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Interacting particle processes and approximation of

Markov processes conditioned to not be killed.

Denis Villemonais∗

June 3, 2011

Abstract

We prove an approximation method for general strong Markov processes condi-

tioned to not be killed. The method is based on a Fleming-Viot type interacting

particle system, whose particles evolve as independent copies of the original strong

Markov process and jump onto each others instead of being killed. We only as-

sume that the number of jumps of the Fleming-Viot type system doesn’t explode in

finite time almost surely, and that the survival probability at fixed time of the orig-

inal process is positive. We also give a speed of convergence for the approximation

method.

A criterion for the non-explosion of the number of jumps is then given for general

systems of time and environment dependent diffusion particles, which includes the

case of the Fleming-Viot type system of the approximation method. The proof of the

criterion uses an original non-attainability of (0,0) result for a pair of non-negative

semi-martingales with positive jumps.

Key words : diffusion process, interacting particle system, empirical process, quasi-
stationary distribution, Yaglom limit.
MSC 2000 subject : Primary 82C22, 65C50, 60K35; secondary 60J60

1 Introduction

Let F be a Banach space and ∂ be a point which doesn’t belong to F . Let P be the
semi-group of a strong Markov process Z which evolves in F ∪ {∂} and denote by τ∂
the hitting time of {∂}. We assume that ∂ is a cemetery point for Z, which means that
Zt = ∂ for all t ≥ τ∂, and we call τ∂ the killing time of Z.

Killed Markov processes are commonly used in a large area of applications in biology,
demography, chemistry or finance, where there is two natural ways of killing a Markov
process, which correspond to different interpretations. The first way is to kill the process
when it reaches a given set. For instance, a demographic’s model is stopped when the
size of the population hits 0, since it corresponds to the extinction of the population. The
second way of killing a process is to stop it at an exponential time. For example, a chemical
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particle typically disappears by reacting with another one after an exponential time, whose
rate depends on the concentration of reactant in the medium. If the killing time τ∂ is
given by the time at which the process reaches a set, we call it a hard killing time. If it is
given by an exponential clock, we call it a smooth killing time. While the distribution of
the process after its killing time is of poor interest, numerous studies concentrate on the
behavior of the process conditioned to not be killed (see [5] and references therein). The
main motivation of this paper is to provide an approximation method for the distribution
of Markov processes evolving in a random/time dependent environment and conditioned
to not be killed.

The main tool of the approximation method is given by a Fleming-Viot type interacting
particle system introduced by Burdzy, Holyst, Ingermann and March in [3] and [4]: the
N particles of the system evolve as independent Brownian motions in an open subset
D of Rd, and, when a particle hits the boundary ∂D, it jumps onto the position of an
other particle chosen uniformly between the N−1 other ones; then the particles evolve as
independent particles and so on. When N goes to infinity, the empirical measure of the
process converges to the distribution of a standard multi-dimensional Brownian motion
conditioned to not be killed at the current time. Such an approximation method has
been proved by Grigorescu and Kang in [11] for a standard multi-dimensional Brownian
motion, in [22] for Brownian motions with drift and by Del Moral and Miclo for smoothly
killed Markov processes (see [6] and references therein). Let us also mention the work of
Ferrari and Maric̀ [9], which regards continuous time Markov chains in discrete spaces.

In Section 2, we prove that this method works in a very general setting. Namely, let
(ZN)N≥2 be a sequence of strong Markov processes which evolve in F ∪ {∂}, where ∂ is
the cemetery point for each ZN . We fix T ≥ 0 and we assume that the sequence (ZN

T )N
converges to ZT in the sens of Hypothesis 2.1 . For each N ≥ 2, we build a Fleming-
Viot type system of N interacting particles as above: the particles evolve as independent
copies of ZN until one of them is killed; at this time, the killed particle jumps onto the
position of another particle, chosen between the N − 1 remaining ones. We assume that
the number of jumps in the N particles system doesn’t explode up to time T , and we
prove in Theorem 2.1 that the associated sequence of empirical stationary distributions
converges when N → ∞ to the distribution of the process Z conditioned to not be killed
at time T . We also give a speed of convergence for the method, which only depends on
the survival probability of the Markov processes ZN , N ≥ 2.

This result comes as an important generalization of the previously cited ones. Firstly,
we allow both hard and soft killings, which is a natural setting in applications: typically,
a species can disappear because of a lack of born of new specimens (which corresponds
to a hard killing at 0) or because of a brutal natural catastrophe (which typically hap-
pens following an exponential time). Secondly, we implicitly allow time and environment
dependency, which is also quite natural in applications, where individual paths are in-
fluenced by external stochastic factors (as the weather) whose distribution varies with
time (because of the seasons by instance). Finally, we allow the process ZN which drives
the particles to depend on N , and we only require the non-explosion of the number of
jumps of the Fleming-Viot type system build on ZN . As a consequence, one can apply
the approximation method to a process Z, without requiring that the Fleming-Viot pro-
cess based on Z is well defined. This is typically the case for degenerate diffusions, or
for diffusions with hard killing at the boundary of a non-regular domain, or for Markov
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processes with smooth killing given by an unbounded rate function. In our case, the three
irregularities can be combined, by successive approximations of the coefficients, domain
and rate of killing respectively.

Since the method works in a very general setting, it only remains us to prove the
non-explosion of the number of jumps. This problem is studied in Section 3. Such non-
explosion results have been recently obtained by Löbus in [17] and by Bienek, Burdzy and
Finch in [2] for Brownian particles killed at the boundary of a given open set, by Grig-
orescu and Kang in [13] for time-homogeneous particles driven by a stochastic equation
with regular coefficients killed at the boundary of a non-smooth domain (a survey of the
previous results is done in the introduction of [13]) and in [22] for Brownian particles with
drift. Other models of diffusions with jumps from a boundary have been introduced in [1],
with a continuity condition on the jump measure that isn’t fulfilled in our case, in [12],
where fine properties of a Brownian motion with rebirth have been established, and in
[15], [16], where Kolb and Wükber have studied the spectral properties of this model. In
Section 3, we state the non-explosion of an interacting particle process, whose construc-
tion is a generalization of the previous ones. Indeed we consider particles which evolve as
Itô diffusion processes in a random/time dependent environment with both hard and soft
killings, with a different space of values for each particle. Moreover, at each killing time,
we allow very general jump locations for the killed particle. In particular, this validates
the approximation method described above for time/environment dependent diffusions
with hard and soft killing.

The proof of the non-explosion is based on an original non-attainability of (0,0) result
for semi-martingales, which is stated in the last section of this paper.

2 Approximation of a Markov process conditioned to

not be killed

Let F be a polish space and let Z be a càdlàg strong Markov process which evolves in F
until it is killed. When it is killed, it jumps to a cemetery point ∂ /∈ F . The killing time
is denoted by τ∂ = inf{t ≥ 0, Zt = ∂}. In this section, we fix T ≥ 0 and we prove an
approximation method for the distribution of the process ZT starting with distribution
µ0 ∈ M1(F ) and conditioned to the event {T < τ∂}.

The approximation method is based on a sequence of Fleming-Viot type systems
X(N) =

(

X1,(N),...,X2,(N)
)

with values in FN , N ≥ 2. A natural choice for the dy-

namic of X(N), N ≥ 2, should be the following: the particles evolve independently as N
independent copies of Z until one of them is killed; at this time, the killed particle jumps
from ∂ to the position of one of the N − 1 remaining particles; then the particles evolve
as N independent copies of Z until one of them is killed and so on. Unfortunately, for a
general choice of Z, the number of jumps of the system could explode in finite time, or
the N particles could be killed at the same time (see [2, Example 5.3] for an example of
explosion in a non-trivial setting). When this happens, the approximation method can
no longer operate. In order to overcome this difficulty, we assume that we’re given a se-
quence

(

ZN
)

N≥2
of strong Markov processes which converges to Z at time T (Hypothesis

2.1 below) and such that, for all N ≥ 2, the Fleming-Viot system with N particles driven
by ZN between the killings doesn’t explode before time T (Hypothesis 2.2). Theorem 2.1
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below states that the empirical measure at time T of the system X(N) (whose particles are
driven by ZN between the killings) converges, when N goes to infinity, to the distribution
of Z conditioned to {T < τ∂}. A rate of convergence of the approximation method is also
given, which only depends on the survival probability of ZN at time T ≥ 0.

Let
(

ZN
)

N≥2
be a sequence of càdlàg strong Markov processes which evolve in F ∪

{∂}, where ∂ is a cemetery point for each ZN . We denote the killing time of ZN by
τN∂ = inf{t ≥ 0, ZN

t = ∂}. For each N ≥ 2, we define the interacting particle system
X

(N) = (X1,(N),...,XN,(N)) with values in FN as follows:

• Let m(N) ∈ M1

(

FN
)

be the initial distribution of the system.

• The N particles evolve as N independent copies of ZN until one of them is killed.
This killing time is denoted by τ

(N)
1 .

• At time τ
(N)
1 , the process is modified:

– If there exists more than one particle which is killed at time τ
(N)
1 , we stop the

interacting particle system itself and this time is denoted by τ
(N)
stop (In fact, we

will assume that this kind of event doesn’t happen almost surely).

– Otherwise the unique killed particle jumps instantaneously onto the position
of another particle, chosen uniformly between the N − 1 remaining ones.

• At time τ
(N)
1 and after proceeding to the jump, the process lies in FN . Then the

system evolves as N independent copies of ZN , until the next killing time, denoted
by τ

(N)
2 .

• At this time, the process jumps with the same mechanism as above (and could be

stopped at a time denoted by τ
(N)
stop, as above).

• Then the particles evolve as N independent copies of ZN , and so on.

We set τ
(N)
stop = +∞ if X i,(N) and Xj,(N) are never killed at the same time, for all i 6= j.

On the event {τ (N)
stop = +∞}, we denote by τ

(N)
1 < τ

(N)
2 < ... < τ

(N)
n < ... the sequence of

jump times and we set
τ (N)
∞ = lim

n→∞
τ (N)
n . (2.1)

If τ
(N)
stop < +∞, we set τ

(N)
∞ = +∞. The interacting particle system is then well defined

for all time t < τ
(N)
stop ∧ τ (N)

∞ .

We denote by A
i,(N)
t the number of jumps of the ith particle up to time t, t < τ

(N)
stop∧τ (N)

∞ .

We denote the total number of jumps of the system by A
(N)
t :

A
(N)
t =

N
∑

i=1

A
i,(N)
t ,

and by µ
(N)
t the empirical distribution of X

(N)
t :

µ
(N)
t =

1

N

N
∑

i=1

δ
X

i,(N)
t

∈ M1(F ),
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where M1(F ) denotes the space of probability measures on F .
The first assumption concerns the convergence of ZN

T starting with initial random

distribution µ
(N)
0 to ZT starting with (possibly random) distribution µ0.

Hypothesis 2.1. We assume that, for all bounded and continuous functions f : F∪{∂} 7→
R+ such that f(∂) = 0,

µ
(N)
0

(

PN
T f
) law−−−→

N→∞
µ0 (PTf) .

where PN
. (respectively P.) denotes the semi-group of the process with killing ZN (respec-

tively Z).

Remark 2.1. A typical situation where Hypothesis 2.1 is fulfilled is the following: we’re
given µ0, Z, and a sequence ZN such that, for all x ∈ F and all continuous and bounded
function f : F 7→ R+,

PN
T f(x) −−−→

N→∞
PTf(x). (2.2)

If we assume that m(N) = µ⊗N
0 , then Hypothesis 2.1 is fulfilled. Indeed, we have

µ
(N)
0

(

PN
T f
) law
=

1

N

N
∑

i=1

[

PN
T f(xi)− µ0

(

P
(N)
T f

)]

+ µ0

(

P
(N)
T f

)

,

where (xi)i≥1 is an iid sequence of random variables with law µ0. By the law of large
numbers, the first right term converges to 0 almost surely. By the convergence assumption
(2.2) and by dominated convergence, the second right term converges almost surely to
µ0 (PTf), so that Hypothesis 2.1 is fulfilled.

The second assumption concerns the non-explosion of the number of jumps for the
system with N particles driven by ZN between the killings.

Hypothesis 2.2. We assume that, for all N ≥ 2, the process X
N is well defined up to

time T , which means that

Pm(N)

(

T < τstop ∧ τ (N)
∞

)

= 1.

Hypothesis 2.2 is clearly fulfilled if ZN is only subject to smooth killing events happen-
ing with uniformly bounded killing rates (the question has not been answered to in the case
of unbounded killing rates). In the case of an Itô’S diffusion driven by time-homogeneous
stochastic differential equations and hardly killed when it hits the boundary of an open
set, the problem is much harder and has been extensively studied recently (see [22], [13]
and references therein for different and quite general criteria of non-explosion). The case
of Itô diffusions driven by stochastic differential equations with time/environment depen-
dent coefficients subject to soft and hard killings is treated in Section 3 of this paper.

Theorem 2.1. We assume that the survival probability of Z at time T is strictly positive,
which means that

µ0 (PT1F ) > 0, almost surely. (2.3)

Assume that Hypotheses 2.1 and 2.2 are fulfilled. Then, for any continuous and bounded
function f : F 7→ R+,

µ
(N)
T (f)

law−−−→
N→∞

µ0 (PTf)

µ0 (PT1F )
.
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Moreover, for any bounded measurable function f : F 7→ R+, we have the inequality

E





∣

∣

∣

∣

∣

∣

µ
(N)
T (f)−

µ
(N)
0

(

P
(N)
T f

)

µ
(N)
0

(

P
(N)
T 1F

)

∣

∣

∣

∣

∣

∣



 ≤ 4‖f‖∞√
N

√

√

√

√

√

√

E







1
(

µ
(N)
0 (PN

T 1F )
)2






.

Remark 2.2. In Section 3, we give a non-explosion criterion for systems whose particles
are driven by diffusions evolving in a random/time dependent environment, killed after
exponential times or when they hit the boundary of a given open set. In particular, this
criterion requires that the rate of killing is bounded and that the killing boundary and
the coefficients of the diffusions are smooth. If Z is a diffusion in random environment,
with unbounded killing rate, irregular coefficients and non-smooth killing boundary, one
can define a sequence of strong Markov processes (ZN )N≥2 which approximates Z and
fulfills the criterion of Section 3 for all N ≥ 2, proceeding by successive approximations
of the rate of killing, the killing boundary and the coefficients of the diffusion Z. It yields
that Theorem 2.1 gives an approximation method for Z conditioned to {T < τ∂}, while
Z is degenerate. This example illustrates that allowing an approximating sequence ZN

for Z gives a great generality to the approximation method of Theorem 2.1.

Remark 2.3. In the particular case of a process Z with a uniformly bounded killing rate
and without hard killing, a uniform rate of convergence over all times T can be obtained,
using the stability of the underlying Feynman-Kac semi-group (we refer the reader to
Rousset’s work [20] and references therein).

Proof of Theorem 2.1. The proof consists of three steps. In a first step, we fix N ≥ 2 and
we prove that, for any bounded and measurable function f : F ∪ {∂} such that f(∂) = 0,

there exists a martingale M
(N)
t such that

µ
(N)
t

(

PN
T−tf

)

= µ
(N)
0

(

PN
T f
)

+M
(N)
t +

1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

[

1

N − 1

∑

j 6=i

PN

T−τ
i,(N)
n

f(X
j,(N)

τ
i,(N)
n

)

]

(2.4)

where τ
i,(N)
n is the nth killing time of the ith particle. In a second step, we define the

measure ν
(N)
t on F by

ν
(N)
t (dx) =

(

N − 1

N

)A
(N)
t

µ
(N)
t (dx),

where a loss of mass is introduced at each jump, in order to compensate the last right
term in (2.4): we prove that ν

(N)
T (f)− µ

(N)
0

(

PN
T f
)

is the sum of two martingales. Then

we prove that the L2 norm of each of these martingales is bounded by ‖f‖∞/
√
N , which

yields us to
√

E

(

∣

∣

∣
ν
(N)
T (f)− µ

(N)
0 (PN

T f)
∣

∣

∣

2
)

≤ 2‖f‖∞√
N

.

In the third step of the proof, we remark that ν
(N)
T and µ

(N)
T are proportional mea-

sures, which allows us to conclude the proof of Theorem 2.1 by renormalizing ν
(N)
T and

µ
(N)
0

(

PN
T .
)

.
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Step 1: Fix N ≥ 2 and let f : F ∪ {∂} 7→ R+ be a measurable bounded function such
that f(∂) = 0. Let us prove (2.4). We define, for all t ∈ [0,T ] and z ∈ F ∪ {∂},

ψN
t (z) = PN

T−tf(z).

The process
(

ψN
t (ZN

t )
)

t∈[0,T ]
is a martingale which is equal to 0 at time τN∂ almost surely,

as soon as τN∂ ≤ T . Indeed, for all s,t ≥ 0 such that s + t ≤ T , we have by the Markov
property and the fact that PN is a semi-group:

E
(

ψN
t+s(ZN

t+s)|
(

ZN
u

)

u∈[0,t]

)

= PN
s ψ

N
t+s(ZN

t ) = ψN
t (ZN

t ).

Moreover ∂ is an absorbing state and f(∂) = 0, then

ψN
τN
∂
∧T (ZN

τN
∂
∧T ) = ψN

τN
∂
(∂)1τ∂≤T + ψN

τN
∂
(ZN

T )1τ∂>T = ψN
τN
∂
(ZN

T )1τ∂>T .

Fix i ∈ {1,...,N} and denote by τ
i,(N)
n the nth jump time of the particle i. For all

n ≥ 0, we define the process
(

M
i,n,(N)
t

)

t∈[0,T ]
by

M
i,n,(N)
t = 1

t<τ
i,(N)
n+1

ψN

t∧τ
i,(N)
n+1

(X
i,(N)

t∧τ
i,(N)
n+1

)− ψN

t∧τ
i,(N)
n

(X
i,(N)

t∧τ
i,(N)
n

) (with τ
i,(N)
0 = 0 ).

Since X i,(N) evolves as ZN in the time interval [τ
i,(N)
n ,τ

i,(N)
n+1 [, M

i,(N),n
t is a martingale which

fulfills almost surely

M
i,n,(N)
t =















−ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

), if n < A
i,(N)
t ,

ψN
t (X

i,(N)
t )− ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

), if n = A
i,(N)
t ,

0, if n > A
i,(N)
t ,

since n < A
i,(N)
t is equivalent to τ

i,(N)
n+1 < t, while n > A

i,(N)
t is equivalent to τ

i,(N)
n > t.

Summing over all jumps, we get

ψN
t (X

i,(N)
t ) = ψ0(X

i,(N)
0 ) +

A
i,(N)
t
∑

n=0

M
i,n,(N)
t +

A
i,(N)
t
∑

n=1

ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

). (2.5)

Defining

M
i,(N)
t =

A
i,(N)
t
∑

n=0

M
i,n,(N)
t and M

(N)
t =

1

N

N
∑

i=1

M
i,(N)
t

and summing over i ∈ {1,...,N}, we get

µ
(N)
t (ψN

t ) = µ
(N)
0 (ψN

0 ) +M
(N)
t +

1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

).

At each jump time τ
i,(N)
n , the position of the particle X i,(N) after the jump is chosen with

respect to the empirical measure of the other particles. The expectation of ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

)
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conditionally to the position of the other particles at the jump time is then the average
value 1

N−1

∑

j 6=i ψ
N

τ
i,(N)
n -

(X
j,(N)

τ
i,(N)
n -

). We deduce that

M(N)
t =

1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

(

ψN

τ
i,(N)
n

(X
i,(N)

τ
i,(N)
n

)− 1

N − 1

∑

j 6=i

ψN

τ
i,(N)
n -

(X
j,(N)

τ
i,(N)
n -

)

)

.

is a local martingale. We finally get

µ
(N)
t (ψN

t ) = µ
(N)
0 (ψN

0 ) +M
(N)
t +M(N)

t +
1

N

N
∑

i=1

A
i,(N)
t
∑

n=1

[

1

N − 1

∑

j 6=i

ψN

τ
i,(N)
n -

(X
j,(N)

τ
i,(N)
n -

)

]

, (2.6)

which is exactly (2.4).

Step 2: Let us now explain why ν
(N)

T∧τ
(N)
α

(ψN

T∧τ
(N)
α

) − ν
(N)
0 (ψN

0 ) is the sum of two mar-

tingales. Since N is fixed and in order to clarify the calculus, we remove the superscripts
N and (N) when there is no risk of confusion. Denoting by MC the continuous part of
M = M(N), we deduce from (2.6) that

νT (ψT )− ν0(ψ0) =

∫ T

0

(

N − 1

N

)At-

dMC
t +

AT
∑

n=1

ντn(ψτn)− ντn-(ψτn-).

Let us compute each term in the right side sum. For all n ≥ 1,

ντn(ψτn)− ντn-(ψτn-) =

(

N − 1

N

)Aτn

(µτn(ψτn)− µτn-(ψτn-))

+ µτn-(ψτn-)

(

(

N − 1

N

)Aτn

−
(

N − 1

N

)Aτn-
)

.

On the one hand, we have

(

N − 1

N

)Aτn

−
(

N − 1

N

)Aτn-

= − 1

N − 1

(

N − 1

N

)Aτn

.

On the other hand, denoting by i the index of the killed particle at time τn, we have

µτn(ψτn)− µτn-(ψτn-) =
1

N(N − 1)

∑

j 6=i

ψτ in-
(Xj

τ in-
) +Mτn −Mτn- +Mτn −Mτn-,

where
1

N(N − 1)

∑

j 6=i

ψτ in-
(Xj

τ in-
) =

1

N − 1
µτn-(ψτn-)−

1

N(N − 1)
ψτn-(X

i
τn-)

and, by the definition of M = M(N),

− 1

N(N − 1)
ψτn-(X

i
τn-) =

1

N − 1
(Mτn −Mτn-) .
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We then have

µτn(ψτn)− µτn-(ψτn-) =
1

N − 1
µτn-(ψτn-) +

N

N − 1
(Mτn −Mτn-) +Mτn −Mτn-,

Finally, we get

ντn(ψτn)− ντn-(ψτn-) =

(

N − 1

N

)Aτn -

(Mτn −Mτn-) +

(

N − 1

N

)Aτn

(Mτn −Mτn-) .

The process νt(ψt)− ν0(ψ0) is then the sum of two local martingales and we have

νT (ψT )− ν0(ψ0) =

∫ T

0

(

N − 1

N

)At-

dMt +
N − 1

N

∫ T

0

(

N − 1

N

)At-

dMt (2.7)

Let us bound both terms on the right-hand side (where N is still fixed). We do not
have any control on the moments of the number of jumps, while we would like to deal with
real martingales instead of local ones. In order to do this, we fix an integer α ≥ 1 and
we stop the interacting particle system when the number of jumps At reaches α, which is
equivalent to stop the process at time τα = τ

(N)
α . By the optional stopping time theorem,

the processes M and M stopped at time τ
(N)
α are true martingales, almost surely bounded

by α‖f‖∞.
On the one hand, the martingale jumps Mτn −Mτn- are bounded by ‖f‖∞/N , while

the martingale is constant between the jumps, then

E





∣

∣

∣

∣

∣

N − 1

N

∫ T∧τα

0

(

N − 1

N

)At-

dMt

∣

∣

∣

∣

∣

2


 = E

[

AT∧α
∑

n=1

(

N − 1

N

)2Aτn-

(Mτn −Mτn-)
2

]

≤ ‖f‖2∞
N

. (2.8)

On the other hand, we have

E





(

∫ T∧τα

0

(

N − 1

N

)At−

dMt

)2


 ≤ E
(

(MT∧τα)
2)

=
1

N2

N
∑

i,j=1

E
(

M
i
T∧ταM

j
T∧τα

)

where

E
(

M
i
T∧ταM

j
T∧τα

)

=
α
∑

m=0,n=0

E
(

M
i,m
T∧τα

M
j,n
T∧τα

)

.

If i 6= j, then the expectation of the product of the martingales Mi,n and Mj,m is 0,
since the particles are independent between the jumps and do not jump simultaneously.
Assume i = j and fix m < n. By definition, we have

M i,m
T∧τα

=M i,m

T∧τα∧τ im+1
,

9



which is measurable with respect to XT∧τα∧τ im+1
, then

E
(

M i,m
T∧τα

M i,n
T∧τα

|XT∧τα∧τ im+1

)

=M i,m

T∧τα∧τ im+1
E
(

M i,n
T∧τα

|XT∧τα∧τ im+1

)

=M i,m

T∧τα∧τ im+1
M i,n

T∧τα∧τ im+1
= 0,

using the optional sampling theorem with the martingaleM i,n
T∧τα

and the uniformly bounded
stopping time T ∧ τα ∧ τ in. We deduce that

E
(

(

M i
T∧τα

)2
)

= E

(

α
∑

n=0

(

M i,n
T∧τα

)2

)

≤ E

(

α
∑

n=0

ψT∧τ in
(X i

T∧τ in
)2

)

≤ ‖f‖∞E
(

α
∑

n=0

ψN
T∧τ in

(X i
T∧τ in

)

)

.

By (2.5), we have

E

(

α
∑

n=0

ψT∧τ in
(X i

T∧τ in
)

)

≤ ‖f‖∞,

and we deduce that
E
(

(

M i
T∧τα

)2
)

≤ ‖f‖2∞.

Finally, we have

E





(

∫ T∧τα

0

(

N − 1

N

)At-

dMt

)2


 ≤ ‖f‖2∞
N

. (2.9)

The formula (2.7) and inequalities (2.8) and (2.9) lead us to

√

E

(

∣

∣

∣
ν
(N)

T∧τ
(N)
α

(PN

T−T∧τ
(N)
α

f)− µ
(N)
0 (PN

T∧τ
(N)
α

f)
∣

∣

∣

2
)

≤ 2‖f‖∞√
N

.

The number of jumps of the interacting particle system remains bounded up to time T
by Hypothesis 2.2, so that T ∧ τ

(N)
α is equal to T for α big enough almost surely. As a

consequence, making α go to infinity in the inequality above, we get by the dominated
convergence theorem

√

E

(

∣

∣

∣
ν
(N)
T (f)− µ

(N)
0 (PN

T f)
∣

∣

∣

2
)

≤
√
2‖f‖∞√
N

. (2.10)

Step 3: Let us now conclude the proof of Theorem 2.1. By Hypothesis 2.1, µ
(N)
0 (PN

T .)
converges in distribution to µ0(P

N
T .). It yields that, for each continuous and bounded

function f : F → R+, the sequence of random variables
(

µ
(N)
0 (PN

T 1F ), µ
(N)
0 (PN

T f)
)

con-

verges in distribution to the random variable (µ0(PT1F ), µ0(PTf)). By (2.10), we deduce

10



that the sequence of random variables
(

ν
(N)
T (1F ),ν

(N)
T (f)

)

converges in distribution to

the random variable (µ0(PT1F ), µ0(PTf)). Finally, using that µ0(PT1F ) never vanishes
almost surely, we get

µ
(N)
T (f) =

ν
(N)
T (f)

ν
(N)
T (1F )

law−−−→
N→∞

µ0(PTf)

µ0(PT1F )
,

for any continuous and bounded function f : F → R+, which implies the first part of
Theorem 2.1.

We can also deduce from (2.10) that
√

√

√

√

√E





∣

∣

∣

∣

∣

∣

(

N − 1

N

)A
(N)
T

− µ
(N)
0 (PN

T 1F )

∣

∣

∣

∣

∣

∣

2

 ≤ 2√
N
,

then
√

E

(

∣

∣

∣
µ
(N)
0 (PN

T 1F )µ
(N)
T (f)− µ

(N)
0 (PN

T f)
∣

∣

∣

2
)

≤ 4‖f‖∞√
N

.

Using the Cauchy Schwartz inequality, we deduce that

E

(∣

∣

∣

∣

∣

µ
(N)
T (f)− µ

(N)
0 (PN

T f)

µ
(N)
0 PN

T 1F

∣

∣

∣

∣

∣

)

≤

√

√

√

√

√

√

E







1
(

µ
(N)
0 (PN

T 1F )
)2







4‖f‖∞√
N

,

which concludes the proof of Theorem 2.1 .

3 Criterion for the non-explosion of the number of jumps

Fix N ≥ 2. The aim of this section is to give a criterion for the non-explosion assumption
of Hypothesis 2.2 (Section 2) when the process ZN is driven by a stochastic differential
equation in a random time/dependent environment, with a uniformly bounded smooth
killing rate and a hard killing set given by the boundary of an open set. While this
problem is the main motivation for proving our non-explosion result, Theorem 3.1 below
is stated in a far more general setting. Firstly, we do not require that the particles follow
the same dynamic between the killings: the ith particle will be driven by the dynamic
of a strong Markov process Z i,N , a priori different for each i ∈ {1,...,N}. Secondly, the
jump position of the killed particle is chosen with respect to a general jump measure, not
necessarily supported by the positions of the N − 1 remaining particles.

For all i ∈ {1,...,N}, we assume that the process Z i,N is a strong Markov process equal
to a 3-tuple (t,eit,Z

i
t)t∈[0,τ∂ [ up to its killing time, where t is the time, eit is the environment

and Z i
t is the actual position of the diffusion. The environment eit evolves in an open set

Ei ⊂ Rdi (di ≥ 1), the position Z i
t evolves in an open set Di ⊂ Rd′i (d′i ≥ 1), and we

assume that there exist four measurable functions

si : [0,T ]× Ei ×Di 7→ R
di ×R

di

mi : [0,T ]×Ei ×Di 7→ R
di

σi : [0,T ]× Ei ×Di 7→ R
d′i ×R

d′i

µi : [0,T ]× Ei ×Di 7→ R
d′i ,

11



such that Z i,N = (.,ei,Z i) fulfills the stochastic differential equation

deit = si(t,e
i
t,Z

i
t)dβ

i
t +mi(t,e

i
t,Z

i
t)dt, e

i
0 ∈ Ei,

dZ i
t = σi(t,eit,Z

i
t)dB

i
t + µi(t,eit,Z

i
t)dt, Z

i
0 ∈ Di,

where (βi,Bi) is a standard di+d
′
i Brownian motion. We also assume that the process Z i,N

is hardly killed when Z i
t hits ∂Di and smoothly killed with a rate of killing κi(t,e

i
t,Z

i
t) ≥ 0,

where
κi : [0,+∞[×Ei ×Di 7→ R+

is a measurable function. We recall that the distribution of the smooth killing time
produced by the rate of killing κi is given by

P
(

τ smooth
∂ > t

)

= E
(

e−
∫ t
0 κi(Z

i,N
s )ds

)

.

Each particle in the system is a 3-tuple (t,oit,X
i
t) ∈ [0, +∞[×Ei ×Di and we denote

the whole system by (t,Ot,Xt), where

Ot = (o1t ,...,o
N
t ) ∈ E

def
= E1 × ...× EN and

Xt = (X1
t ,...,X

N
t ) ∈ D

def
= D1 × ...×DN ,

denote respectively the vector of environments and the vector of positions. Let S : [0, +
∞[×EN ×DN → M1(E

N ×DN ) and H : [0,+∞[×EN ×∂(DN ) → M1(E
N ×DN ) be two

given measurable jump measures, which will be used to choose the jump location after
the smooth killing and hard killing respectively. We define the dynamics of the system
(t,Ot,Xt) starting from (0,O0,X0) as follows:

• For all i ∈ {1,...,N}, the 3-tuple (t,oit,X
i
t) starts from (0,oi0,X

i
0) and evolves as

Z i,N = (.,ei,Z i) independently of the rest of the system until one of the particles is
killed. This first killing time is denoted by τ1.

• At time τ1, the process jumps to a new position, whose choice depends on the kind
of killing (the time component isn’t changed):

– if it is a smooth killing event, then the process jumps to a position chosen with
respect to the jump measure S(τ,Oτ -,Xτ -),

– if it is a hard killing event and there exists one and only one element i1 ∈
{1,...,N} such that X i1

τ1- belongs to ∂Di1 , then the position of (O,X) at time τ1
is chosen with respect to the probability measure H(τ,Oτ -,Xτ -).

– if it is a hard killing event and there exist more than one element which hits
its corresponding boundary ∂Di, we stop the process and this time is denoted
by τstop (in fact, we will prove that this kind of event doesn’t happen almost
surely under our hypotheses).

• At time τ1 and after proceeding to the jump, the process lies in {τ1}×E×D. Then
each 3-tuple (t,oi,X i) evolves as (.,ei,Z i) starting from (τ1,o

i
τ1
,X i

τ1
), independently

of the rest of the system and until one of them is killed. This second killing time is
denoted by τ2.

12



• At this time, the process jumps with the same mechanism as above (and could be
stopped at a time denoted by τstop, as above).

• Then each 3-tuple (t,oi,X i) evolves as (.,ei,Z i) starting from (τ2,o
i
τ2
,X i

τ2
), indepen-

dently of the rest of the system, and so on.

We set τstop = +∞ if (X i,Xj) never reaches ∂Di × ∂Dj , for all i 6= j. On the event
{τstop = +∞}, we denote by τ1 < τ2 < ... < τn < ... the sequence of jump times and we
set

τ∞ = lim
n→∞

τn. (3.1)

The number of jumps of the system explodes in finite time if and only if τ∞ < +∞.
We prove in Theorem 3.1 below, that this doesn’t happen almost surely under the two
following conditions: Hypothesis 3 and Hypothesis 4.

In the following hypothesis, the function φi is the Euclidean distance from the bound-
ary ∂Di, which means that

φi(x) = min
z∈∂Di

‖x− z‖2, ∀x ∈ Di,

where ‖.‖ denotes the Euclidean distance. For all a > 0, Da
i will denote the boundary’s

neighborhood
Da

i = {x ∈ Di, φi(x) < a}.

Hypothesis 3.1. We assume that, for all i ∈ {1,...,N} and all T ≥ 0, there exists a > 0
such that

1. φi is of class C2
b on Da

i ,

2. the smooth killing rate κi is uniformly bounded on [0,T ]× Ei ×Di

3. si,σi,mi and µi are uniformly bounded on [0,T ]× Ei ×Da
i ,

4. there exist two measurable functions fi : [0,T ]×Ei ×Da
i 7→ R+ and gi : [0,T ]×Ei ×

Da
i 7→ R such that ∀(t,ǫ,z) ∈ [0,T ]× E ×Da

i ,

∑

k,l

∂φi

∂xk
(z)

∂φi

∂xl
(z)[σiσ

∗
i ]kl(t,ǫ,z) = fi(t,ǫ,z) + gi(t,ǫ,z), (3.2)

and such that

(a) fi is of class C1 in time and of class C2 in environment/space, and the deriva-
tives of fi are uniformly bounded,

(b) there exists a positive constant kg > 0 such that, for all (t,ǫ,z) ∈ [0,T ]×Ei×Da
i ,

|gi(t,ǫ,z)| ≤ kgφi(z),

(c) there exists two positive constants 0 < cπ < Cπ such that, for all (t,ǫ,z) ∈
[0,T ]× Ei ×Da

i ,
cπ < fi(t,ǫ,z) + gi(t,ǫ,z) < Cπ.
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The last point of Hypothesis 3.1 says that the term (3.2), which naturally appears in
the quadratic variation of φi(Z

i
t), is well approximated by a smooth positive function fi

near the boundary ∂Di. However, we do not require any strict regularity assumption on
σi, since gi is only required to be measurable.

Remark 3.1. 1. We recall that the Ck regularity of φi near the boundary is equivalent
to the Ck regularity of the boundary ∂Di itself, for all k ≥ 2 (see [8, Chapter 5,
Section 4]).

2. In particular, if each Di is bounded and has a boundary of class C3, and if σi is
of class C2, then the first point and the last point of Hypothesis 3.1 are fulfilled.
Indeed, the regularity of Di implies that φi is of class C3 on a neighborhood of ∂Di,
and the regularity of σi implies that (3.2) happens, with gi = 0.

We introduce now a condition on the jump measure H, which will ensure that τ∞ <
+∞ implies that at least two particles converge to the boundary when the time goes to
τ∞. we denote by Di the set

Di = D1 × ...×Di−1 × ∂Di ×Di+1 × ...×DN .

Since we decide to stop the process when more than two particles hit simultaneously their
corresponding boundaries, it is sufficient to define the jump measure H on ∪N

i=1Di.

Hypothesis 3.2. 1. There exists a non-decreasing continuous function h : R+ → R+

vanishing only at 0 such that, ∀i ∈ {1,...,N},

inf
(t,e,(x1,...,xN))∈[0,+∞[×E×Di

H(t,e,x1,...,xN )(E × Ai) ≥ p0,

where p0 > 0 is a positive constant and Ai ⊂ D is the set defined by

Ai = {(y1,...,yN) ∈ D | ∃j 6= i such that φi(yi) ≥ h(φj(yj))} .

2. We have

inf
(t,e,(x1,...,xN))∈[0,+∞[×E×Di

H(t,e,x1,...,xN )(E × Bx1,...,xn
) = 1,

where
Bx1,...,xn

= {(y1,...,yN ) ∈ D | ∀i, φi(yi) ≥ φi(xi)}
Informally, h(φj) is a kind of distance from the boundary and we assume in the first

point that, if all the not-killed particles are far from their respective boundaries at time
τn, then the jump position X i

τn is chosen far from ∂Di with probability p0 > 0. The
second point ensures that each particle lies farther from its boundary after than before a
hard killing jump.

Remark 3.2. 1. The model of interacting particles system introduced above is very
general, even if ei is required to be continuous up to the killing time. Indeed, it also
includes the case of a diffusion evolving in an environment given by a continuous
time Markov Chain. By instance, if one set si and mi equal to 0, κi equal to 1 and
S = 1

2

(

δ(t,ǫi+1,zi) + δ(t,ǫi−1,zi)

)

, then the particle X i will evolve as a diffusion with an
environment oi defined as a simple continuous time random walk.
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2. Hypothesis 3.2 is very general and allows a lot of choices for H. For instance:

(a) For all µ ∈ M1(E × D), one can find a compact set K ⊂ E × D such that
µ(K) > 0. Then H = µ fulfills the assumption with p0 = µ(K) and h(φj) =
φj ∧ d(K,E × ∂D).

(b) Hypothesis 3.2 also includes the case studied by Grigorescu and Kang in [13],
where

H =
∑

j 6=i

pij(xi)δxj
, ∀(x1,...,xN ) ∈ Di.

with
∑

j 6=i pij(xi) = 1 and inf i∈{1,...,N},j 6=i,xi∈∂D pij(xi) > 0. In that case, the
particle on the boundary jumps to the position of another one, with positive
weights. It yields that Hypothesis 3.2 is fulfilled with p0 = 1 and h(φj) = φj.
This is also the case for the Fleming-Viot type system used in the approxima-
tion method proved in Section 2.

We’re now able to state the main result of this section:

Theorem 3.1. Assume that Hypotheses 3.1 and 3.2 are satisfied. Then τ∞ = +∞ almost
surely.

Remark 3.3. Another model of diffusions killed at the boundary of an open set can be
defined as follows: the particle is reflected on the boundary until its local time on this
boundary reaches an independent exponentially distributed random variable, then it is
killed. We emphasize that the statement of Theorem 3.1 is still valid if the particles are
driven by such diffusions with reflecting/killing boundaries. Indeed, the only difference
with our proof is that the reflection on the boundary makes appear an additional increasing
local time in the decomposition of the semi-martingale Y i (see (3.4) in the proof).

The long-time behavior of diffusions with reflecting/killing boundaries conditioned to
not be killed has been studied in [14] by Kolb and Steinsaltz and in [21] by Evans and
Steinsaltz. The approximation method proved in Section 2 can be used to compute the
distribution of diffusions with reflecting/killing boundaries conditioned to not be killed.

Proof of Theorem 3.1. Since κi is uniformly bounded for all i ∈ {1,...,N} in finite time
almost surely, there is no accumulation of soft killing events almost surely. As a conse-
quence, we only have to prove the non-accumulation of hard killing events and we assume
until the end of the proof that κi = 0 for all i ∈ {1,...,N}.

The proof is organised as follows. For each particle X i, we compute the Itô’s decompo-
sition of the semi-martingale φi(X

i) whenX i is inDa
i . Then we prove that τstop∧τ∞ < +∞

implies that at least two particles X i
t and Xj

t converge to their respective boundaries when
t→ τstop ∧ τ∞. Denoting by

T ij
0 = inf{t ≥ 0, φi(X

i
t-) = φj(X

j
t-) = 0},

we deduce that
P (τstop ∧ τ∞ < +∞) ≤

∑

1≤i<j≤N

P
(

T ij
0 < +∞

)

This allows us to reduce the problem of non-explosion of the number of jumps to a problem
of non-attainability of (0,0) for a pair of semi-martingales.(φi(X

i),φj(X
j)) fulfills a cri-

terion which implies its non-attainability of (0,0) in finite time almost surely, concluding
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the proof of Theorem 3.1. The above-mentioned criterion of non-attainability is proved
in the last section of the present paper (Proposition 4.1).

By definition, if τstop < +∞, then at least two particles X i0 andXj0 hit their respective
boundaries at time τstop. It yields that φi(X

i
τstop-) = φj(X

j
τstop-) = 0. Now, we define the

event
E = {τ∞ < T and τstop = +∞}.

Conditionally to E , the total number of jumps of the system goes to +∞ up to time
τ∞. Since there is only a finite number of particles, at least one of them, say i0, jumps
infinitely many times up to time τ∞. For each jumping time τn, we denote by σi0

n the next
jump time of i0, with τn < σi0

n < τ∞. Conditionally to the event E , we get σi0
n − τn → 0

when n → ∞. Let γ :]0,a[7→ R+ be a C2 function with compact support in ]0,a[. The
Itô’s formula applied to the semi-martingale γ(φi(X

i0)) and Hypothesis 3.1 immediately
imply that γ(φi(X

i0)) is a continuous diffusion process with bounded coefficients between
τn and σi0

n -. Moreover, φi(X
i0
t ) goes to 0 when t goes to σi0

n , then γ(φi(X
i0

σ
i0
n -
)) = 0. We

deduce that

sup
t∈[τn,σ

i0
n [

γ(φi(X
i0
t )) = sup

t∈[τn,σ
i0
n [

γ(φi(X
i0
t ))− γ(φi(X

i0

σ
i0
n -
)) −−−→

n→∞
0, a.s.

Since the process φi0(X
i0) is continuous between τn and σi0

n −, we conclude that φi0(X
i0
τn)

doesn’t lie above the support of γ, for n big enough, almost surely. But the support
of γ can be chosen arbitrarily close to 0, it yields that φi0(X

i0
τn) goes to 0 almost surely

conditionally to E . Let us denote by (τ i0n )n the sequence of jumping times of the particle
i0. We denote by An the event

An =
{

∃j 6= i0 | φi0(X
i0

τ
i0
n

) ≥ h(φj(X
j

τ
i0
n

))
}

,

where h is the function of Hypothesis 3.2. We have, for all 1 ≤ k ≤ l,

P

(

l+1
⋂

n=k

Ac
n

)

= E

(

E

(

l+1
∏

n=k

1Ac
n
| (X1

t ,...X
N
t )

0≤t<τ
i0
l+1

))

= E

(

l
∏

n=k

1Ac
n
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

)

.

By definition of the jump mechanism of the interacting particle system and by the first
point of Hypothesis 3.2,

E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

= H(t,O
τ
i0
l+1
,X

τ
i0
l+1

)
(

Ac
i0

)

≤ 1− p0,

where Ai0 and p0 are defined in Hypothesis 3.2. By induction on l, we get

P

(

l
⋂

n=k

Ac
n

)

≤ (1− p0)
l−k, ∀1 ≤ k ≤ l.
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Since p0 > 0, it yields that

P

(

⋃

k≥1

∞
⋂

n=k

Ac
n

)

= 0.

It means that, for infinitely many jumps τn almost surely, one can find a particle j such
that φi0(X

i0
τn) ≥ h(φj(X

j
τn)). Because there is only a finite number of other particles, one

can find a particle, say j0 (which is a random variable), such that

φi0(X
i0
τn) ≥ h(φj0(X

j0
τn)), for infinitely many n ≥ 1.

In particular, limn→∞ φj0(X
j0
τn) = 0 almost surely. We deduce that

lim
n→∞

(φi0(X
i0
τn),φj0(X

j0
τn)) = (0,0).

This immediately imply that

(

φi0(X
i0
τ∞-),φj0(X

j0
τ∞-)

)

= (0,0).

We finally conclude that

P (τstop ∧ τ∞ < +∞) ≤
∑

1≤i<j≤N

P
(

T ij
0 < +∞

)

. (3.3)

Fix i 6= j ∈ {1,...,N} and let us prove that P
(

T ij
0 < +∞

)

= 0. We begin to divide
the time into a sequence of intervals [tn,tn+1[ such that, for each interval, or the pair
(φi(X

i),φj(X
j)) is far from (0,0), or the distance functions φi and φj are of class C2

(which will allow us to use the Itô’s formula). Let (tn)n≥0 be the sequence of stopping
times defined by

t0 = inf{t ∈ [0,τstop ∧ τ∞[, φi(X i
t) + φj(Xj

t ) ≤ a/2}

and, for all n ≥ 0,

t2n+1 = inf{t ∈ [t2n,τstop ∧ τ∞[, φi(X
i
t) + φj(X

j
t ) ≥ a}

t2n+2 = inf{t ∈ [t2n+1,τstop ∧ τ∞], φi(X
i
t) + φj(X

j
t ) ≤ a/2}.

By construction, we have for all n ≥ 0,

{

φi(X
i
t) < a and φj(X

j
t ) < a, ∀t ∈ [t2n,t2n+1[,

φi(X
i
t) ≥ a/2 or φj(X

j
t ) ≥ a/2 otherwise.

We emphasize that T ij
0 /∈ [t2n+1,t2n+2[ almost surely, while, for all t ∈ [t2n,t2n+1[, φi and

φj are of class C2 at X i
t and Xj

t , which will allow us to use the Itô’s formula during these
intervals of time. In particular, Hypothesis 3.1 and the Itô’s formula immediately implies
that φi(X

i) + φj(X
j) is an Itô diffusion process with bounded coefficients between times

t2n and t2n+1 for all n ≥ 0. Since φi(X
i) + φj(X

j) goes from a/2 to a between times t2n
and t2n+1, we deduce that (tn)n≥0 converges to +∞ almost surely. We deduce that

P
(

T ij
0 < +∞

)

≤
+∞
∑

n=0

P
(

T ij
0 ∈ [t2n,t2n+1[

)

.
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It remains us to prove that P
(

T ij
0 ∈ [t2n,t2n+1[

)

= 0 for all n ≥ 0.
Fix n ≥ 0. We define the positive semi-martingale Y i by

Y i
t =

{

φi(X
i
t2n+t) if t < t2n+1 − t2n,

a/2 + |W i
t | if t ≥ t2n+1 − t2n,

(3.4)

where W i is a standard one dimensional Brownian motion, which allows us to define Y i
t

for all time t ∈ [0,+∞[. We define similarly the semi-martingale Y j . It is clear that

P (T ij
0 ∈ [t2n,t2n+1[) ≤ P (∃t ≥ 0, (Y i

t-,Y
j
t-) = (0,0)).

The problem of non-explosion of our interacting process is then reduced to the prob-
lem of the attainability of (0,0) by a given semi-martingale. In order to prove the non-
attainability of (0,0) by (Y i, Y j), we need to compute the Itô’s decomposition of Y i and
Y j.

Let us set

πi
t =

{

fi(t,o
i
t,X

i
t), if t < t2n+1 − t2n,

1, if t ≥ t2n+1 − t2n
and ρit =

{

g(t,oit,X
i
t), if t < t2n+1 − t2n,

0, if t ≥ t2n+1 − t2n,

where fi and gi are given by Hypothesis 3.1. By the Itô’s formulas applied to Y i, we have

dY i
t = dM i

t + bitdt+ dKi
t + Y i

t − Y i
t-,

where M i is a local martingale such that

d〈M i〉t = (πi
t + ρit)dt,

bi is the adapted process given by

bit =

{

∑d′i
k=1

∂φi

∂xk
(X i

t)[µi]k(t,o
i
t,X

i
t) +

1
2

∑di
k,l=1

∂2φ
∂xk∂xl

(X i
t)[σiσ

∗
i ]kl(t,o

i
t,X

i
t), if t < t2n+1 − t2n,

0 if t ≥ t2n+1 − t2n,

andKi is a non-decreasing process given by the local time of |Wt| at 0 after time t2n+1−t2n.
By the 4th point of Hypothesis 3.1, we have, for all t ≥ 0,

cπ ∧ 1 ≤ πi
t + ρit ≤ Cπ ∨ 1, and |ρit| ≤ k0Y

i
t (3.5)

The regularity of φi in Da (1st point of Hypothesis 3.1) and the boundedness of µi,σi (3rd

point of Hypothesis 3.1), implies that there exists b∞ > 0 such that, for all t ≥ 0,

bit ≥ −b∞. (3.6)

Similarly, we get the decomposition of Y j , with πj , ρj and bj fulfilling inequalities (3.5)
and (3.6) (without loss of generality, we keep the same constants cπ, Cπ, k0 and b∞).

The previous decomposition isn’t a priori sufficient to prove the non-attainability of
(0,0) by (Y i,Y j): we also need to compute the decomposition of πi and πj . We deduce
from the Itô’s formula that there exists a local martingale N i and a finite variational
process Li such that, for all t ≥ 0,

dπi
t = dN i

t + dLi
t + πi

t − πi
t-.
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We emphasize that we do not need the explicit computation of Li. Let us set, for all
t < t2n+1 − t2n,

ξit =

di
∑

k=1,l

∂fi
∂ek

(t,oit,X
i
t)
∂fi
∂el

(t,oit,X
i
t)[sis

∗
i ]kl(t,o

i
t,X

i
t)

+

d′i
∑

k=1,l

∂fi
∂xk

(t,oit,X
i
t)
∂fi
∂xl

(t,oit,X
i
t )[σiσ

∗
i ]kl(t,o

i
t,X

i
t)

and, for all t ≥ t2n+1 − t2n, ξ
i
t = 0. Then we have

〈N i〉t = ξitdt.

Thanks to the regularity assumptions on fi and the boundedness of si,σi, there exists
Cξ > 0 such that

ξit ≤ Cξ. (3.7)

Of course, the same holds for πj.
Since the particles are independent between the jumps, we have for all i 6= j,

〈M i,M j〉 = 0 and 〈N i, N j〉 = 0 a.s. (3.8)

We claim that the decompositions of Y i, Y j , πi, πj, together with the inequalities
(3.5), (3.6), (3.7) and equation (3.8), imply that (Y 1,Y 2) never converges to (0,0) almost
surely. This is proved in the next section, where a criterion for non-attainability of (0,0) for
semi-martingales is given (Hypothesis 4.1 and Proposition 4.1 of Section 4). In particular,
we deduce that T ij

0 /∈ [t2n,t2n+1[ almost surely, for all n ≥ 0.
We then have T ij

0 = +∞ almost surely, for all i 6= j ∈ {1,...,N}, which imply, by (3.3),
that τstop ∧ τinfty = +∞. This concludes the proof of Theorem 3.1.

4 Non-attainability of (0,0) for semi-martingales

Fix T > 0 and let (Y i
t )t∈[0,T ], i = 1,2, be two non-negative one-dimensional semi-

martingales such that,

dY i
t = dM i

t + bitdt+ dKi
t + I it − I it-, Y

i
0 > 0,

where (M i
t )t∈[0,T ] is a continuous local martingale , (bit)t∈[0,T ] is an adapted process,

(Ki
t)t∈[0,T ] is a continuous and non-decreasing adapted process, and I it is a pure-jump

càdlàg process. The aim of this section is to give some conditions, which ensure that
(Y 1,Y 2) doesn’t hit (0,0) up to time T . The problem has been solved for time homo-
geneous stochastic differential equations by Friedman [10], Ramasubramanian [18] and
the proof of Proposition 4.1 below is inspired by the recent work of Delarue [7], which
obtains lower and higher bound for the hitting time of a corner for a diffusion driven by a
time homogeneous SDE reflected in the square. In our case, time-dependency is allowed
and we don’t require any Markovian property. This generalization finds an important
application in the previous section, where the non-explosion of a very general interacting
particle system with jumps from a boundary is proved.

19



Hypothesis 4.1. For each i = 1,2, there exists a non-negative local semi-martingale πi

such that
dπi

t = dN i
t + dLi

t + J i
t − J i

t-,

where N i is a continuous local martingale and Li is a continuous finite variational adapted
process and J i

t is a pure-jump càdlàg process. Moreover, there exist two adapted processes
ρit and ξit, and some positive constants b∞,k0,cπ,Cπ, Cξ such that, almost surely,

1. d 〈M i〉t = (πi
t- + ρit-)dt and d 〈N i〉t = ξit-dt,

2. cπ ≤ πi
t + ρit ≤ Cπ, |ρit| ≤ k0Y

i
t , ξt ≤ Cξ and bit ≥ −b∞ for all t ∈ [0,T ]

3. 〈M1,M2〉 and 〈N1,N2〉 are non-increasing processes.

4. I i and J i are such that, for all jump time t of the processes I and J ,

Y i
t

√

πi
t

− Y i
t-

√

πi
t-

≥ 0.

The third point of Hypothesis 4.1 has the following geometrical interpretation: when
an increment of M1 is non-positive (that is when M1 goes closer to 0), the increment of
M2 is non-negative (so that M2 goes farther from 0), as a consequence (M1,M2) remains
away from 0. A nice graphic representation of this phenomenon is given by Delarue’s [7,
Figure 1].

Remark 4.1. An example of a pair of semi-martingales which fulfills Hypothesis 4.1
is given in the proof of Theorem 3.1 in Section 3, where (Y 1,Y 2) is given by a smooth
function of a pair of diffusion processes. In this typical case, checking the validity of our
assumption is a simple application of the Itô’s formula.

The process

Φt
def
= −1

2
log

(

(Y 1
t )

2

π1
t

+
(Y 2

t )
2

π2
t

)

(4.1)

goes to infinity when (Y 1
t ,Y

2
t ) goes to (0,0), since πi

t is uniformly bounded below by cπ.
For all ǫ > 0, we define the stopping time Tǫ = inf{t ∈ [0,T ], Φt ≥ ǫ−1}. We denote
the hitting time of (0,0) by T0 = inf{t ∈ [0,T ], (Y 1

t- ,Y
2
t- ) = (0,0) or (Y 1

t ,Y
2
t ) = (0,0)}. In

particular, we have
T0 = lim

ǫ→0
Tǫ, almost surely.

We are now able to state our non-attainability result.

Proposition 4.1. Assume that Hypothesis 4.1 is fulfilled. Then (Y 1,Y 2) doesn’t go to
(0,0) in [0,T ] almost surely, which means that T0 is equal to +∞ almost surely.

Moreover, there exists a positive constant C which only depends on b∞,k0,cπ,Cπ, Cξ

such that, for all ǫ−1 > Φ0,

P (Tǫ ≤ T ) ≤ 1

ǫ−1 − Φ0
C
(

E(|L1|T + |L2|T ) + T
)

,

where |Li|T is the total variation of Li at time T and Φ0 is defined in (4.1).
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Proof of Proposition 4.1: Let (θ′n)n∈N and (θ′′n)n∈N be two increasing sequences of stopping
times which converge to T such that (M i

t )t∈[0,θ′n] and (N i
t )t∈[0,θ′n] are true martingales and

such that θ′′n = inf{t ∈ [0,T ],
∫ θ′′n
0
d|Li|t ≥ n} ∧ T . The whole proof is based on an

application of the Itô’s formula to the semi-martingale

(∫ Φt

0

exp(eCF e−u)du

)

t∈[0,Tǫ∧θ′
n′
∧θ′′

n′′
]

, n′,n′′ ∈ N,

where CF > 0 is a constant which only depends on the parameters b∞,k0,cπ,Cπ,Cξ. We
prove that, for a good choice of CF , there exists a constant C which doesn’t depend on ǫ,
n′ and n′′ such that

E

(
∫ ΦTǫ∧θ′

n′
∧θ′′

n′′

Φ0

exp(eCF e−u)du

)

≤ C(E(|L1|θ′′
n′′

+ |L2|θ′′
n′′
) + T ). (4.2)

Assume that this inequality has been proved. We notice that Φt∧Tǫ∧θ′
n′
∧θ′′

n′′
reaches ǫ−1 if

and only if Tǫ ≤ θ′n′ ∧ θ′′n′′ , then, by the right continuity of Y 1, Y 2, π1 and π2,

P (Tǫ ≤ θ′n′ ∧ θ′′n′′) = P
(

ΦTǫ∧θ′
n′
∧θ′′

n′′
− Φ0 ≥ ǫ−1 − Φ0

)

≤ P

(
∫ ΦTǫ∧θ′

n′
∧θ′′

n′′

Φ0

exp(eCF e−u)du ≥ ǫ−1 − Φ0

)

,

since r − q ≤
∫ r

q
exp(eCF e−u)du for all 0 ≤ q ≤ r. Finally, using the Markov inequality

and (4.2), we get, for all ǫ−1 > Φ0,

P (Tǫ ≤ θ′n′ ∧ θ′′n′′) ≤ 1

ǫ−1 − Φ0
C
(

E(|L1|θ′′
n′′

+ |L2|θ′′
n′′
) + T

)

.

Letting n′ go to ∞, then ǫ go to 0 and finally n′′ go to ∞, we deduce that P (T0 ≤ T ) = 0,
which is the first point of Proposition 4.1. Since θ′n′ and θ′′n′′ converge to T almost surely,
letting n′ and n′′ go to ∞ implies the second part of Proposition 4.1, which concludes the
proof.

It remains us to prove inequality (4.2). We assume in a first time that 〈M1,M2〉 =
〈N1,N2〉 = 0. We define the function

Φ : R
∗
+ ×R

∗
+ ×R+ ×R

∗
+ → R

(α1,α2,x1,x2) 7→ − log
(

x2
1

α1
+

x2
2

α2

)

.

We have Φt = Phi(π1
t ,π

2
t ,Y

1
t ,Y

2
t ). We will apply the Itô’s formula to the semi-martingale

(Φt)t∈[0,Tǫ∧θ′
n′
∧θ′′

n′′
[. The successive derivatives of the function Φ are

∂Φ

∂xi
= −α−1

i xie
2Φ,

∂2Φ

∂x2i
= −α−1

i e2Φ + 2α−2
i x2i e

4Φ,

∂Φ

∂αi

=
1

2
α−2
i x2i e

2Φ,
∂2Φ

∂α2
i

= −α−3
i x2i e

2Φ + α−4
i x4i e

4Φ,

∂2Φ

∂xiαi
= α−2

i xie
2Φ − α−3

i x3i e
4Φ,

∂2Φ

∂xiαj
= −α−1

i α−2
j xix

2
je

4Φ with i 6= j.
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In particular, one can check that

∑

i=1,2

∂2Φ

∂x2i
(π1

t-,π
2
t-,Y

1
t- ,Y

2
t- )π

i
t- = 0, almost surely.

Using the previous equalities and the Itô’s formula, we get

dΦt =−
∑

i=1,2

Y i
t

πi
t

e2ΦtdM i
t +

∑

i=1,2

(Y i
t )

2

2(πi
t)

2
e2ΦtdN i

t −
∑

i=1,2

Y i
t

πi
t

e2ΦtdKi
t

−
∑

i=1,2

Y i
t

πi
t

e2Φtbitdt+
∑

i=1,2

(Y i
t )

2

2(πi
t)

2
e2ΦtdLi

t

+
1

2

∑

i=1,2

(

− 1

πi
t

e2Φt + 2
(Y i

t )
2

(πi
t)

2
e4Φt

)

ρitdt

+
1

2

∑

i=1,2

(

−(Y i
t )

2

(πi
t)

3
e2Φt +

(Y i
t )

4

(πi
t)

4
e4Φt

)

d
〈

N i
〉

t

+
1

2

∑

i=1,2

(

Y i
t

(πi
t)

2
e2Φt − (Y i

t )
3

(πi
t)

3
e4Φt

)

d
〈

M i,N i
〉

t

− 1

2

∑

i 6=j∈{1,2}

Y i
t (Y

j
t )

2

πi
t(π

j
t )

2
e4Φtd

〈

M i,N j
〉

t
+ Φt − Φt-

(4.3)

and

d 〈Φ〉t =
∑

i=1,2

(Y i
t )

2

(πi
t)

2
e4Φt(ρit + πi

t)dt+
∑

i=1,2

(Y i
t )

4

4(πi
t)

4
e4Φtd

〈

N i
〉

t

−
∑

i=1,2

(Y i
t )

3

2(πi
t)

3
e4Φtd

〈

M i,N i
〉

t
−

∑

i 6=j∈{1,2}

Y i
t (Y

j
t )

2

2πi
t(π

j
t )

2
e4Φtd

〈

M i,N j
〉

t
.

Let CF > 0 be a positive constant that will be fixed later in the proof and define the
function F : R 7→ R by

F (r) =

∫ r

0

exp
(

CFe
−s
)

ds.

We check that

r ≤ F (r), 1 ≤ F ′(r) ≤ eCF and F ′′(r) = −CF e
−rF ′(r), ∀r ∈ R+.

We deduce from Itô’s formula that

F (Φt)−F (Φ0) =

∫ t

0

F ′(Φs)dΦ
c
s−

CF

2

∫ t

0

e−ΦsF ′(Φs)d 〈Φ〉s+
∑

0≤s≤t

F (Φs)−F (Φs-), (4.4)

where dΦc
s is the continuous part of dΦs.

Using equation (4.3), we begin to prove a higher bound for
∫ t

0
F ′(Φs)dΦ

c
s. We define

the local martingale

Mt = −
∑

i=1,2

∫ t

0

Y i
s

πi
s

e2ΦsF ′(Φs)dM
i
s +

∑

i=1,2

∫ t

0

(Y i
s )

2

2(πi
s)

2
e2ΦsF ′(Φs)dN

i
s.
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Since Ki is non-decreasing, we have

−
∑

i=1,2

∫ t

0

Y i
s

πi
s

e2ΦsF ′(Φs)dK
i
s ≤ 0.

One can easily check that, for all t ∈ [0,T0[, Y
i
t e

Φt ≤
√

πi
t, then

Y i
t

πi
t

eΦt ≤ 1√
cπ
.

Since bit ≥ −b∞ for all t ∈ [0,T0[, we have

−
∑

i=1,2

∫ t

0

Y i
s

πi
s

F ′(Φs)e
2Φsbisds ≤

2b∞√
cπ

∫ t

0

eΦsF ′(Φs)ds.

The inequality F ′(Φs) ≤ eCF yields to

∑

i=1,2

∫ t

0

(Y i
s )

2

2(πi
s)

2
e2ΦsF ′(Φs)dL

i
s ≤

eCF

2cπ

(

|L1|t + |L2|t
)

.

We deduce from
|ρit|eΦt ≤ k0Y

i
t e

Φt ≤ k0
√

πi
t ≤ k0

√

Cπ

that

1

2

∑

i=1,2

∫ t

0

(

− 1

πi
s

e2Φs + 2
(Y i

s )
2

(πi
s)

2
e4Φs

)

ρisF
′(Φs)ds ≤

3eCF k0
√
Cπ

cπ

∫ t

0

eΦsF ′(Φs)ds.

Since d〈N i〉t = ξitdt, with 0 ≤ ξit ≤ Cξ, we have

1

2

∑

i=1,2

∫ t

0

(

−(Y i
s )

2

(πi
s)

3
e2Φs +

(Y i
s )

4

(πi
s)

4
e4Φs

)

F ′(Φs)d
〈

N i
〉

s
≤ eCFCξt

c2π
.

By the Kunita-Watanabe inequality (see [19, Corollary 1.16 of Chapter IV]), we get, for
all predictable process hs,

∣

∣

∣

∣

∫ t

0

hs
〈

M i,N j
〉

s

∣

∣

∣

∣

≤
√

∫ t

0

hs 〈M i〉s

√

∫ t

0

hs 〈N j〉s ≤
√

CπCξ

∫ t

0

hsds,

so that

1

2

∑

i=1,2

∫ t

0

(

Y i
s

(πi
s)

2
e2Φs − (Y i

s )
3

(πi
s)

3
e4Φs

)

F ′(Φs)d
〈

M i,N i
〉

s
≤ 2

√

CπCξ

c
3/2
π

∫ t

0

eΦsF ′(Φs)ds

and

−1

2

∑

i 6=j∈{1,2}

∫ t

0

Y i
s (Y

j
s )

2

πi
s(π

j
s)2

e4ΦsF ′(Φs)d
〈

M i,N j
〉

s
≤
√

CπCξ

c
3/2
π

∫ t

0

eΦsF ′(Φs)ds.
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We finally get

∫ t

0

F ′(Φs)dΦ
c
s ≤Mt + C ′

∫ t

0

eΦsF ′(Φs)ds+
eCF

2cπ

(

|L1|t + |L2|t
)

+
eCFCξt

c2π
. (4.5)

where

C ′ =
2b∞√
cπ

+
3k0

√
Cπ

cπ
+

3
√

CπCξ

c
3/2
π

> 0.

We prove now a lower bound for
∫ t

0
e−ΦsF ′(Φs)d 〈Φ〉s. We have

e2Φs

Cπ

≤
∑

i=1,2

(Y i
s )

2

(πi
s)

2
e4Φs ≤ 2e2Φs

cπ
, πi

s ≥ cπ and ρis ≥ −k0
√

Cπe
−Φs

then
∫ t

0

∑

i=1,2

(Y i
s )

2

(πi
s)

2
e4Φs(πi

s + ρis)e
−ΦsF ′(Φs)ds ≥

cπ
Cπ

∫ t

0

eΦsF ′(Φs)ds−
2k0

√
Cπ

cπ
eCF t.

The process 〈N i〉 being non-decreasing, we have

∑

i=1,2

∫ t

0

(Y i
s )

4

4(πi
s)

4
e4ΦsF ′(Φs)e

−Φsd
〈

N i
〉

s
≥ 0.

The same argument as above leads us to

−
∑

i=1,2

∫ t

0

(Y i
s )

3

2(πi
s)

3
e4ΦsF ′(Φs)e

−Φsd
〈

M i,N i
〉

s
≥ −

√

CπCξ

c
3/2
π

eCF t

and

−
∑

i 6=j∈{1,2}

∫ t

0

Y i
s (Y

j
s )

2

2πi
s(π

j
s)2

e4ΦsF ′(Φs)e
−Φsd

〈

M i,N j
〉

s
≥ −

√

CπCξ

c
3/2
π

eCF t.

We finally deduce that

∫ t

0

e−ΦsF ′(Φs)d 〈Φ〉s ≥
cπ
Cπ

∫ t

0

eΦsF ′(Φs)ds−
(

2k0
√
Cπ

cπ
+

2
√

CπCξ

c
3/2
π

)

eCF t (4.6)

Since the jumps of Φt are negative and F is non-decreasing, we get

∑

0≤s≤t

F (Φs)− F (Φs-) ≤ 0. (4.7)

By (4.5), (4.6) and (4.7), we deduce from (4.4) that

F (Φt)− F (Φ0) ≤Mt +

(

C ′ − CF cπ
2Cπ

)
∫ t

0

eΦsF ′(Φs)ds+
eCF

2cπ

(

|L1|t + |L2|t
)

+

(

Cξ

c2π
− 2k0CF

√
Cπ

2cπ
− CF

√

CπCξ

c
3/2
π

)

eCF t.
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Choosing CF = 2CπC
′/cπ, we’ve proved that there exists C > 0 such that

F (Φt)− F (Φ0) ≤Mt + C
(

|L1|t + |L2|t + t
)

.

This yields to (4.2), since the process Mt stopped at Tǫ∧ θ′n∧ θ′′n is a true martingale. The
proposition is then proved when 〈M1,M2〉 = 〈N1,N2〉 = 0.

Assume now that 〈M1,M2〉 and 〈N1,N2〉 are non-increasing. We define Φ′
t as the

process starting from Φ0 and whose increments are defined by the right term of (4.3). On
the one hand, the same calculation as above leads to

F (Φ′
t) ≤Mt +

eCF

cπ

(

|L1|θ′′
n′′

+ |L2|θ′′
n′′

)

+

(

eCFC ′ +
CF

2
C ′′′

)

t. (4.8)

On the other hand,

dΦt = dΦ′
t +

∂2Φ

∂x1∂x2
(π1

t ,π
2
t ,Y

1
t ,Y

2
t )d

〈

M1,M2
〉

t
+

∂2Φ

∂α1∂α2
(π1

t ,π
2
t ,Y

1
t ,Y

2
t )d

〈

N1,N2
〉

t
,

and we can check that ∂2Φ
∂x1∂x2

and ∂2Φ
∂α1∂α2

are non-negative functions. We deduce from the
third point of Hypothesis 4.1 that Φt ≤ Φ′

t. But F is increasing, so that (4.8) leads us to
(4.2) in the general case.
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