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Abstract 1

Wind routinely topples trees during storms, and the likelihood that a tree is toppled 2

depends critically on its allometry. Yet none of the existing theories to explain tree 3

allometry consider wind drag on tree canopies. Since leaf area index in crowded, self-4

thinning stands is independent of stand density, the drag force per unit land can also be 5

assumed to be independent of stand density, with only canopy height influencing the total 6

toppling moment. Tree stem dimensions and the self-thinning biomass can then be 7

computed by further assuming that the risk of toppling over and stem maintenance per 8

unit land area are independent of stand density, and that stem maintenance cost is a linear 9

function of stem surface area and sapwood volume. These assumptions provide a novel 10

way to understand tree allometry and lead to a self-thinning line relating tree biomass and 11

stand density with a power between -3/2 and -2/3 depending on the ratio of maintenance 12

of sapwood and stem surface.13

14

Keywords 15

allometric, allometry, biomass, self-thinning law, wind drag 16
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Introduction 1

2

Interest in tree allometry has increased in recent years as forests have been identified as a 3

potential sink for atmospheric carbon. Studies on the proportions of tree organs indicate 4

that much of the biomass in a forest is in stems and that this proportion increases with 5

forest age. Another generalization states that when there are more individuals per unit 6

land area (e.g., per hectare), the total biomass of the individuals decreases (Yoda et al., 7

1963). This relationship, called the “self-thinning law”, is so consistent that it has been 8

called “the only generalization worthy of the name of a law in plant ecology” (Hutchings, 9

1983). Numerous empirical papers have shown that for even-aged monocultures, the 10

maximum biomass of an individual is a power function of stand density (individuals per 11

unit land area), with a slope of approximately -3/2 when both axes are plotted on 12

logarithmic scales (Osawa and Allen, 1993). Mathematically, this can be described as 13

14

23�� Dwt ,         Equation 1 15

16

where wt is the average total biomass (all symbols listed in Table 1) of a plant and D is 17

stand density and the sign in between stands for proportionality (with equal sign a 18

constant would need to be added). Many theories have been proposed to explain the self-19

thinning law (e.g. (Adler, 1996; Givnish, 1986)), but none has gained wide support. 20

21

Schiel and Choat (1980) showed that the self-thinning law does not apply to marine 22

algae, where the size of individuals can even increase with increasing density.  This 23
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suggests that self-thinning might be related to structural requirements for staying erect on 1

terrestrial environments. Seven years later Weller (1987) demonstrated that many 2

datasets on terrestrial vascular plants published earlier to support the self-thinning law in 3

fact lead to exponents that diverge from -3/2 (in Equation 1) when the correct statistical 4

approach is applied. His paper (Weller, 1987) lead to a decrease in papers on self-5

thinning even though he concluded that the variable exponent “may provide a valuable 6

measure of the ecological differences among species and stands, and a powerful stimulus 7

for further research”. 8

9

The objective of this paper is to present a model to explain self-thinning law from a new 10

perspective, which will probably be the first attempt to explain the self-thinning law 11

based on wind friction in canopies. Because of the novelty of the approach, the presented 12

model is simple in order to introduce the new assumptions and implications, which will 13

hopefully encourage more complex modelling based on the same principles. In the next 14

three sections I present ideas necessary for understanding the thinking behind the 15

assumptions of this new model. 16

17

18

Stagnation and self-thinning19

20

A central element of forest management is the use of thinning to manipulate stand 21

structure and maximise growth (Davis and Johnson, 1987). In a sparse stand, much light 22

penetrates the canopy without being used by the trees and therefore the gross primary 23
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production of trees is low. On the other hand, growth in an overly dense stand suffers 1

from high maintenance cost relative to the gross primary production of trees. The 2

maintenance cost is composed of both maintenance respiration and replacement of leaves 3

and fine roots. In extreme cases when the stand is dense and nearly all energy (or 4

carbohydrates) is allocated into maintenance, growth ceases and the stand reaches 5

“stagnative equilibrium”. Theoretically it is obvious that with a given stand density and 6

closed canopy, gross primary production is relatively constant and that larger stems 7

require more energy for maintenance. Therefore, growth ceases at a certain stem size if 8

individuals are identical (or all individuals die).9

10

In practice, stagnative equilibrium has been documented in surprisingly few studies. 11

Ecological papers typically focus on stands with individuals of varying size, age and 12

normally even species and therefore certain individuals start dying (self-thinning occurs) 13

when the most competitive individuals are still growing significantly (e.g. (Osawa and 14

Allen, 1993)). Forestry literature describes how stand density influences stem growth of 15

often nearly identical individuals but unfortunately the interest has been mainly in wood 16

production and therefore in stand densities leading to high or moderate stem growth and 17

not those close to stagnative equilibrium (Davis and Johnson, 1987). Significant 18

exceptions are the well studied very dense Pinus contorta stand that have been naturally 19

regenerated after fire from serotinous cones and which grow very slowly and are close to 20

stagnative equilibrium and can be released from it by thinning (e.g. (Farnden and 21

Herring, 2002)). At the individual level many understory trees are at a similar situation 22

that nearly all energy produced is required for maintenance and growth is extremely slow. 23
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Although at stand level stagnative equilibrium is rare in nature it is ecologically and 1

physiologically nearly identical to self-thinning if the variability between individuals is 2

small and is the simplest basis to understand tree stem dimensions and allometry in 3

general.4

5

6

What determines the stem dimensions of trees? 7

8

Several theories have been put forward to explain tree stem dimensions. The “pipe 9

model” assumes that the quantity of leaves above a given level is proportional with stem 10

cross-sectional area at that level (Shinozaki et al., 1964), but does not explain stem 11

height, heart wood and inter-specific variability. The three main approaches to 12

understand the height-radius ratio are: geometric similitude, elastic buckling and stress 13

similarity (Niklas, 1992). The theory of geometric similitude simply assumes that ratios 14

of dimensions remain the same when trees grow. However, geometric similitude is not 15

based on understanding of evolutionary drivers of allometry, i.e. survival or reproduction.16

17

It is evident that extra height is beneficial in exposing trees to more light and that the 18

stem radius should be as small as possible in order not to waste energy. The theories of 19

elastic buckling and stress similarity are the main options to explain how small is 20

possible. McMahon (1973) showed that if the fresh biomass of the above-ground parts of 21

a plant are above the limit of “elastic buckling” the stem will bend irreversibly. This 22

theory is based on thinking that crucial in plant allometry is the avoidance of elastic 23
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bucking. Interestingly, when only stem biomass (branches and leaves excluded) is taken 1

into account the height leading to elastic buckling scales to stem radius to the power of 2

2/3 (McMahon, 1973). This mathematically simple relation has been used in dozens of 3

journal articles (e.g. correctly (King et al., 2006) and incorrectly (West et al., 1999) as 4

they do not take into account the influence of subsequent branching). However, empirical 5

data has shown that most plants are far from the maximal height leading to elastic 6

buckling. For example Niklas (1994a) measured plants belonging to 111 species and 7

concluded that the “safety factor”, which is the ratio of the height leading to elastic 8

buckling and actual height was very variable but on average approximately 4. Because of 9

non-linear relationships, for a tree with a safety factor of 4, gravity causes just 1.6 % of 10

the necessary force needed for elastic buckling. However, it is probable that the safety 11

factor is lower in general in self-thinning stand (King, 1981). 12

13

The need for a safety factor has been correctly explained to be necessary as in addition to 14

gravity acting on the fresh biomass of the plants temporary forces such as wind and snow 15

load could potentially cause toppling over and death. However, the approach to 16

understand tree allometry based on elastic buckling is misleading as the additional forces 17

required to cause toppling are so weakly linked and important relative to gravity acting 18

on tree. This causes the wide range of safety factors found in trees. For example swaying 19

in the wind has been shown to decrease the height-radius ratio (Coutand et al., 2008) and 20

therefore increasing the safety factor. In forests in snow free climates wind is basically 21

the only significant force toppling over trees in addition to their own fresh biomass (with 22

the main exception of trees pulled down by other toppling over trees). I therefore argue 23
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that in simple modelling of mature trees when only one toppling over force can be taken 1

into account it is best to focus on wind and the theory of stress similarity that focuses on 2

breaking strengths of stems (Niklas, 1992) , as I do in this paper. Plants such as shrubs 3

which can be bent down to the ground without breaking need another approach.4

5

The drag caused by wind friction is difficult to model as bending of the branches and 6

leaves and variable wind speeds for each leaf complicate the phenomenon. The moments 7

resisting uprooting are also very difficult to model as they depend on both the roots and 8

the soil. However, beam theory in basic engineering science suggests that stems resist 9

breaking (bending stress of a beam) simply with a moment (m)  10

11

3rm � ,         Equation 2 12

13

where r is stem radius inside the bark (in this equation at any height but in subsequent 14

equations at any given height relative to stem height), when the wood is homogenous and 15

shear forces are not taken into account (Niklas, 1992). The third power for r comes from 16

the fact that increasing radius not only increases the number of vertical fibres responsible 17

for the strength of the wood, but also increases their average distance from the neutral 18

axis (where neither elongation or shortening occurs when the stem is bending), thus 19

increasing the average moment of the fibres resisting bending (Larjavaara and Muller-20

Landau, 2010). The moment (m) is equal to the product of force and length of the lever 21

arm (e.g. height of a crown). This theory of stress similarity has been successfully used to 22
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explain stem tapering (Dean et al., 2002), trunk and branch wood density (Anten and 1

Schieving, 2010) and life-history variation (Sterck et al., 2006). 2

3

A strong stem is useless for trees that uproot easily. Therefore evolutionary pressure has 4

strengthened the root system in allometric balance to resist approximately the same 5

moment as the stem in conditions in which the root system would otherwise be weaker 6

(shallow, moist or nutrient-rich soils). This is supported by studies showing that both 7

uprooting and stem breakage occur in many species in a given stand (Niklas, 1992; 8

Peltola et al., 2000; Putz et al., 1983). I therefore argue that, Equation 2 can be used as 9

the basis for theories on tree allometry as is demonstrated in section “Structure of the new 10

model”. 11

12

13

How to model wind drag on the canopy? 14

15

Equation 2 has probably never been used in modelling height-radius ratio, presumably 16

because the drag force in canopies is difficult to model at the tree level (Coutts and 17

Grace, 1995) compared to elastic buckling. The self-thinning law has been developed to 18

describe density-size relations in a monocultural even-aged stand. Independent of the 19

stand density, leaves need a certain level of light for a positive energy balance. Therefore 20

the leaf area index (total leaf area per unit area) is independent of the stand density once 21

the stand has recovered from disturbances as in the case of self-thinning stands (Osawa 22

and Allen, 1993). Therefore23
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1

constaD � ,         Equation 3 2

3

where a is the leaf area of one tree and D is stand density and “const” refers to a constant. 4

This implies that the drag force caused by the wind on leaves per unit land area is also 5

independent of stand density assuming that the average wind force on an individual leaf 6

is independent of stand density. The moment per unit area caused by this force can then 7

be simply computed from the height of the leaves. 8

9

10

Structure of the new model11

12

I now focus on even-aged stands at the self-thinning limit and in stagnative equilibrium to 13

understand the self-thinning law better. I assume that wood density, structure and size of 14

individual roots and branches as well as the total number of roots and branches per unit 15

land area are independent of the stand density. I also assume that the leaf area index is 16

independent of stand density. As growth is very slow, its variation depending on stand 17

density is insignificant and therefore the energy usable for the maintenance per unit land 18

area is also independent of stand density (same assumption justified if growth is 19

significant but the same fraction of energy is always allocated in growth). As the 20

energetic maintenance cost of leaves, branches and roots per unit land area are 21

independent of stand density the energy available for maintenance of stems per unit land 22

area also needs to be independent of stand density at the self-thinning limit. In addition, I 23
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assume that gravity does not act on bending trees (see section “What determines the stem 1

dimensions of trees?”). 2

3

Wood provides support and transports sap to the canopy. As dead heartwood provides 4

support but does not require maintenance it is justifiable to assume that the sap flow 5

function of the wood causes the total wood maintenance cost and that this cost is 6

proportional with the product of the distance and amount of sap that needs to be 7

transported. By assuming that the height of branches relative to height of the tree (h) is 8

independent of the stand density in fully stocked stands and that the leaf area of one tree 9

(a) is proportional with the amount of sap transported the wood maintenance cost (ew) is 10

11

ahew � ,         Equation 4 12

13

based on the function of tree stems. Alternatively, based on the tree structure, the same 14

relation can be derived assuming the total wood maintenance (ew) is proportional with 15

sapwood volume and that  the cross-sectional area of sapwood is proportional with the 16

leaf area above it as in the pipe model (Shinozaki et al., 1964).  17

18

Empirical studies indicate that the energetic maintenance cost of inner bark is high 19

(Pruyn et al., 2002) and that stem surface area better explains total stem maintenance cost 20

than sapwood biomass or volume (Bosc et al., 2003). This can be caused by both the 21

respiration of the inner bark and increased wood respiration due to closeness of stem 22

surface. The importance of stem surface area in determining stem maintenance cost is not 23
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biochemically well understood but could be linked to protection against pathogens which 1

often enter through the stem surface. It is clear that sapwood of a living tree is actively 2

protected against pathogens as sapwood decays less likely in the living tree but more 3

likely in a dead tree than heart wood (David A. King, unpublished). In the new model the 4

maintenance cost of stem surface (es) is proportional with the surface area of the stem, 5

which can be calculated assuming that the stem taper is independent of the stand density 6

as7

8

rhes � .         Equation 5 9

10

Combining Equations 4 and 5 and multiplying by the number of individuals per unit area 11

(D) or stand density leads to the total stem maintenance cost per unit land area (E) 12

13

� �krhjahDE �� ,        Equation 6 14

15

where j and k are parameters dependent on the ratio of maintenance cost of the wood and 16

of the stem surface. These parameters need to be added as the relatively importance of 17

these two costs is unknown and probably climate and species specific. According to the 18

assumptions E and the product of D and a are independent of stand density (Equation 3) 19

and can be replaced by a constant. Taking this into account when solving h, Equation 6 20

converts to 21

22

� �kDrj
h

const

const

��
�  .       Equation 7 23
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1

Based on another assumptions (Equation 2), the height of trees leading to breaking at a 2

given wind speed is3

4

a
rh

3

� ,         Equation 8 5

6

as the moment caused by the drag of wind on the base of the stem is proportional to both 7

the height (h) and leaf area (a). Evolutionary pressure forces trees to maximize their 8

height (h), within the constraints of not taking excessive risks of toppling over (Equation 9

8) and not exceeding the highest possible maintenance cost (Equation 7) and have 10

dimensions close to the point corresponding to the highest possible value of height (h). 11

Because Equation 8 is rising (when h is shown in function of r for a given D and 12

therefore a) and Equation 7 is descending (except when k is zero) the intersection of these 13

two functions reveals the dimensions of tree stems (see Fig. 1). The intersection can be 14

solved by combining Equations 7 and 8 as shown in the appendices. 15

16

17

Allometry and self-thinning law based on the new model18

19

In the theoretical situation when the value parameter j of Equations 6 and 7 is zero and 20

sapwood is assumed to make no contribution to stem maintenance 21

22

23�� Dws          Equation 9 23
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1

where ws is biomass of the stem of a tree individual, as shown in Appendix A. This is 2

equal to Equation 1 with the exception that Equation 9 is for stem biomass and Equation 3

1 for total biomass (or total above ground biomass). In the reverse theoretical case when 4

the parameter k is zero and sapwood causes all the maintenance of a stem  5

6

32�� Dws          Equation 10 7

8

as shown in Appendix B. These two theoretical extremities are shown graphically in Fig 9

1A and Fig 1B. In reality, since both stem surface and sapwood always cause 10

maintenance, both extremities are unrealistic. For example Bosc et al. (2003) showed that 11

for the Pinus pinaster that they studied stem surface maintenance cost is approximately 12

half of the total stem maintenance cost. 13

14

The classic self-thinning law focuses on the total or above-ground biomass of an 15

individual and not just stem biomass. The new model assumes that the biomass excluding 16

stems per unit land area is independent of stand density and the slope of the self-thinning 17

line excluding stems is therefore -1. The slopes of self-thinning lines for total tree 18

biomass are intermediate between -1 and the self-thinning line for stem biomass, which 19

depends on the values of j and k. The higher the proportion of stem biomass is, and the 20

higher the proportion of stem surface maintenance of total stem maintenance, the steeper 21

the slope of the self-thinning line is (except when sapwood causes a very large proportion 22

of stem maintenance). 23



Acc
ep

te
d m

an
usc

rip
t 

15

1

2

Increasing complexity of the new model3

4

The model described in the previous sections is simple and presented in this short article 5

to encourage development of more realistic and complex models following the same 6

principles. However, most of the dozens of possible adjustments making the model more 7

realistic are species-specific. 8

9

Perhaps the most obvious areas in which to make the model more realistic are related to 10

the structure of the trees. Most trees have a main stem as assumed in the new model but 11

they also have varying branch lengths depending on tree size, which is not taken into 12

account in the new model. Furthermore, the model assumes that the biomass and 13

energetic cost per unit land area of roots is independent of stand density.  14

15

Ryan et al. (2006) review numerous studies indicating that the assumption of invariable 16

gross primary productivity with invariable leaf area index and variable tree height is 17

incorrect. Increasing height may decrease the efficiency of photosynthesis because of 18

hydraulic limitations (Ryan et al., 2006). This could be taken into account in the model. 19

Also the assumption of equal size of all tree individuals and stagnative equilibrium would 20

not be needed if a game-theoretical approach including realistic ranges of tree radii, 21

heights and growth rates could be chosen. 22

23
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The drag force created by wind acting on an individual leaf is central to the new model. 1

However, wind also acts on stem and branches, causing an additional drag and the 2

average wind speeds acting on leaves might increase with size as the canopy roughness 3

changes when leaves are arranged more like vertical clusters than a horizontal layer 4

(Coutts and Grace, 1995). As explained earlier, in most falls of healthy trees the force of 5

wind acting on the canopy is probably the most significant single factor. However, 6

gravity acting on the fresh biomass of the tree is always after some bending an additional 7

factor that could be included in the model. 8

9

10

Conclusions11

12

Focusing on the allometry of an individual without paying enough attention to its biotic 13

surroundings has been the dominant approach in developing theories on tree structure 14

(Niklas, 1994b). However, understanding the allometry of trees in an overcrowded stand 15

that is stagnating and is at the limit of self-thinning is the simplest and therefore in many 16

ways the best approach to model tree structure. This enables the use of Equation 3 for 17

modelling the toppling moment caused by wind drag and together with assumptions on 18

stem maintenance not only explains the height-radius ratio as some earlier models 19

(McMahon, 1973) but explains both the height and radius relative to stand density. 20

Thanks to this it can be applied to self-thinning law and lead to realistic self-thinning line 21

slopes ranging upwards from -3/2. Increasing stand density decreases biomass per unit 22

land area (i.e. self-thinning law) as the trees in them need to be shorter for stability and 23
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need to avoid a large stem surface area requiring maintenance. Numerous species and 1

site-specific complicating factors influence the precise slope of the self-thinning line. 2

More sophisticated species-specific models including some of the aspects presented in 3

the previous section could be developed and tested with simple self-thinning data. 4

Alternatively ecophysiological data on maintenance or diameter, height and leaf area data 5

for tree individuals in stagnating stands could be used to test some of the assumptions 6

presented in this article. The model could be also applied to non-stagnating stands when 7

growth or leaf area information is available or on estimating biomass based on remote 8

sensing data on tree heights when data on stand density is not available. 9

10

11
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Figure caption1

2

Figure 1. Functions A10 and A1 show the maximal height without excessively high risk of 3

toppling and functions B10 and B1 the maximal height based on the energetic 4

maintenance cost of the stem for a given stand density in a self-thinning situation. 5

A10 and B10 are computed from a tenfold stand density compared to A1 and B1.6

The arrows show how a 90% decrease in stand density changes stem dimensions 7

from the intersection between A10 and B10 to the intersection between A1 and B1.8

Fig. 1A demonstrates the situation when stem surface and Fig. 1B when sapwood 9

is assumed to cause all the maintenance. The functions B10 and B1 form an 10

identical horizontal line in Fig. 1B. Functions A10 and A1 are based on Equation 8 11

(where a is constant for a given function), functions B10 and B1 in Fig. 1A on 12

Equation A.1 (where D is constant for a given function) and function B10&1 in Fig. 13

1B on Equation B.1. The assumption that stem dimensions are determined by the 14

intersection between functions A10 or A1 and B10&1 to give the maximum possible 15

stem height is irrelevant in the theoretical case of Fig. 1B, as equal heights but 16

larger radii are equally possible, leading to greater strength.17

18
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Table 1. Symbols in equations. 1

Symbol Definition Possible 
unit 

a leaf area of a tree m2

D stand density m-2

const constant (changes from one equation to 
another)

-

E stem maintenance cost per unit land area W/m2

es stem surface maintenance cost of a tree W 
ew wood maintenance cost of a tree W 
h height of the tree m 
j parameter on maintenance of sapwood - 
k parameter on maintenance of stem surface - 
m moment that a stem of a tree can resist Nm 
r stem radius of a tree m 
ws stem biomass of a tree kg 
wt total biomass of a tree kg 

2



Acc
ep

te
d m

an
usc

rip
t 

20

References 1

2

Adler, F.R., 1996. A model of self-thinning through local competition. Proceedings of the 3
National Academy of Sciences of the United States of America 93, 9980-9984. 4

Anten, N.P.R., and Schieving, F., 2010. The Role of Wood Mass Density and Mechanical 5
Constraints in the Economy of Tree Architecture. American Naturalist 175, 250-6
260.7

Bosc, A., De Grandcourt, A., and Loustau, D., 2003. Variability of stem and branch 8
maintenance respiration in a Pinus pinaster tree. Tree Physiology 23, 227-236. 9

Coutand, C., Dupraz, C., Jaouen, G., Ploquin, S., and Adam, B., 2008. Mechanical 10
stimuli regulate the allocation of biomass in trees: Demonstration with young 11
Prunus avium trees. Annals of Botany 101, 1421-1432. 12

Coutts, M., and Grace, J. Eds.), 1995. Wind and Trees. Cambridge University Press, 13
Cambridge. 14

Davis, L.S., and Johnson, K.N., 1987. Forest Management. McGraw-Hill Book 15
Company. 16

Dean, T.J., Roberts, S.D., Gilmore, D.W., Maguire, D.A., Long, J.N., O'Hara, K.L., and 17
Seymour, R.S., 2002. An evaluation of the uniform stress hypothesis based on 18
stem geometry in selected North American conifers. Trees-Structure and Function 19
16, 559-568. 20

Farnden, C., and Herring, L., 2002. Severely repressed lodgepole pine responds to 21
thinning and fertilization: 19-year results. Forestry Chronicle 78, 404-414. 22

Givnish, T.J., 1986. BIOMECHANICAL CONSTRAINTS ON SELF-THINNING IN 23
PLANT-POPULATIONS. Journal of Theoretical Biology 119, 139-146. 24

Hutchings, M., 1983. ECOLOGYS LAW IN SEARCH OF A THEORY. New Scientist 25
98, 765-767. 26

King, D., 1981. TREE DIMENSIONS - MAXIMIZING THE RATE OF HEIGHT 27
GROWTH IN DENSE STANDS. Oecologia 51, 351-356. 28

King, D.A., Davies, S.J., Tan, S., and Noor, N.S.M., 2006. The role of wood density and 29
stem support costs in the growth and mortality of tropical trees. Journal of 30
Ecology 94, 670-680. 31

Larjavaara, M., and Muller-Landau, H.C., 2010. Rethinking the value of wood density. 32
Functional Ecology. 33

McMahon, T., 1973. SIZE AND SHAPE IN BIOLOGY. Science 179, 1201-1204. 34
Niklas, K.J., 1992. Plant Biomechanics - An Engineering Approach to Plant Form and 35

Function. The University of Chicago Press, Chicago. 36
Niklas, K.J., 1994a. INTERSPECIFIC ALLOMETRIES OF CRITICAL BUCKLING 37

HEIGHT AND ACTUAL PLANT HEIGHT. American Journal of Botany 81, 38
1275-1279.39

Niklas, K.J., 1994b. Plant Allometry. The University of Chicago Press, Chigago. 40
Osawa, A., and Allen, R.B., 1993. ALLOMETRIC THEORY EXPLAINS SELF-41

THINNING RELATIONSHIPS OF MOUNTAIN BEECH AND RED PINE. 42
Ecology 74, 1020-1032. 43



Acc
ep

te
d m

an
usc

rip
t 

21

Peltola, H., Kellomaki, S., Hassinen, A., and Granander, M., 2000. Mechanical stability 1
of Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in 2
Finland. Forest Ecology And Management 135, 143-153. 3

Pruyn, M.L., Gartner, B.L., and Harmon, M.E., 2002. Respiratory potential in sapwood 4
of old versus young ponderosa pine trees in the Pacific Northwest. Tree 5
Physiology 22, 105-116. 6

Putz, F.E., Coley, P.D., Lu, K., Montalvo, A., and Aiello, A., 1983. UPROOTING AND 7
SNAPPING OF TREES - STRUCTURAL DETERMINANTS AND 8
ECOLOGICAL CONSEQUENCES. Canadian Journal Of Forest Research-Revue 9
Canadienne De Recherche Forestiere 13, 1011-1020. 10

Ryan, M.G., Phillips, N., and Bond, B.J., 2006. The hydraulic limitation hypothesis 11
revisited. Plant Cell and Environment 29, 367-381. 12

Schiel, D.R., and Choat, J.H., 1980. EFFECTS OF DENSITY ON MONOSPECIFIC 13
STANDS OF MARINE-ALGAE. Nature 285, 324-326. 14

Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T., 1964. A quantitative analysis on plant 15
form - The pipe model theory. I - Basic analyses. Japanese Journal of Ecology 14, 16
97-105.17

Sterck, F.J., Van Gelder, H.A., and Poorter, L., 2006. Mechanical branch constraints 18
contribute to life-history variation across tree species in a Bolivian forest. Journal 19
of Ecology 94, 1192-1200. 20

Weller, D.E., 1987. A REEVALUATION OF THE -3/2 POWER RULE OF PLANT 21
SELF-THINNING. Ecological Monographs 57, 23-43. 22

West, G.B., Brown, J.H., and Enquist, B.J., 1999. A general model for the structure and 23
allometry of plant vascular systems. Nature 400, 664-667. 24

Yoda, K., Kira, T., Ogawa, H., and Hozumi, K., 1963. Self-thinning in overcrowded pure 25
stands under cultivated and natural conditions. Journal of Biology, Osaka City 26
University 14, 107-129. 27

28
29



Acc
ep

te
d m

an
usc

rip
t 

22

Appendix A1
2

When sapwood is assumed not to make contribution to stem maintenance and the 3
parameter j is therefore zero Equation 7 simplifies to  4

5

Dr
h const
� .         Equation A.1 6

7
Combining this with Equation 8 leads to 8

9

Dra
r const

�
3

         Equation A.2 10

11
and further to 12

13

D
ar �4 .         Equation A.3 14

15
Combining this with Equation 3 leads to16

17
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D
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� ,         Equation A.4 18

19
which simplifies to 20

21

21D
r const
� .         Equation A.5 22

23
As stem biomass of a tree (ws) is in general 24

25
hrws

2� ,         Equation A.6 26
27

it is in this self-thinning situation based on Equation A.128
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Combining this with Equation A.5 leads to 32

33

21DD
w const

s �          Equation A.8 34

35
and to 36

37



Acc
ep

te
d m

an
usc

rip
t 

23

23�� Dws .         Equation A.9 1
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Appendix B1
2

When stem surface is assumed not to make contribution to stem maintenance and the 3
parameter k is therefore zero Equation 7 simplifies to  4

5
consth � .         Equation B.1 6

7
Combining this with Equation 8 leads to 8

9
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         Equation B.2 10

11
and further to 12

13
ar �3 .         Equation B.3 14

15
Combining this with Equation 3 leads to16
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which simplifies to 20
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r const
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As stem biomass of a tree (ws) is in general 24
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hrws

2� ,         Equation B.6 26
27

it is in this self-thinning situation based on Equation B.128
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