IV. To evaluate the difference between Eq. ( 21) and Eq. ( 15), term IV needs to be integrated using the trapezoidal or Simpson rules. For wide open-channels (Ar>0.5), α  0, and the fDMLW-law reverts to log-wake law since terms III and IV then vanish.

Figure 2 compares the predicted velocity profiles by log-law, dip-modified-log law (DMLlaw, Eq. 12) and log-wake-law (Eq. 14) with experimental data of [START_REF] Coleman | Effects of suspended sediment on the open-channel velocity distribution[END_REF], [START_REF] Sarma | Detailed study of binary law for open channels[END_REF] and [START_REF] Lyn | Turbulence and turbulent transport in sediment-laden open-channel flows[END_REF]. Plots 2(a.1) and 2(c.1) show velocity profiles at the channel axis, while velocity profiles of 2(b.1) are at a certain distance from the lateral side wall. This figure shows that the log-law is able to predict experimental data in the inner region. The DML-law with α from (Eq.13) allows to predict a deviation from the log-law with a maximum velocity below the free surface (i.e. the velocity-dip-phenomenon). However, the DML-law profiles differ from the experimental data. In plots 2(a.1) and 2(c.1), it is impossible to improve the predicted velocity profiles from the DML-la by adjusting parameter α, since the deviation increases by increasing α and the predicted profiles approach the log-law profiles otherwise. In Fig. 2(b.1), it is possible to improve the DML-law velocity profile by decreasing α via the parameters C 1 and C 2 in Eq. ( 13). Log-wake-law profiles (2(a.1) and 2(c.1)) with parameter Π=0.2 allow to improve predicted velocities up to ξ=0.4. However, the value of Π=0.2 seems to be irrelevant for an accurate dip correction. With Π=0.2, the dip-modified-log-wake laws are able to predict the velocity-dip-phenomenon but with inaccurate maximum velocities. Accurate predictions of the velocity-dip-phenomenon require therefore larger values of Π. Figure 2(a.2), (b.2) and (c.2) shows velocity profiles in defect form.

Figure 2 Velocity profiles, comparison between log-law, dip-modified-log law (DML-law, Eq. 12) with α from Eq. ( 13), log-wake-law (Eq. 14) with Π=0.2, and experimental data of [START_REF] Coleman | Effects of suspended sediment on the open-channel velocity distribution[END_REF] Run 1, Sarma et al. (2000) Run E and Lyn (1986) Run C4; (a.2), (b.2) and (c.2) are in defect form Figure 3 compares velocity profiles obtained from the log-law, log-wake-law (Eq. 14), simple dip-modified-log-wake law (sDMLW-law, Eq. 15) and the full dip-modified-log-wake law (fDMLW-law, Eq. 21) with experimental data of [START_REF] Coleman | Effects of suspended sediment on the open-channel velocity distribution[END_REF], [START_REF] Sarma | Detailed study of binary law for open channels[END_REF] and [START_REF] Lyn | Turbulence and turbulent transport in sediment-laden open-channel flows[END_REF]. Term II of the wake function in the sDMLW-law associated with term III of the DML-law is important for an adequate prediction of the dip-phenomenon. Since Π=0.2 seems to be too small to improve predictions, Π = 0.45 was used, while α was obtained by Eq. ( 13) calibrated by [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF]. Integration in term IV is resolved by the "quad" function of MATLAB (MATLAB 2003) which uses recursive adaptive Simpson quadrature. Plots 3(a.2), (b.2) and (c.2) show the effect of each term in the sDMLW-law (Eq. 15) and the fDMLW-law (Eq. 21). Term II increases velocities while terms III and IV have a decreasing effect. Velocity profiles obtained by Eq. ( 15) with α from Eq. ( 13) and calibrated by [START_REF] Yang | Velocity distribution and dip-phenomenon in smooth uniform open channel flows[END_REF] show reasonable agreement. Term IV improves velocity profiles only in Fig. 3(c.1). In Fig. 3(a.1) and (b.1), the sDMLW-law is more accurate whereas the fDMLW-law deviates from experimental data, which seems to be related to α obtained by Eq. ( 13) and does not correspond to measured dip positions (Eq. 20).

Figure 3 Velocity profiles with Π=0.45 and α from Eq. ( 13). Comparison between log-law, log-wake-law (Eq. 14), sDMLW-law (Eq. 15), fDMLW-law (Eq. 21) and experimental data. (a.2), (b.2) and (c.2) show effect of each term in sDMLW-law and fDMLW-law In Figure 4, values of α obtained from Eq. ( 20) were used with Π = 0.45. In addition to the log-law, the log-wake-law (Eq. 14), the sDMLW-law (Eq. 15) and the fDMLW-law (Eq. 21), Fig. 4(a.1), (b.1) and (c.1) show numerical solutions of Eq. ( 19) obtained by the "ode45" function of MATLAB. The fDMLW-law and numerical solutions provide accurate velocity profiles. Figure 4 shows no differences between the fDMLW-law profiles and the numerical solutions of Eq. ( 19). These comparisons demonstrate the accuracy of the fDMLW-law.

Figure 5 compares predicted velocity profiles with Runs C1 to C4 of [START_REF] Lyn | Turbulence and turbulent transport in sediment-laden open-channel flows[END_REF] in semilog scales to show the deviation from the log-law. Figure 5(a) and (b) are for Ar=4.1 and S=2.06×10 -3 and S=2.7×10 -3 , while Fig. 5(c) and (d) relates to Ar=4.68 and S=2.06×10 -3 and S=4.01×10 -3 for Π = 0.45 with α obtained by Eq. ( 13) for the DML-law and by estimating the dip positions ξ dip from experimental data for sDMLW-law and fDMLW-law. The fDMLWlaw profiles agree well with the experimental data. For the same aspect ratio, velocity profiles require two different values of α. This suggests that α should depend also on channel slope, in addition to the aspect ratio and the lateral distance from the side wall. 20). Comparison between log-law, log-wake-law (Eq. 14), sDMLW-law, (Eq. 15), fDMLW-law (Eq. 21), numerical solutions of Eq. ( 19) and experimental data. Plots (a.2), (b.2) and (c.2) show effect of each term in sDMLW-law and fDMLW-law equations. It was obtained using a log-wake modified eddy viscosity distribution. A semianalytical solution resulting in the full dip-modified-log-wake law was obtained. Two different degrees of approximation are presented, a more accurate full dip-modified-log-wake law and a simple dip-modified-log-wake law. The first differs from the second law only by an additional term which requires integration. Velocity profiles of the two laws, where the integral in the additional term was resolved by the trapezoidal rule for numerical integration by the "quad" function of MATLAB which uses recursive adaptive Simpson quadrature, and the numerical solution of the ODE obtained by the "ode45"' function of MATLAB, were compared to experimental data. The contribution of each term in the two laws was evaluated. The dip correction is not important if Π remains small. Accurate predictions of the velocitydip-phenomenon require larger values. Velocity profiles obtained by the simple dip-modifiedlog-wake law with Π=0.45 and calibrated α show reasonable agreement. This law, with α given by Eq. ( 13), seems to be an interesting tool of intermediate accuracy. The full dipmodified-log-wake law with Π=0.45 and α obtained from an estimation of dip positions, provides accurate velocity profiles. However, a more accurate formula and/or calibration of parameter α is needed. Results suggest that parameter α, which depends on the aspect ratio and the lateral distance from the side wall, should depend also on the channel slope. The proposed equation and its semi-analytical solution require a deeper analysis.
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 1 Figure 1 Definition sketch for steady uniform open-channel flow

  , in fully-developed rectangular subcritical open channel flow on smooth bed, indicate Π=0.1, whereas measurements of Li et al. (1995) give Π=0.3 for Froude numbers F=U max /(gh) 1/2 >1 and R h >10 5 , where R h and F are defined by the maximum velocity U max instead of U m .
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 4 Figure 4 Velocity profiles with Π=0.45 and α from Eq.(20). Comparison between log-law, log-wake-law (Eq. 14), sDMLW-law, (Eq. 15), fDMLW-law (Eq. 21), numerical solutions of Eq. (19) and experimental data. Plots (a.2), (b.2) and (c.2) show effect of each term in sDMLW-law and fDMLW-law
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 5 Figure 5 Predicted velocity profiles in semi-log scales with experimental data of Lyn (1986), Runs C1, C2, C3 and C4
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