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Résumé 

 
Dans le cadre de la mécanique de structures nous proposons une approche 3D des modèles thermomécaniques définis 
dans des géométries plaque ou coque par séparation des coordonnées dans le plan et l’épaisseur, nous permettant une 
riche représentation 3D tout en gardant une complexité de calcul typiquement 2D.  
 

Abstract 
 
In the framework of structural mechanics we propose a 3D approach of thermomechanical problems defined in the 
degenerated geometries that constitute plates, shells or profiles. The introduction of an in-plane-out-of-plane separated 
representation of the unknown fields allows computing 3D solutions by keeping the 2D computational complexity 
characteristic of classical plate or shell theories.  
 
Mots Clés : Représentations séparées, PGD, Réduction de modèles, Théorie de plates 
Keywords: Separated representation, PGD, Model reduction, Plate theory 
 
 
1. Introduction 
 
Many models in polymer processing and composites manufacturing are defined in degenerated three-
dimensional domains. By degenerated we understand that at least one of the characteristic 
dimensions of the domain is much lower than the other ones. This situation is particularly common 
in models defined in plate or shells type geometries. 
When computing elastic response of plates, two dimensional plate theories are usually preferred to 
the numerically expensive solution of the full three-dimensional elastic problem. Going from a 3D 
elastic problem to a 2D plate theory model usually involves some kinematical and/or mechanical 
hypotheses on the evolution of the solution through the thickness of the plate. 
Despite the quality of existing plate theories, their solution close to the plate edges is usually wrong 
as the displacement field are truly 3D in those regions and do not satisfy the kinematic hypothesis. 
Indeed, the kinematic hypothesis is a good approximation where Saint-Venant's principle is verified. 
However, some heterogeneous complex plates don't verify the Saint Venant's principle nowhere. In 
that case the solution of the three-dimensional model is mandatory even if its computational 
complexity could be out of the nowadays calculation capabilities. 
Moreover, in the case of elastic behaviors the derivation of such 2D reduced models is quite simple 
and it constitutes the foundations of classical plate and shell theories. Today, most commercial codes 
for structural mechanics applications propose different type of plate and shell finite elements, even in 
the case of multilayered composites plates or shells. However, in composites manufacturing 
processes the physics encountered in such stratified plate or shell domains is much richer, because it 
usually involves chemical reactions, crystallization and strongly coupled and non-linear 
thermomechanical behaviors. The complexity of the involved physics makes impossible the 
introduction of pertinent hypotheses for reducing a priori the dimensionality of the model from 3D to 
2D. In that case a fully 3D modeling is compulsory, and because the richness of the thickness 
description (many coupled physics and many plies with different physical states and directions of 
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anisotropy) the approximation of the fields involved in the models needs thousands of nodes 
distributed along the thickness direction. Thus, fully 3D descriptions may involve millions of degrees 
of freedom that should be solved many times because the history dependent thermomechanical 
behavior. Moreover, when we are considering optimization or inverse identification, many direct 
problems have to be solved in order to reach the minimum of a certain cost function. 
Today, the solution of such fully 3D models remains intractable despite the impressive progresses 
reached in mechanical modeling, numerical analysis, discretization techniques and computer science 
during the last decade. New numerical techniques are needed for approaching such complex 
scenarios, able to proceed to the solution of fully 3D multiphysics models in geometrically complex 
parts (e.g. a whole aircraft). The well established mesh-based discretization techniques fail because 
the excessive number of degrees of freedom involved in the full 3D discretizations where very fine 
meshes are required in the thickness direction (despite its reduced dimension) and also in the in-
plane directions to avoid too distorted meshes. 
In this work we propose the application of the model reduction method known as Proper Generalized 
Decomposition - PGD- to the simulation of 3D thermomechanical models defined in plate 
geometries. This technique was proposed in two recent papers [1,2] for circumventing, or at least 
alleviating, the curse of dimensionality. This method is based on the use of separated representations. 
It basically consists in constructing by successive enrichment an approximation of the solution 
(defined in a space of dimension d) in the form of a finite sum of N functional products involving d 
functions of each coordinate. In contrast with the shape functions of classical discretization methods, 
these individual functions are unknown a priori.  They are obtained by introducing the approximate 
separated representation into the weak formulation of the original problem and solving the resulting 
non-linear equations. If M nodes are used to discretize each coordinate, the total number of 
unknowns amounts to  instead of the degrees of freedom of classical mesh-based 
methods.  Thus, the complexity of the method grows linearly with the dimension d of the space 
wherein the problem is defined, in vast contrast with the exponential growth of classical mesh-based 
techniques. 
This strategy was successfully applied in our studies of the kinetic theory description of complex 
fluids. A multidimensional separated representation of the linear steady-state Fokker-Planck equation 
was introduced in the seminal work [1], further extended to transient simulations in [2] and non-
linear Fokker-Planck equations in [3]. In [4] awe considered the solution of Fokker-Planck equations 
in complex flows, where space, time and conformation coordinates coexist.   
The fully three-dimensional solution of models defined in degenerate domains is also an appealing 
field of application of the PGD. Consider the unknown field  defined in a plate domain .  
We could perform the in-plane-out-of-plane separated representation  

   
u x, y, z( ) ≈ Xi x( ) ⋅Zi z( )

i=1

i=N

∑                          (1) 

with  and .This strategy is particularly suitable when . More 
complex domains (e.g. plates with a varying thickness) can be treated by using an appropriate change 
of variable. 
Because such decomposition involves the calculation of 2D functions  and 1D functions  
(these ones with a computational complexity negligible with respect to the computation of the 2D 
functions) we can conclude that the computational complexity of the fully 3D solution is of the same 
order of magnitude than the solution of 2D models. 
 
2. In-plane-out-of-plane separated representation 
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In what follows we are illustrating the construction of the Proper Generalized Decomposition of a 
model defined in a plate domain  with and  considering the steady state 
heat transfer equation: 

              (2) 

We consider that the laminate is composed of P different anisotropic plies each one characterized 
by a well-defined conductivity tensor  that is assumed constant in the ply thickness. 
Moreover, and without a loss of generality, we assume the same thickness for the different laminate 
layers, that we denotes by h. Thus, we can define a characteristic function representing the position 
of each layer : 

         (3) 

where 
  
zi = i −1( ) ⋅ h . Now, the laminated conductivity can be given in the following separated form:  

          (4) 

where  . The weak form of Eq. (2) writes: 

           (5)

  

with the test function  in an appropriate functional space. The solution  is 
searched in the separated form: 

            (6)

  

In what follows we are illustrating the construction of one such decomposition. For this purpose we 
assume that at iteration  the solution  is already known: 

          (7)

  

and that at the present iteration we look for the solution enrichment :  

            (8) 

The test function involved in the weak form is as follows: 

          
(9) 

By introducing Eqs. (8) and (9) into (5) it results: 
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where  denotes the plane component of the gradient operator  and  denotes 
the flux at iteration n: 

       (11)

  

Now, as the enrichment process is non-linear we propose to search the couple of functions  
and  by applying an alternating direction fixed point algorithm. Thus, assuming  known, 
we compute , and then we update . The process continues until reaching convergence. 
The converged solutions allow defining the next term in the finite sums decomposition: 

 and . 

We are illustrating each one of the just referred steps: 

I. Computing   from : 

When  is known the test function reduces to: 

      (12) 

and the weak form (10) reduces to:  
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Now, as all the functions involving the coordinate z are known, they could be integrated in 
. Thus, if we consider:  

       (14) 

with ,  and , then we can define: 

      (15) 
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and 

    (16) 

that allows writing equation (13) into the form 
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that defines an elliptic 2D problem defined in . 

II. Computing   from : 

When  is known the test function writes: 

      (18) 

and the weak form (10) reduces to:  
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Now, as all the functions involving the in-plane coordinates  are known, they could be 
integrated in . Thus, using the previous notation, we can define:  
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and 

    (21) 

that allows writing equation (19) into the form 
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that defines a one-dimensional BVP defined in .  

 
3. Solving elastic problems 
 
When we consider the elastic behavior of a plate, it suffices considering a separated representation of 
each component of the displacement vector:  

       

(23) 

and proceed as just described. 
We are trying to compare the complexity of PGD-based solvers with respect to the standard finite 
element method. For the sake of simplicity we will consider a hexahedral domain discretized using a 
regular structured grid with respectively ,  and  nodes in the ,  and  directions 
respectively. Even if the domain thickness is much lower than the other characteristic in-plane 
dimensions, the physics in the thickness direction could be quite rich, mainly when we consider 
composites plates composed of hundreds of plies in which the complex physics involved requires 
fully 3D descriptions. In that case thousands of nodes in the thickness direction could be required to 
represent accurately the solution behavior in that direction. In usual mesh-based discretization 
strategies this fact induces a challenging issue because the number of nodes involved in the model 
scales with , however, if one applies a PGD based discretization, and the separated 
representation of the solution involves  modes (terms in the finite sum decomposition), one should 
solve  2D problems related to the functions involving the in-plane coordinates and  1D 
problems related to the functions involving the thickness coordinate. The computing time related to 
the solution of the one-dimensional problems can be neglected with respect to the one required for 
solving the two-dimensional ones. Thus, the PGD complexity scales as . 

By comparing both complexities we can notice that as soon as  the use of PGD-based 
discretization leads to impressive computing time savings, making possible the solution of models 
never until now solved, even using low performance computing platforms. 
 
4. Numerical tests 
 
In this section we consider the separated representation based discretization technique – PGD - 
widely described in the previous sections for solving a variety of test cases in order to validate its 
accuracy and demonstrate its ability to efficiently handle complex scenarios that would be difficult to 
solve using classical finite element based 3D discretizations. As explained in the previous sections, 
the PGD method requires the solution of several two-dimensional and one-dimensional elliptic BVP. 
For all the numerical results presented below these problems have been solved using a standard 
Galerkin method. 
To validate the proposed technique we consider a square homogeneous plate depicted in Fig. 1 and 
we compare the classical 3D linear elastic finite element solution and the one obtained by using the 
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PGD with an equivalent discretization, that is, the 2D functions involving the in-plane coordinates in 
the PGD are approximated using the same mesh that the finite element considered on the plate 
surface, and the 1D functions involving the thickness coordinate when using the PGD were 
approximated by using the same number of nodes that was considered in the thickness finite element 
approximation. 

       
  Fig. 1. Problem geometry 

 
Fig. 2. Computed solution by applying the PGD - only the solution in a half of the domain is depicted for the sake of 

clarity - 

 
The applied load consists of a uniform pressure applied on the upper face. The finite element 
solution was performed by considering a uniform mesh composed of  8-nodes 
hexahedral elements. The PGD solution was performed by using the uniform mesh composed of 

 4-nodes elements for approximating the functions involving the in-plane coordinates, 
whereas a uniform one dimensional mesh composed of 50 2-nodes 1D linear elements were used for 
approximating the functions involving the thickness coordinate. 
The solution computed by using the PGD is depicted in Fig. 2. Nine modes were needed for 
approximating the solution when using the PGD, most of them to describe the 3D effects that appear 
in the neighborhood of the boundaries where the displacement was prescribed. In order to compute 
these 9 terms involved in the separated representation 165 2D and 1D problems were solved. Fig. 3 
shows the energy density error, considering as reference solution the one computed by using the 
FEM. This error is everywhere lower than 0.3% except in the vicinity of the plate corners where it 
reaches a value of 0.57 %. This error can be reduced by considering more terms in the separated 
representation, i.e. higher N in the finite sum decomposition. 

 

Fig. 3.  Error with respect to the FEM solution considering the usual energy norm. 
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Because the alternative solution of 2D and 1D problems involved in the PGD solver, one could 
consider very different resolutions in both approximations, that is, the characteristic size of the mesh 
used for solving the 2D problems does not affect to the characteristic mesh considered in the 
approximation of functions involving the thickness coordinate, and viceversa. Moreover, one could 
use different discretization techniques for solving both problems. 
Figure 4 compares the CPU time of both the PGD and the FEM based discretizations for solving the 
linear elasticity problem previously described as a function of the number of in-plane degrees of 
freedom,  and of the number of degrees of freedom in the thickness, . We can notice the 
linear evolution of the computational complexity with the number of in-plane or out-of-plane degrees 
of freedom when using the PGD instead the exponential growing when using the finite element 
discretization. 

 

Fig. 4. Comparison of the PGD and FEM based 3D discretizations. 

 
In this simple problem, the edge effects are already present and confirm the necessity of several 
modes to correctly describe the solution in the boundary neighborhood. In Fig. 5 and Fig. 6 we 
depict respectively the first and the second mode of the PGD solution. The first mode seems to 
represent classical plate theory solutions because the first mode of the displacements ,  
and  shows a linear evolution in the thickness direction. 

The second mode of the PGD solution shows a more complex z-dependence but it should be noticed 
that in the xy-plane it essentially contributes to the solution in the plate edges neighborhood where 
one expect to observe a truly 3D displacement field. The subsequent modes of the PGD solution 
gradually improve the solution quality close to the plate edges and corners. 

 
Fig. 5. First mode of the PGD solution. Left: -top- and -down-.  Right: -top- and -

down-. 
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Fig. 6. Second mode of the PGD solution. Left: -top- and -down-.  Right: -top- and -

down-. 

The same procedure can be applied for solving more complex structures as multilayered composites 
and honeycomb composites structures as depicted in Figs. 7, 8 and 9. 

 

 
Fig. 7. PGD solution of a multilayered composite plate composed of 16 unidirectional plies. 

 

Fig. 8. Honeycomb composite structure. 
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Fig. 9. PGD solution of a honeycomb composite structure. 
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