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Abstract 21 

22 

There has recently been increasing interest in neutral models of biodiversity and their 23 

ability to reproduce the patterns observed in nature, such as species abundance 24 

distributions. Here we investigate the ability of a neutral model to predict phenomena 25 

observed in single-population time series, a study complementary to most existing 26 

work that concentrates on snapshots in time of the whole community. We consider 27 

tests for density dependence, the dominant frequencies of population fluctuation 28 

(spectral density) and a relationship between the mean and variance of a fluctuating 29 

population (Taylor’s power law). We simulated an archipelago model of a set of 30 

interconnected local communities with variable mortality rate, migration rate, 31 

speciation rate, size of local community and number of local communities. Our 32 

spectral analysis showed ‘pink noise’: a departure from a standard random walk 33 

dynamics in favor of the higher frequency fluctuations which is partly consistent with 34 

empirical data. We detected density dependence in local community time series but 35 

not in metacommunity time series. The slope of the Taylor’s power law in the model 36 

was similar to the slopes observed in natural populations, but the fit to the power law 37 

was worse. Our observations of pink noise and density dependence can be attributed 38 

to the presence of an upper limit to community sizes and to the effect of migration 39 

which distorts temporal autocorrelation in local time series. We conclude that some of 40 

the phenomena observed in natural time series can emerge from neutral processes, as 41 

a result of random zero-sum birth, death and migration.  This suggests the neutral 42 

model would be a parsimonious null model for future studies of time series data. 43 

44 
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 47 

 48 

Introduction 49 

50 

The neutral theory of biodiversity (NTB; Hubbell, 2001; Chave, 2004; Alonso et al., 51 

2006; Leigh, 2007; Rosindell et al., 2010) has revolutionized the way we think about 52 

species coexistence over the last decade. The assumptions of the theory are 53 

controversial (Tilman, 2004; Leibold and McPeek, 2006) and some argue that there is 54 

limited empirical support (McGill et al., 2006), but the theory still has huge potential 55 

as a null model (Gotelli and McGill, 2006), serving as an essential first approximation 56 

to reality and a base for more complex theories. Even with its apparently 57 

oversimplified set of assumptions, the NTB is capable of predicting realistic species-58 

abundance distributions (Hubbell, 2001; Etienne, 2005) and species-area curves 59 

(Rosindell and Cornell, 2007, 2009), as well as many other ecological patterns 60 

(Herben, 2004, 2009). Most of the current research is focused on the community-level 61 

predictions of a single snapshot in time at equilibrium (Chave et al., 2002; McGill, 62 

2003; Turnbull et al., 2005; Volkov et al., 2005; Dornelas, et al. 2006). Dynamical 63 

behaviour of populations in NTB has rarely been studied. Azaele et al. (2006) used 64 

ratios of population sizes between two snapshots of time to estimate species turnover 65 

rates and extinction times of trees in Barro Colorado Island, Panama. Mutshinda et al. 66 

(2008) produced the only study (as far as we are aware) that examines sufficiently 67 

long real-world time series from the perspective of NTB. They used the Bayesian 68 

statistical framework and a neutral model of community dynamics (zero-sum 69 
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assumption relaxed) to show that sizes of natural communities fluctuate more than 70 

expected under neutrality. However, Mutshinda et al. (2008) focused only on the 71 

dynamics of local community size and they did not examine time series of individual 72 

species.  73 

There are some characteristics of natural time-series that are often used as 74 

summary statistics and can be employed here in making comparisons with the time 75 

series produced by a neutral model. For example, natural time series have been shown 76 

to obey some degree of stabilizing density dependence (Woiwod and Hanski, 1992; 77 

Brook and Bradshaw, 2006; Sibly et al., 2007). Natural populations also follow a 78 

specific relationship between mean population size (m) and variance of population 79 

size (s2) called Taylor’s Power Law (TPL) (Taylor et al., 1983; Tokeshi, 1995; 80 

Ballantyne and Kerkhoff, 2007) which has the form bms �2 . In natural populations, 81 

the exponent b of TPL is usually observed to satisfy 21 �� b  (Kendal, 2004). Natural 82 

time series can be considered as being the net result of a number of independent 83 

fluctuations each with a distinct frequency and amplitude.  The amplitude (or ‘spectral 84 

density’) S(f) is a function of  the frequency f and often satisfies �ffS /1)( �  85 

(Halley, 1996). The exponent � usually falls between 0 and 2 for natural time series 86 

(Arino and Pimm, 1995; Halley, 1996; Inchausti and Halley, 2001, 2002), a property 87 

known as ‘pink noise’. 88 

The null model for discrete population dynamics is an unbounded random 89 

walk of population size (N) and is described as  90 

  ttt eNN ��� lnln 1    (1) 91 

where et varies at random according to a given distribution with zero mean and 92 

is independent on population size (Murdoch, 1994; Hanski et al., 1996). The model is 93 

a discrete first-order Markov chain in which all the information that can influence the 94 
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future state (t+1) is fully captured in the present state (t). Random walk time series are 95 

often termed “brownian” or autocorrelated noise. Random walk is synonymous for a 96 

completely density-independent process in ecology, it produces a slope of 2�b  in 97 

Taylor’s power law and spectral scaling exponent of 2�� .  98 

Although the term random walk is sometimes used to describe the population 99 

time series in neutral models (Hubbell, 2001; Alonso et al., 2006), there are reasons 100 

why neutral models can behave differently from the random walk as defined above. 101 

Firstly, there is usually a constraint on the total number of individuals (the ‘zero-sum’ 102 

rule) which imposes a clear upper limit to any population fluctuations (Hubbell, 2001; 103 

Hubbell and Lake, 2003).  Secondly, immigration of individuals into the local 104 

community can cause a locally extinct species to reappear (zero is not necessarily 105 

absorbing; Hubbell, 2001) and finally immigration can distort the temporal 106 

autocorrelation of N, (the number of individuals belonging to the species of interest in 107 

a local community). In the presence of immigration, Nt+1 for a given local community 108 

does not depend solely on Nt for that community (as in the autocorrelated random 109 

walk), it also depends on the Nt for all the other local communities (the 110 

metacommunity). 111 

In this paper we ask if a simple neutral model can produce time series that are 112 

similar to natural time series. In particular, we show that populations in the neutral 113 

model can produce realistic slopes of the Taylor’s power law, have spectral properties 114 

similar to natural populations and seem to reveal density-dependency more frequently 115 

than expected in a random walk. Additionally, we explore the influence of the NTB 116 

parameters (size of local communities, number of local communities, mortality rate, 117 

migration and mutation rate) on these properties of population time series. 118 

119 
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Methods120 

121 

The simulation model 122 

Instead of the classic neutral model used by Hubbell (2001) and Volkov et al. (2003), 123 

we simulate a metacommunity consisting of an archipelago of L isolated local 124 

communities interconnected by migration at rate m (see Fig. 1 below and Volkov et 125 

al., 2007). Each local community contains J individuals all of which behave in an 126 

identical manner irrespective of the species to which they belong. The archipelago 127 

model enabled us to obtain data on abundances and their variances for one species at 128 

multiple local communities, which is necessary for the analysis of Taylor’s Power 129 

Law. We used the simulation approach because it enabled us to record the species 130 

identity of every individual at each time step and across all local communities. 131 

Furthermore, we wished to collect time series of limited lengths that are comparable 132 

to those of empirically collected time series in order to accurately mimic any sampling 133 

effects present in empirical data.  This would be particularly difficult to approach 134 

analytically. Our simulations were conducted using a ‘forwards in time’ approach. A 135 

‘backwards in time’ or coalescence approach can be much faster (Rosindell et al., 136 

2008), but the main strengths of this approach are only present when collecting a snap 137 

shot in time of a sample from a very large or infinite metacommunity.  We are instead 138 

collecting single species time series data and sampling all individuals from a 139 

relatively small metacommunity: a scenario where coalescence is far less beneficial.  140 

Four processes operate in the local community at each step: mortality (d; 141 

0 < d < 1), local replacement (l; 0 < l < 1), immigration from outside of the local 142 

community (m; lm ��1 ) and speciation (s; 10 �� s ) in that order (Fig. 1, Table 1). 143 

To model mortality, dJ 	 individuals were randomly removed from each local 144 
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community in every time step with all individuals having an equal probability of 145 

removal. These removed individuals were then replaced by offspring from others in 146 

the local community and other local communities (immigration). Local replacement 147 

was modeled by drawing individuals to reproduce at random from the 148 

)1( dJ � individuals that survived mortality until ldJ 		 offspring have been created.  149 

The remaining mdJ 		  dead individuals were replaced by immigration from all of 150 

the other local communities. The probability of immigration of a species is given by 151 

its relative abundance in the whole metacommunity (excluding the local community 152 

in focus).  153 

A local population can occasionally give rise to a new species (a speciation 154 

event), this happens with a fixed probability at each time step for each local 155 

population of a species. When speciation occurs, individuals of the given species in 156 

the local community were randomly split into two parts, one of which forms the initial 157 

abundance of a new species (a version of random-fission model; Hubbell, 2001; 158 

Etienne and Haegeman, 2010; Haegeman and Etienne, 2010). Pilot testing of a point 159 

mutation model (Hubbell, 2001) showed that the choice of a speciation model does 160 

not affect the outcome of the simulations, this is not entirely surprising because for a 161 

single species population time series, speciation can be regarded as another form of 162 

mortality: individuals belonging to our focal species that switch to a new species 163 

reduce the population of our focal species in the same way as dead individuals. Each 164 

simulation was launched with only one species that occurred in all local communities 165 

and was left running for 5000 steps which we found was always sufficient for the 166 

system to reach a steady state. The last 100 steps of the simulation were then taken 167 

and used for analyses.  168 

 169 
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Spectral analysis 170 

We performed 200 simulations for each combination of model parameters (Table 1). 171 

From each simulation we randomly selected one species and from this species we 172 

used two time series: (1) time series of population sizes within a randomly selected 173 

local community and (2) time series of population sizes within the whole 174 

metacommunity. In cases where the species went extinct in one or both time series we 175 

randomly selected another one thereby conditioning the time series as being drawn 176 

from a locally extant species. For these time series we conducted spectral analysis 177 

(Halley, 1996; pages 680-681 in Legendre and Legendre, 2003) and estimated the 178 

value of the exponent � in �ffS /1)( � where S(f) is spectral density at given 179 

frequency f  ( 2/0 nff 

 ; n is length of the time series). Values of S(f) were obtained 180 

through Fast Fourier Transform of the log-transformed time series data. The spectral 181 

exponent � was estimated as minus the regression slope of the ))(log( fS  versus 182 

)log( f . This procedure is exactly the same as used by Inchausti and Halley (2001) 183 

and hence our estimates of � are directly comparable to theirs (Fig. 2). The value of � 184 

can vary from 0��  (‘blue noise’) through 0��   (‘white noise’), 1��  (‘pink 185 

noise’) and 2��  (‘brown noise’ or random walk) to 2��  (‘black noise’). We use 186 

the term ‘whitening’ of the spectra for a deviation of � from 2 towards 0.  187 

To assess effects of the neutral model parameters on � we fitted a multiple 188 

ANOVA model with � as the response variable and five explanatory variables: 189 

mortality rate, migration rate, speciation rate, number of local communities and 190 

number of individuals. Since we were dealing with simulated data we only report R2s 191 

and do not report any P-values because these could be modified arbitrarily by 192 

changing number of simulations. Comparisons were made with the values of � 193 

measured in natural populations taken from the Global Population Dynamics 194 
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Database (kindly provided by Pablo Inchausti; see also Inchausti and Halley, 2001, 195 

2002). 196 

197 

Testing for density dependence 198 

Using the same data, we conducted three distinct tests for density dependence in the 199 

time series: Pollard’s randomization test (Pollard et al., 1987), Dennis and Taper’s 200 

parametric bootstrap maximum likelihood test (PLBR; Dennis and Taper, 1994) and 201 

Bulmer’s test (Bulmer, 1974). The Pollards’s test is a distribution-free likelihood ratio 202 

randomization test in which a random walk (Eq. 1) or a random walk with trend are 203 

density independent hypotheses, whereas the density dependent hypothesis is defined 204 

as a first-order linear autoregression model (stochastic Gompertz model): 205 

tttt eNrNN ����� lnlnln 1 �  )1( �  (2) 206 

where r and � are model parameters. The Bulmer’s test is a parametric 207 

predecessor of the Pollard’s test and has been criticized for weak performance in cases 208 

where there was a trend in the data ( 0r ). The PLBR test is a likelihood ratio test 209 

which uses the first-order non-linear autoregression model (stochastic logistic model) 210 

as the density dependent hypothesis: 211 

tttt eNrNN ����� �lnln 1    (3) 212 

All of these tests have been criticized for disputable performance when there is 213 

a census error affecting the estimation of population abundance in the field (Shenk et 214 

al., 1998; Freckleton et al., 2006), but this is not the case for our simulated data. All 215 

three tests gave nearly identical results and we therefore only present the output from 216 

Pollard’s randomization test (Pollard et al., 1987) which is ‘Pollard’s P’: the 217 

probability of observing the empirical data in the case of the density independent 218 

hypothesis (Eq. 1). Following the approach of Woiwod and Hanski (1992) we 219 
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normalized the distribution of Pollard’s P by logit transformation. To assess effects of 220 

the neutral model parameters on Pollard’s P we again fitted a multiple ANOVA 221 

model in which we used the values of logit-transformed Pollard’s P as the response 222 

variable.  223 

 224 

Taylor’s power law 225 

To test if populations in our model obey the Taylor’s Power Law (TPL) we performed 226 

50 simulations for each combination of parameters (Table 1). For each species in the 227 

simulations we created a metapopulation matrix (MPM) of abundances in which rows 228 

represent the last 100 time steps of the simulation and columns represent the 229 

populations in different local communities. We excluded all MPMs in which the 230 

species had gone globally extinct. We studied the TPL in its temporal context (Taylor 231 

and Woiwod, 1982) which means that variances and means are calculated over each 232 

column (one column is one local population) in the MPM – when plotted, each point 233 

in the log-log plot therefore represents one local population. Using rows instead of 234 

columns in the MPM would yield the TPL in a spatial context, but the temporal 235 

context is more germane to this time series study. A linear regression was fitted in 236 

each of the log-log plots and the TPL slope (parameter b; Taylor, 1961; Tokeshi, 237 

1995) and the coefficients of determination (R2) were calculated.  As with our other 238 

results, the simulated values of TPL slopes and R2s were compared with empirically 239 

observed values (taken from Taylor and Woiwod, 1980, 1982). 240 

241 

Results 242 

243 

Spectral analysis 244 
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Values of the scaling exponent � estimated from our simulations are summarized in 245 

Figure 2. For local communities, the median value of � was 1.59 (2.5% and 97.5% 246 

quantiles were 1.26 and 2.19 respectively). The value of � was only influenced by 247 

mortality rate and migration rate (Table 2, Fig. 3) with higher mortality and higher 248 

migration each producing time series that were closer to pink noise ( 2�� ) (Fig. 2). 249 

On the metacommunity scale, the median of � was 1.75 (2.5% and 97.5% quantiles 250 

were 1.05 and 2.07 respectively). We did not detect any influence of the model 251 

parameters on the value of � at the metacommunity scale (Table 2, Fig. 3). Our 252 

simulations produced � values falling within a narrower interval than is generally 253 

observed in nature (Fig. 2), however, they departed from 2 (the value for an 254 

unbounded random walk) in the same direction as for natural populations.  255 

In general, the population time series emerging from our neutral model had 256 

lower � than would be expected for an autocorrelated random walk ( 2�� ). This 257 

could partly be an artifact caused by the insufficient length of time series. It was 258 

recently shown that random walks of length ~100 actually give estimates of between 259 

1.5 and 1.8 instead of 2 because of the missing low-frequency fluctuations 260 

(Miramontes and Rohani, 2002). Nevertheless, since empirically collected time series 261 

are rarely longer than 100 sequential observations, our simulations of time series of 262 

similar lengths are amply justified to purposefully include the effects of sampling over 263 

a limited time scale. Since we also showed that the vales of � tended to be lower at 264 

local scales when comparing time series of equal lengths, we can still conclude that 265 

some whitening of spectra at local community sales is caused by more than just the 266 

length of the sampled time series. 267 

 268 

Testing for density dependence 269 
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On the scale of local communities the median of Pollard’s P was 0.14 (2.5% and 270 

97.5% quantiles were 0 and 0.82 respectively) indicating a distribution skewed 271 

towards the lower values of Pollard’s P. We also found that the values of Pollard’s P 272 

were dependent on mortality rate and migration rate (Table 2, Fig. 4). Similarly to 273 

spectral analysis, simulations with higher mortality rate and higher migration rate 274 

produced time series with lower values of Pollard’s P (Fig. 4).  On the 275 

metacommunity scale the median value of Pollard’s P was 0.5 (2.5% and 97.5% 276 

quantiles being 0.01 and 0.97 respectively). This indicates no clear signal of density 277 

dependence on the metacommunity scale. We did not detect any influence of the other 278 

model parameters on the values of logit-transformed Pollard’s P (Table 2, Fig. 4). 279 

Pollard’s P varied with relative abundance of species in local communities but not in 280 

metacommunities (Fig. 6). 281 

 282 

Taylor’s power law (TPL) 283 

The median slope of TPL was 1.73 (2.5% and 97.5% quantiles were 0.059 and 2.49 284 

respectively). The coefficients of determination (R2) of power law regressions varied, 285 

following skewed, non-normal distributions (Figs. 2, 5), having generally lower 286 

values to what has been observed in nature (Fig. 2). The effects of model parameters 287 

on the slope of TPL was not as distinct as in spectral analysis and density dependence 288 

analysis; we detected a weak influence of number of local communities and mortality 289 

rate on the slopes of TPL (Table 2, Fig. 5).  Both the slopes and R2s showed negative 290 

dependence on the mean relative abundance of species (Fig. 7). 291 

 292 

Discussion 293 

294 
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Spectral analysis and density dependence 295 

The observed whitening of spectra in our model is not what we would expect under 296 

random walk dynamics. One possible reason for this is the effect of migration which 297 

can cause the spectral whitening. A population in an isolated local community (low or 298 

no immigration from outside) follows dynamics similar to an autocorrelated random 299 

walk ( 2�� ) in which there is little or no dependence on the abundances in other local 300 

communities. However, after introducing immigration from outside of the local 301 

community, the autocorrelative nature of the process is broken and the species 302 

abundance in the whole metacommunity becomes important. The influence of single 303 

local community dynamics on the metacommunity are likely to be small (inversely 304 

proportional to the number of local communities), but in contrast the influence of the 305 

metacommunity on local community dynamics can be substantial (proportional to the 306 

migration rate). Hence, the migration causes the local time series to be whitened (non-307 

autocorrelated in time) while the metacommunity time series remains “brownian” 308 

(autocorrelated in time). The mortality rate can also cause spectral whitening by 309 

adding random population fluctuations at high frequencies, but not at low ones 310 

subsequently lowering �. We expect that this effect of mortality rate would not be 311 

apparent in very long time series (> 400 time steps; Miramontes and Rohani, 2002). 312 

However, such long time series are nearly never available in ecology and we wanted 313 

to keep our time series comparably long to the real-world ones. 314 

The spectral analysis results are mirrored by the results of the tests for density 315 

dependence. Density dependence is modeled either as stochastic Gompertz (Eq. 2) or 316 

stochastic logistic (Eq. 3) models in the tests we used (Shenk et al., 1998, see also 317 

Methods).  318 
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 It has been recognized for a long time (Eberhardt, 1970; Freckleton et al., 319 

2006) that a sequence of uncorrelated random numbers (“white noise”) tends to 320 

follow a pattern consistent with density dependence. If you take white noise time 321 

series and plot changes of ln population size ( tt NN lnln 1 �� ) against ln Nt  (where Nt 322 

is the number of individuals at time t) you will get a linear negative relationship, 323 

corresponding (spuriously) to the density dependent Gompertz model (Eq. 2) with 324 

1��� . Moreover, white noise can be very similar to the output of the stochastic 325 

logistic model (Eq. 3) with 0�� . We have learned that the whitening of a spectra 326 

means bringing it from 2��  down towards 0, which is white noise. We also know 327 

that migration (by breaking the autocorrelation structure) and mortality rate (by 328 

increasing spectral density at high frequencies in time series of limited length) cause 329 

spectral whitening. The detection of density dependence can also be attributed to the 330 

same mechanisms, although most ecologists would consider such density dependence 331 

to be spurious (Freckleton et al., 2006). 332 

Ucorrelated noise in the form of census error also causes spurious detection of 333 

density dependence has long been known to population ecologists (Shenk et al., 1998; 334 

Freckleton et al., 2006). Moreover, Freckleton et al. (2006) showed an example of a 335 

population that follows a random walk but consists of two subpopulations each of 336 

which apparently shows density dependence because there is random migration 337 

between them. That immigration can cause time series to resemble a sequence of 338 

uncorrelated random numbers was also noted by Anderson et al. (1982) and this is 339 

indeed the case for our neutral model. 340 

There should also be real density dependence in our model. In an isolated 341 

community, the closer Nt gets to zero (extinction) or to J (monodominance) the lower 342 

the probability of Nt+1 differing from Nt will be.  When a species almost fills the local 343 
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community, its probability of increasing its abundance in the next time step is small, 344 

because it is unlikely that one of the few individuals belonging to a different species 345 

will be selected for mortality. Similarly, when the abundance of a species is low, its 346 

probability of reproducing is low because after mortality it is not likely to be selected 347 

to reproduce. The highest rate of fluctuations and lowest incidence of density 348 

dependence is then expected when a population has a relative abundance of 0.5 349 

(Hubbell, 2001). We detected this form of density dependence only in local 350 

communities at low relative abundances (Fig. 6). Species with high relative 351 

abundances were rare in our simulations and hence we were unable to clearly show 352 

the real density dependence for them (Fig. 6) even though in theory it must exist. 353 

354 

Taylor’s power law (TPL) 355 

The archipelago neutral model produced slopes of Taylor’s Power Law with median 356 

close to the range observed in natural populations (1<b<2), but with higher incidence 357 

of low coefficients of determination. In order to explain this we need to summarize 358 

the mean-variance scaling properties of simple stochastic models. If a species 359 

undergoes an unrestricted random walk (Eq. 1), the TPL has a slope 1�b at very low 360 

population densities and gradually changes to 2�b  at a certain density (Anderson et 361 

al., 1982; Tokeshi, 1995; Keeling, 2000). The population density at which b starts to 362 

change from 1 to 2 depends on the relative magnitude of stochastic changes because 363 

of the high incidence of extinctions at low population densities which lower the 364 

variance. This effect can explain 2�b  at very low densities.  365 

Hubbell (2001) shows what happens with the mean-variance scaling if the 366 

stochastic population fluctuations are restricted by an upper boundary (the zero-sum 367 

rule) and are fed by immigration, although Hubbell does not use the term Taylor’s 368 



Acc
ep

te
d m

an
usc

rip
t 

 16

power law. Hubbell (2001) predicts hump-shaped parabolic relationship between 369 

abundance of species in a metacommunity and the variance of a local population size 370 

undergoing the zero-sum ecological drift. He also hypothesizes that most of the 371 

species in nature have low relative abundances and hence should occur in the left part 372 

(relative abundance < 0.2) of the parabola which is nearly linear in the log-log space, 373 

resembling the power-law with slope of 2. Although Hubbell’s (2001) reasoning 374 

focuses on the relationship between mean and variance in a set of species within one 375 

community (one point in the mean-variance plot represents one species) it can apply 376 

to the set of single-species local populations in our model: the mean relative 377 

abundances of species in local communities were rarely higher than 0.2 in our 378 

simulations and indeed, there is a much better fit of the TPL for species with low 379 

abundances (Fig. 7). The poor fit at higher relative abundances is then a result of 380 

fitting the linear TPL on the actually parabolic mean-variance relationship. 381 

Consequently, as the mean relative abundance of species increases, the slope of the 382 

TPL decreases (Fig. 7).   383 

 384 

Comparison with empirical data and conclusions 385 

Our model produces qualitatively similar patterns to those observed in nature. This is 386 

perhaps surprising given the assumptions made by the neutral model, but it does again 387 

highlight its use as a powerful null model. 388 

There is a general agreement that natural time series are not “brownian” (Fig. 389 

1; Arino and Pimm, 1995; Inchausti and Halley, 2001, 2002) – they clearly fall into 390 

the whitened range of scaling exponents ( 20 �� � ; Fig. 2). Our simulations indicate 391 

that neutral models have the potential to explain part of this observed whitening, 392 

although this potential may be limited. Although higher migration rates can result in 393 
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time series with more realistic values of �, our migration rates are similar (10%) or 394 

much higher (30%) than what is usually observed in natural metacommunities (see 395 

Volkov et al., 2003 and Mutshinda et al., 2008). Mutshinda et al. (2008) already 396 

showed that sizes of local communities fluctuate more than is expected from neutral 397 

theory. This resonates with our simulations of individual species time series which 398 

show rather high values of � (i.e. lower importance of high-frequency fluctuations) 399 

when compared to empirical data. Recent progress in population ecology suggests that 400 

a promising explanation for these high fluctuations of natural populations might be 401 

environmental stochasticity (Lande et al., 2006; Mutshinda et al., 2009) which is 402 

absent in neutral models, but not impossible to include in future and more general 403 

versions of the original theory (Allen and Savage, 2007).  404 

Realistic slopes of TPL can be produced by a number of different mechanisms 405 

(Tokeshi, 1995; Keeling, 2000; Kendal, 2004; Ballantyne and Kerkhoff, 2007) and it 406 

is therefore difficult to infer any definitive underlying mechanisms from its shape 407 

(Mitzenmacher, 2003). Here we add neutral models to the list of possible mechanisms 408 

that can produce realistic TPL slopes, although not necessarily realistic fits. 409 

In conclusion, our results show that realistic slopes of Taylor’s power law and 410 

density dependence can emerge from a simple neutral model, whilst spectral colours 411 

are less likely, but still possible to be reproduced by the neutral model.  Still some 412 

other natural phenomena remain unexplained by our model, such as the possibility for 413 

very small � closer to white noise. Our findings suggest the interesting possibility that 414 

the properties of population time series observed in nature are in part due to simple 415 

factors such as sampling effects and dispersal limitation, which would then represent 416 

the most parsimonious explanation of observed patterns. The patterns of population 417 

fluctuations observed in nature may not reflect resource-driven species-specific 418 
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dynamics but instead processes at the metacommunity scale, with an important effect 419 

of stochastic mortality and random immigration of individuals into local communities.  420 

The neutral model encompasses these factors without being overly complex and we 421 

therefore suggest that neutral models make more powerful null models for time series 422 

data compared to alternatives such as Brownian random walks. 423 
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Figure legends 557 

558 

Figure 1 Schematic illustration of the “archipelago” model. Note that we performed 559 

our simulations using much larger numbers of local communities than illustrated here. 560 

See the methods for detailed description of the model.  561 

 562 

Figure 2 Some aspects of real-world populations and those produced by our neutral 563 

model. Empirical slopes of Taylor’s Power Law and coefficients of determination of 564 

TPL of 429 species of aphids, moths and birds were taken from Taylor & Woiwod 565 

(1980, 1982). Empirical values of scaling exponent � of power spectra of 544 time 566 

series were taken from the Global Population Dynamics Database (GPDD, kindly 567 

provided by Pablo Inchausti; see also Inchausti and Halley, 2001, 2002). Box and 568 

whisker plots show medians, quartiles and outliers. 569 

 570 

Figure 3 Results of the spectral analysis of population time series produced by a 571 

neutral model. � is the scaling exponent in �ffS /1)( �  where S(f) is spectral density 572 

and f is frequency. Displayed are the effects of the neutral model’s parameters (Tab. 573 

1) on � as a box and whisker plot with median and quartiles. A random walk of 574 

sufficient length would have 2�� . 575 

 576 

Figure 4 Results of the testing for density dependence in population time series 577 

produced by neutral model as a box and whisker plot with median and quartiles. 578 

Pollard’s P is the probability of obtaining the data in case of density independence 579 

(Eq. 1; Pollard et al., 1987). 580 

 581 
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Figure 5 The slopes of temporal Taylor’s power law (TPL) as produced by neutral 582 

models with various levels of model parameters. Solid horizontal lines delimit the 583 

range observed in natural populations. Shown as a box and whisker plot with median 584 

and quartiles shown, outliers are not displayed. 585 

 586 

Figure 6 Dependence of Pollard’s P on relative abundance of species in local 587 

communities and in metacommunities. Shades of grey represent density of points in 588 

hexagonal bins. 589 

 590 

Figure 7 Dependence of slope and coefficient of determination (R2) of Taylor’s 591 

Power Law on mean relative abundance of species in local communities. Shades of 592 

grey represent density of points in hexagonal bins.  593 
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Table 1 An overview of the parameters and their levels used in our neutral model 

simulations. See material and methods for detailed description of the exact function of 

each parameter. 

Parameter Description  Levels used in 

simulations 

Number of local 

communities 

number of local communities that make up 

the metacommunity 

100, 20 

Size of each local 

community (J) 

number of individuals in each local 

community 

2000, 500 

Mortality rate (d) mortality rate of individuals per time step in 

the local community  

0.6, 0.3 

Migration rate (m) proportion of vacant positions in the 

community replaced by migration from other 

local communities 

0.1, 0.3 

Speciation rate (s) speciation rate per species per step 2x10-6, 3x10-6 

5. Tables
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Table 2 The strength of the effect of each parameter on the value of γ and the logit-

transformed Pollard’s P. Parameter γ describes the ‘colour’ of the spectra of a time 

series. Pollard’s P is the probability of obtaining the data in case of density 

independence (random walk). The values of R2 were estimated using a multiple 

ANOVA. Figures in bold show values higher than 0.001. 

 Local communities Metacommunities 

 R2 (γ) R2 (logit of 

Pollard’s P) 

R2 (γ) R2 (logit of 

Pollard’s P) 

 R2 (slope of 

TPL) 

Mortality rate  0.045 0.078 <0.001 <0.001 0.019 

Migration rate 0.11 0.19 <0.001 <0.001 0.0014 

Speciation rate <0.001 <0.001 <0.001 <0.001 <0.001 

# of local 

communities 

<0.001 0.014 <0.001 <0.001 0.048 

Size of local 

community 

<0.001 <0.001 <0.001 <0.001 0.0015 

 




