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CHARACTERIZATION OF TALAGRAND’S
TRANSPORT-ENTROPY INEQUALITIES IN METRIC SPACES!

By N. GozLAN, C. ROBERTO? AND P.-M. SAMSON

Université Paris Est Marne la Vallée, Université Paris Est Marne la
Vallée and Université Paris Ouest Nanterre la Défense, and
Université Paris Est Marne la Vallée

We give a characterization of transport-entropy inequalities in
metric spaces. As an application we deduce that such inequalities

are stable under bounded perturbation (Holley—Stroock perturbation
lemma).

1. Introduction. In their celebrated paper [24], Otto and Villani proved
that, in a smooth Riemannian setting, the log-Sobolev inequality implies
the Talagrand transport-entropy inequality T. Later, Bobkov, Gentil and
Ledoux [3] proposed an alternative proof of this result. Both approaches
are based on semi-group arguments. More recently, the first named author
of this paper gave a new proof, based on large deviation theory, valid on
metric spaces [11].

In this paper, on the one hand, we give yet another proof of Otto and
Villani’s theorem. This proof does not use any semi-group arguments nor
large deviations, and it requires very few structures on the space. We are
thus able to recover and extend the result of [11] in a general metric space
framework.

On the other hand, we recently introduced in [15] a new family of func-
tional inequalities, called inf-convolution log-Sobolev inequalities. In a Eu-
clidean framework, we proved that these inequalities are equivalent to Ta-
lagrand transport-entropy inequalities T, associated to cost functions «
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between linear and quadratic. This led to a new characterization of Ty and
other transport-entropy inequalities. The present paper establishes that this
equivalence is true in a general metric space framework and for general cost
functions «. As a byproduct, we prove that the inequalities T, are stable
under bounded perturbation (Holley—Stroock perturbation lemma).

Our strategy is very general and applies to a very large class of transport-
entropy inequalities.

In order to present our results, we need first to fix some notation.

1.1. Notation and definitions. We first introduce the notion of optimal
transport cost. Then we give the definition of the transport-entropy inequal-
ity and of the (7)-log-Sobolev inequality.

General assumption. Throughout this paper, (X, d) will always be a com-
plete, separable metric space such that closed balls are compact.

1.1.1. Optimal transport cost and transport-entropy inequality. Let «:
R — R™ be a continuous function. Given two probability measures v and g
on X, the optimal transport cost between v and p (with respect to the cost
function «) is defined by

Tt = int] [ [ atate,) dnten},

where the infimum runs over all the probability measures m on X x X with
marginals v and p. The notion of optimal transport cost is very old (it
goes back to Monge [23]). It has been intensively studied and it is used in
a wide class of problems running from geometry, PDE theory, probability
and statistics; see [31]. Here we focus on the following transport-entropy
inequality.

Throughout this paper, the cost functions o will be assumed to belong to
the class of Young functions.

DEFINITION 1.1 (Young functions®). A function a:R — R¥ is a Young
function if v is an even, convex, increasing function on R* such that «(0) =0
and o/(0) =0.

DEFINITION 1.2 (Transport-entropy inequality T, ). Let a be a Young
function; a probability measure p on X is said to satisfy the transport-
entropy inequality (T (C)), for some C > 0 if

(Ta(C)) Ta(v,p) <CH(v|p) Vv eP(X),

3Note that, contrary to the definition of some authors, for us, a Young function cannot
take infinite values.
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where

dv
log —d if
H(u\,u): /og i v, nr<u,

400, otherwise,

is the relative entropy of v with respect to u, and P(X) is the set of all
probability measures on X.

REMARK 1.3. It can be shown that if a:R — R" is an even convex
function such that limsup,_, % = 400, then the only probability mea-
sures that satisfy the transport inequality T, are Dirac masses; see, for
example, [12], Proposition 2. This is the reason why, in our definition of
Young functions, we impose that o/(0) = 0.

Popular Young functions appearing in the literature, as cost functions in
transport-entropy inequalities, are the functions «, ,,, defined by

| [P, if |z <1,
(1.1) O‘phpQ(x) = Zﬂ‘x|p2+1_&’ if ‘m|>17 p1=>2, pp>1
b2 P2

(the case p; <2 can be discarded according to the remark above). When
p1 = p2 = p, we use the notation «, instead of ay .

Transport-entropy inequalities imply concentration results as shown by
Marton [21]; see also [4, 19], and [13] for a full introduction to this notion.

The transport-entropy inequality related to the quadratic cost as(z) ==
is the most studied in the literature. In this case, the transport-entropy
inequality is often referred to as the Talagrand transport-entropy inequality
and is denoted by Ty. Talagrand [30] proved that, on (R™,|-|2) (where |- |2
stands for the Euclidean norm), the standard Gaussian measure satisfies Ty
with the optimal constant C' = 2.

2

1.1.2. Log-Sobolev-type inequalities. The second inequality of interest for
us is the log-Sobolev inequality and, more generally, modified log-Sobolev
inequalities. To define these inequalities properly, we need to introduce ad-
ditional notation.

Recall that the Fenchel-Legendre transform o* of a Young function « is
defined by

o*(y) =sup{zy — a(z)} € RT U {oo} Vy eR.
zeR
A function f:X — R is said to be locally Lipschitz if for all x € X, there
exists a ball B centered at point x such that
OGN
Y,2€B, y#z d(y¢ Z)
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When f is locally Lipschitz, we define

: [f(y) — f(@)]+ o . .
limsup ——————, if x is not an isolated point,
IVTfl(@) =1 v d(y, )
0, otherwise,
and
: [f(y) = fx)]- P . :
_ lim sup —~————, if x is not an isolated point,
IV7Fl@) =] v d(y,x)
0, otherwise,

where [a]4 = max(a;0) and [a]- = max(—a;0). Note that |V* f|(z) and
|V~ f|(z) are finite for all z € X. When f is a smooth function on a smooth
manifold, [VT f| and |V~ f| equal the norm of the gradient of f.

Finally, if u is a probability measure on X, recall that the entropy func-
tional Ent,(-) is defined by

g
Entﬂ(g):/glogmdu Vg > 0.

DEFINITION 1.4 (Modified log-Sobolev inequality LSIZ). Let o be a
Young function; a probability measure p on X is said to satisfy the modified
log-Sobolev inequality plus (LSI} (A)) for some A > 0 if

(LS (1) Buty(ef) < 4 [ a*(*fl)ef dy

for all locally Lipschitz bounded functions f: X — R.

It verifies the modified log-Sobolev inequality minus (LSI, (A)) for some
A>0if

(LST, (1) Buty(ef) < 4 [ o* (V" fl)ef dy
for all locally Lipschitz bounded functions f: X — R.

Again, the quadratic cost as(z) = 22 plays a special role since in this case
we recognize the usual log-Sobolev inequality introduced by Gross [16]; see
also [28]. In this case, we will use the notation LSI*.

Bobkov and Ledoux [5] introduced first the modified log-Sobolev inequal-
ity with the function ap 1, in order to recover the celebrated result by Ta-
lagrand [29] on the concentration phenomenon for products of exponential
measures. In particular these authors proved that, with this special choice
of function, the modified log-Sobolev inequality is actually equivalent to the
Poincaré inequality. After them, Gentil, Guillin and Miclo [8] established
that the probability measure du,(z) = e 1*I"/Z, = € R and p € (1,2) veri-
fies the modified log-Sobolev inequality associated with the function oy ,,.
In a subsequent paper [9], they generalized their results to a large class of
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measures with tails between exponential and Gaussian; see also [2, 7, 10]
and [25].

Finally, let us introduce the notion of inf-convolution log-Sobolev inequal-
ity. In a previous work [15], we proposed the following inequality:

o [U-Qneldn vrxsrMEO1C)

(1.2) Ent,(ef) <

where
Qnf(z)= yig)f({f(y) +Aa(d(z,y))}  VeeX.

We called it inf-convolution log-Sobolev inequality, and we proved that it
is equivalent—in a Euclidean setting—to the transport-entropy inequality
T, (C"), for Young functions « such that o' is concave. Also, we get an ex-
plicit comparison between the constants C' and C’, namely C < C’ < 8C.
Our proof relies in part on the Hamilton—Jacobi semi-group approach de-
veloped by Bobkov, Gentil and Ledoux [3].

Inequality (1.2) is actually a family of inequalities, with a constant having
a specific form [i.e., 1/(1—AC)] on the right-hand side. In this paper, in order
to broaden this notion, we will say (7)-log-Sobolev inequality, rather than
inf-convolution log-Sobolev inequality, in the following inequality.

DEFINITION 1.5 [(7)-log-Sobolev inequality]. Let a be a Young function;
a probability measure p on X is said to satisfy the (7)-log-Sobolev inequality
((1) = LSI,(X\,A)) for some A\, A >0 if

(1) ~LSL,(\ A))  Ent,(ef) < A/(f — QM di

for all bounded locally Lipschitz functions f: X — R, where the inf-convolution
operator @ is defined by

(1.3) Qaf(@) = mE{f(y) + ra(d(z,y)}  VreX.
When A = 1, we use the notation Q, instead of Q..

The notation (7) — LSI,, refers to the celebrated (7)-Property introduced
by Maurey [22] (that uses the inf-convolution operator (), and that is also
closely related to the transport-entropy inequality; see [13], Section 8.1).

Of course (1.2) implies (7) — LSI,(A,1/(1 — AC)), for any A € (0,1/C).
The other direction is not clear, a priori (it would trivially be true if A =1),
even if the two inequalities have the same flavor. Thanks to Theorem 1.8
below, they appear to be equivalent, under mild assumptions on «.

1.1.3. Ag-condition. In the next sections, our objective will be to relate
the log-Sobolev inequalities LSI, and (7) — LSI,, to the transport-entropy
inequality T,. This program works well if we suppose that « verifies the
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classical doubling condition As. Recall that a Young function « is said to
satisfy the Ag-condition if there exists some positive constant K (that must
be greater than or equal to 2) such that

a(2r) < Ka(r) Va e R.
The classical functions o, p, introduced in (1.1) enjoy this condition.
The following observation will be very useful in the sequel.
LEMMA 1.6. If a is a Young function satisfying the Ao-condition, then
/ /
(14)  ry:=inf va () >1 and 1<p,:=sup va (2)
>0 «afx) z>0 o(T)

where o/, (resp., o!_) denotes the right (resp., left) derivative of a.

< +00,

The proof of this lemma is in the Appendix. To understand these expo-
nents 7, and p,, observe that for the function a =y, j,, defined by (1.1),
we have 1, = min(py,p2) and p, = max(p1,p2). Moreover, if 1 <r <p are
given numbers, and « is a Young function such that r, = r and p, = p, then
it is not difficult to check that

a(lay, < a < a(l)ap,.

1.2. Main results. Our first result states that the modified log-Sobolev
inequality (plus or minus) implies the transport-entropy inequality associ-
ated with the same « (Otto—Villani theorem).

THEOREM 1.7. Let p be a probability measure on X and o a Young
function satisfying the As-condition.

(i) If u satisfies (LSIZ(A)) for some A >0, then u satisfies To(CT)
with
O = max(((pa — DA™ ((pa — DA,
(ii) If p satisfies (LSI, (A)) for some A >0, then p satisfies To(C7)
with
C™ = (14 (pa — DA " ((po — 1)A)" .
The numbers 1 <1y < pa, pa > 1 are defined by (1.4).

Let us comment on this theorem. First observe that CT and C~ are of
the same order since

CT<(C™ < QPa—TarF,

For the quadratic case ag(x) = 22, the constants reduce to CT = C~ = A.
This corresponds (when X is a smooth Riemannian manifold) to the usual
Otto—Villani theorem [24]; see also [3]. Let us mention that Lott and Vil-
lani [20] generalized the result from Riemannian manifolds to length spaces,
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for ao(z) = 22, with an adaptation of the Hamilton-Jacobi semigroup ap-
proach developed by Bobkov, Gentil and Ledoux [3]. But their statement
requires additional assumptions, such as a local Poincaré inequality, which
are not needed in Theorem 1.7.

Also, in [8] the authors prove that the modified log-Sobolev inequality, in
Euclidean setting and with oo = ap 5, with 1 < p <2, implies the correspond-
ing transport inequality T, again using the Hamilton—Jacobi approach [3].

More recently, in [11], the first named author proved that LSIT(A) im-
plies T2(A) in the quadratic case as(z) = 2 and on an arbitrary complete
and separable metric space. His proof can be easily extended to more gen-
eral functions such as «a,(x) = 2P. The scheme of proof is the following.
Talagrand’s inequality T is first shown to be equivalent to dimension-free
Gaussian concentration. According to the well-known Herbst argument (see,
e.g., [19]), LSI" implies dimension-free Gaussian concentration, so it also
implies T.

Finally, as shown by Cattiaux and Guillin [6], we mention that the Tala-
grand transport-entropy inequality To does not imply, in general, the log-
Sobolev inequality. Hence, there is no hope to get an equivalence in the
above theorem.

However, the (7)-log-Sobolev inequality appears to be equivalent to the
transport-entropy inequality. This is the main result of this paper.

THEOREM 1.8. Let pu be a probability measure on X, and a a Young
function satisfying the As-condition, and let po, > 1 be defined by (1.4). The
following statements are equivalent:

(1) there exists C such that p satisfies To(C);
(2) there exist A, A >0 such that p satisfies (1) — LSI4 (A, A)).

Moreover, the constants are related in the following way:
1

(1) = (2 for any A€ (0,1/C) andA:W;

1
2) = (1) withC:X/@pamax(A;l)p“_l,

pga (Pa—1)

where kp, = ) a

Such a characterization appeared for the first time in [15], in a Euclidean
setting and with a between linear and quadratic. Here our result is valid,
not only for a wider family of Young functions «, but also on very general
metric spaces.

Due to its functional form, it is easy to prove a perturbation lemma for
the inequality (7) —LSI,. This leads to the following general Holley—Stroock
perturbation result for transport-entropy inequalities whose proof is given
in Section 5.
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THEOREM 1.9. Let u be a probability measure on X and o a Young
function satisfying the Ay-condition, and let po, > 1 be defined by (1.4). As-
sume that p satisfies T (C') for some constant C > 0. Then, for any bounded
function ¢: X — R, the measure dji = %e“ﬂ du (where Z is the normalization

constant) satisfies To(C), with

G =y, Celtn105e(e),
r2,
where Osc(y) :=supy —infp, and kp, = Mw.

This theorem fully extends the previous perturbation result [15], Corol-
lary 1.8, obtained in a Euclidean setting and for a Young function a such
that o' is concave. Namely, for such an «a, the function a(z)/z? is nonin-
creasing [15], Lemma 5.6, and so p, < 2.

The paper is divided into five sections and one Appendix. Section 2 is
dedicated to some preliminaries. In particular we will give a characteriza-
tion of transport-entropy inequalities (close from Bobkov and Gotze one)
that might be of independent interest, and that is one of the main in-
gredients in our proofs. For the sake of completeness, we also recall how
the transport-entropy inequality T, implies the (7)-log-Sololev inequality
(1) = (2) of Theorem 1.8; this argument had been first used in [27] and
then in [15]. In Section 4, we prove the other direction: the (7)-log-Sololev
inequality implies the transport-entropy inequality T, . In Section 3, we give
the proof of the generalized Otto—Villani result, Theorem 1.7. The proof of
the Holley—Stroock perturbation result is given in Section 5. Finally, most of
the technical results needed on Young functions are proved in the Appendix.

2. Preliminaries. In this section, we first recall the proof of the first half
of Theorem 1.8, namely T, = (7) — LSI,. In a second part, we give a use-
ful “dimensional” refinement of the characterization of transport-entropy
inequalities by Bobkov and Gétze [4]. This characterization provides suf-
ficient conditions for the transport-entropy inequality to hold. These are
the same conditions as those obtained in the proofs of LSIX = T, and
(1) —LSI, = T,.

2.1. From transport entropy to (7)-log-Sobolev inequality. In [15], Theo-
rem 2.1, we proved the following result which is the first half [(1) = (2)] of
Theorem 1.8. For the sake of completeness, its short proof is recalled below.

THEOREM 2.1 ([15]). Let u be a probability measure on X and a a
Young function. If p satisfies To(C) for some constant C' >0, then, for all
A€ (0,1/C), p satisfies (1) — LSIo (X, 755 )-
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PROOF. Take f:X — R alocally Lipschitz function such that [ ef dy =
1, and consider the probability v; defined by vy = ef . Jensen’s inequality
implies that [ fdu <0. So, if 7 is an optimal coupling between vy(dz) and
wu(dy), then it holds

Hvgl) = [ sy < [ favy = [ fan= [ @)~ iz dy).

By definition of Q) f,
f@) = fy) < fx) = Qaf(z) + Aa(d(z,y)).
Since 7 is optimal, it holds
gl < [(F = QM) dvy + XTalvg.10.

Plugging the inequality 7, (v¢, 1) < CH (v¢|p) into the inequality above with
A < 1/C immediately gives (1) — LSIo(\, =25). O

2.2. Sufficient conditions for transport-entropy inequality. In this sec-
tion, we show that bounds on the exponential moment of the tensorized inf-
convolution or sup-convolution operator allow us to recover the transport-
entropy inequality; see Proposition 2.3 and Corollary 2.5 below. These re-
sults are a key argument to recover the transport-entropy inequality, either
from a modified log-Sobolev or from a (7)-log-Sobolev inequality.

It is known, since the work by Bobkov and Goétze [4] (see also [13, 31]),
that transport-entropy inequalities have the following dual formulation.

PROPOSITION 2.2 ([4]). Let u be a probability measure on a complete
and separable metric space (X,d). Then the following are equivalent:

(i) the probability measure p satisfies Ty (1/c);
(ii) for any bounded continuous function f:X — R, it holds

/ ¢Quf gy < o)

In the next proposition we show, using the law of large numbers, that the
bound in point (ii) can be relaxed as soon as it holds in any dimension.

PROPOSITION 2.3. Let o be a probability measure on a complete and
separable metric space (X,d). Then the following are equivalent:

(i) the probability measure p satisfies Ty (1/c);
(ii) there exist three constants a, b, ¢ >0 such that for any n € N*, for
any bounded continuous function f:X™ — R*, it holds

/ ¢Qanl gy < e ()|
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REMARK 2.4. Note that the constants a and b do not play any role. On
the other hand, notice that f is only assumed to be nonnegative.

PROOF. Observe that the transport-entropy inequality T,(1/c) natu-
rally tensorises; see, e.g., [13]. Applying Bobkov and Goétze result above, we
see that (i) implies (ii) with a =1 and b=c.

Now let us prove that (ii) implies (i). For that purpose, fix a bounded
continuous function f:X — R with mean 0 under p and, following [14] (see
also [11]), define g on X™ as g(z) =>_1" | f(z;), x = (21,...,2,) € X". Then,

n
</ Qo f d,u) :/eCQa,ng du" < /eCQa,n9+ du™ Saeb‘un(g*),

where, as usual, g4 = max(g,0). It follows that
/ e<Qal gy, < g1/ (a1)/n.

Now, according to the strong law of large numbers, % S, f(Xi)—0in LY,
where the X;’s are i.i.d. random variables with common law . Hence,

u”(%) SE( %Zzn;f(Xi) > —0

when n tends to infinity. We conclude that
(2.2) /eCQaf du<1=e#),

Since the latter is invariant by changing f into f + e for any constant e, we
can remove the assumption p(f)=0. This ends the proof. [

The next corollary will be used in the proofs of Theorems 1.7 and 1.8. It
gives a sufficient condition for the transport-entropy inequality T, to hold.

COROLLARY 2.5. Let p be a probability measure on a complete and sep-
arable metric space (X,d). Define, for all f: X" — R,

(2.3) Panf(z)= sup {f(y)—za(d(fﬂi,yi))} Vo= (21,...,2,) € X"

yexr i=1
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Assume that there exist some constants T, a, b>0 and c € [0,1) such that,
for all integer n € N* and all bounded continuous functions f:X™ — R™, 4t
holds

/ ¢7Pand qun < qebi” (Panf) el flls
Then p satisfies T o ( - C))

ProOOF. Let n e N* and take a bounded continuous function g: X" —
R*. In order to apply Proposition 2.3, we need to remove the spurious term
|| flloo- Observe on the one hand that for any g € (0,7(1 — ¢)), one has

[ ey —1+ﬁ/ U (Qang > 1) dr

—+oc0
=1+ ﬁ/ e’B’”,u”(min(Qamg, r)>r)dr.
0

On the other hand, set f =min(Q,ng,7). It is bounded, nonnegative and
satisfies || f||co <. Moreover, we have P, ,(Qa.ng) < g. Indeed,

Pa,n(Qa,ng)( )_ sup inf { +Z ylyzz _Za(d(xiuyi))}y

zeX™
yexm i=1

and the inequality follows by taking z = x. Hence p"(Pon,f) =
1 (Pon(Qang)) < p"(g). Therefore, since P, ,f > f, by Chebyshev’s in-
equality and the assumption, we have

W (in(Qang, ™) > 1) < " (Panf >7) <e™ / ettt dp”

< aebu" (Pa,nf)efT(lfc)r

< et (@) g—T(1=c)r

Consequently, we get
+oo
/ ¢#Qund gy < 1 4 Baeh" () / (T =) g
0

=14+ Lebu”(g)

T(1l—¢)—p
T(1—c)+Bla— 1)ebw(g)
7(l—c)—p '

Finally, Proposition 2.3 provides that u satisfies T (1/8). Optimizing over
(B leads to the expected result. [
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3. From modified log-Sobolev inequality to transport-entropy inequality.
In this section we prove Theorem 1.7. We have to distinguish between the
modified log-Sobolev inequalities plus and minus. As in [11], the proofs of
Theorems 1.7 and 1.8 use as a main ingredient the stability of log-Sobolev-
type inequalities under tensor products.

Let us recall this tensorisation property. The entropy functional enjoys
the following well-known sub-additivity property (see, e.g., [1], Chapter 1):
if h: X" - RT,

n
(3.1) Bnte (h) <3 / Fnt, (h.s) dpe” (),

i=1
where, for all € X", the application h;, is the ith partial application
defined by

hm(u):h(xl,...,xi_l,u,xiﬂ,...,xn) Vu e X.

Let us say that h: X™ — R™ is separately locally Lipschitz, if all the partial
applications h; , 1 <¢<n,x € X" are locally Lipschitz on X. Now, suppose
that a probability x4 on X verifies (LSI}(A)) for some A > 0. Then, using
(3.1), we easily conclude that u™ enjoys the following inequality:

(32) Butyn () <4 [ 37 a* (97 f)ef du”
=1

for all functions f:X™ — R separately locally Lipschitz, where |V f|(x) is
defined by

V7 F1(0) = 9 ) = timsup L1ttt fa)

The same property holds for LSI .

3.1. Modified log-Sobolev inequality plus. The first part of Theorem 1.7,
that we restate below, says that the modified log-Sobolev inequality LSI
implies the transport-entropy inequality T,. In fact we shall prove the fol-
lowing, slightly stronger, result. To any Young function «, we associate a
function &, defined by
(3.3) €a(x) :=sup , x>0,
where o, is the right derivative of a. Note that &, is nondecreasing and
may take infinite values.

THEOREM 3.1. Let p be a probability measure on X and o a Young func-
tion satisfying the Ag-condition. If u satisfies (LSLT(A)) for some constant
A >0, then u satisfies To(1/ta) with t4=sup{t e RT;&,(t) <1/A}.
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The following lemma gives an estimation of &,.

LEMMA 3.2. Let a be a Young function satisfying the Ao-condition, and
let 1 <7y <pa, Do >1 be the numbers defined by (1.4). Then, it holds

(34)  €a(@) < (po — Dmax(aV PV 0aD) v,

with the convention ©°° =0 if x <1 and oo otherwise.

The proof of this result is in the Appendix.

Using Lemma 3.2, we easily derive point (i) of Theorem 1.7, with the
explicit constant CF = max(((po — 1)A)" 1 ((po — 1) A)Po—1).

Before turning to the proof of Theorem 3.1, let us say that estimation
(3.4) is satisfactory, at least for the small values of = (corresponding to the
large values of A), as we show with the following exact calculation of &,,
when « is the function «,, 5, defined by (1.1).

LEMMA 3.3. Let p1 > 2 and p2 > 1, and let o = ap, p,; then po =
max(p1,p2), and it holds

Eal@) = (po — )2/ P yp <1,

Moreover, for x> 1, it holds

1 1 1\1 )
P <_x1/(p2_1) + <_ - _> _>> prl Zan
§a(z) = 0 o @)
max((py — 1)t/ P17 (py — 12t/ P27D), if p1 < po,

where ¢ =p1/(p1 —1) and g2 =p2/(p2 — 1).
The proof of this lemma is in the Appendix, too.

PrROOF OF THEOREM 3.1. Our aim is to use Herbst’s argument (see,
e.g., [1, 17, 19]) together with Proposition 2.3. Let n € N*; according to
Lemma 3.4 below, for any bounded function f:X™ — R, the function Qg » f
is separately locally Lipschitz [recall that the inf-convolution operator Qg
is defined by (2.1)]. Fix a nonnegative bounded continuous function f: X" —
RT. Applying (3.2) to tQa.nf, t >0, and using Lemma 3.5 below together
with the fact that f >0, one gets

Entﬂn (etQa,nf) S A/Za*(t‘v:—Qa,nf‘)etQa’nf dlLLn
=1

< At (1) / Qanfe@ond dym.
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Now, we proceed with the Herbst argument. Set H(t) = [ etQanf qur ¢ >0.
Since Entn (e!Qon/) =tH'(t) — H(t)log H(t), the latter can be rewritten as
(t — Atéo(t))H'(t) < H(t)log H (1), t>0.

Set W(t) = %log(H (t)), t >0, so that the previous differential inequality

reduces to

W1 — Aéa(t)) < ALa(t)W ().
Since limy_,o W (t) = p™(Qanf), we get
<e

H(t) <exp(tC(t)n" (Qanf))  VEE€(0,t4),

where we set C(t) = exp fg #gzu)) du; thanks to Lemma 3.2 above, we

are guaranteed that t4 >0 and that C(t) < oo on (0,t,). Since Qunf < f,
we finally get

/etQa,nf du™ < O™ (f) vt € (0,t4),

which leads to the expected result, thanks to Proposition 2.3 [and after
optimization over ¢ € (0,t4)]. O

LEMMA 3.4. Let a be a Young function. For any integer n € N*, any
bounded function f: X" — R, the function Qanf is separately locally Lips-
chitz on X™.

PROOF. Let h= Qqnf; then, for all x € X™ and 1 <1i <n, it holds

o) =t e )+ Y et |+ et |

1,Yit15--Yn —
J#i

= Qag(u),
where ¢g: X — R is defined by the second infimum. Let us show that u —
Qog(u) is locally Lipschitz on X. Observe that ¢g is bounded and define
7o = o 1(2||g]loo)- For all u € X, and all y € X such that d(y,u) > r,, we
have

9(y) + a(d(u,y)) > =lgllc + a(ro) = [|gloo-

Since Qag < ], we conclude that Qug(t) = infygy.uy<r, {9(y) +ald(u, )}
Let u, € X, and let B, be the closed ball of center u, and radius 2r,. If
u € By, then Qng(u) =inf,ecp {9(y) + a(d(u,y))}. Now, if y € B,, we see
that for all u,v € B,,

la(d(u, y)) — a(d(v,y))]
<|d(v,y) — d(u,y)| e oy (td(u,y) + (1 —t)d(v,y))

)

< Lod(u,v),
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with L, = o/, (47,). The map B, = R:u+— Qqag(u) is an infimum of L,-
Lipschitz functions on B,, so it is L,-Lipschitz on B,. This ends the proof.
O

LEMMA 3.5. Let o be a Young function. For any integer n, any t >0
and any bounded continuous function f: X" — R,

> "tV Qanfl) < téa(t)(Qanf (x) = F(y"),
i=1
where y* € X™ is any point such that Qanf(x) = f(y*) + > a(d(z;,y5)).
PRrROOF. Fix n, t >0 and a bounded function f:X" — RT. For z =

(x1,...,2n) € X" i€{1,...,n} and z € X, we shall use the following nota-
tion:

i
T'2=(T1, o Tio1, 2, Tit1y ey Tp)-

Let x € X™; since f is bounded continuous and closed balls in X are assumed
to be compact, it is not difficult to show that there exists y* € X" such that

Qanf +Z x]vy]

For all 2 € X and all 1 <i<mn, we have also Qunf(Z'2) < f(y*) +
> jziod(xy,y7)) + a(d(z,y7)). Since the maps u+ [u] and « are non-
decreasing, it holds

[Qunf (#'2) = Qanf ()] < [a(d(z,y7)) — ald(zi,yf))],
< ald(z, @) + d(zs, y7)) — a(d(zi, yi))] ;-
Therefore,

|v;rQa,nf‘(l‘) < hlzisg}l_p [a(d(zv xl) + d(xczijz;)‘))_ Oé(d(.l‘i, yzx))]-f'

= o/ (d(zi, y7))-
Hence, by the very definition of &,

Y@tV Qunfl) <D a* (b (d(wi yf)))
i—1 i=1

n

<téa(t) D ald(zi,yl))

i=1

= tga(t)(Qa,nf(Q:) - f(yx)) 0
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3.2. Modified log-Sobolev inequality minus. In this section we prove the
second part of Theorem 1.7, that we restate (in a slightly stronger form)
below, namely that the modified log-Sobolev inequality minus LSI; implies
the transport-entropy inequality T,,. Let us define [recall the defintion of &,
given in (3.3)]

to =sup{t e RT £, (t) < +o0}.

Note that, by Lemma 3.2, if « satisfies the As-condition, then ¢, > 1.

THEOREM 3.6. Let p be a probability measure on X and o a Young func-
tion satisfying the Aq-condition. If p satisfies (LSI, (A)) for some constant

A >0, then p satisfies To(B™) with B~ = limy_yy,, %exp{fg % du}.

For more comprehension and to complete the proof of part (ii) of Theo-
rem 1.7, let us prove that B~ < C~. If r, > 1, then by Lemma 3.2, t, = +0oc.
Moreover, using that % = exp{— flt % du}, t > 1, one has

_ AL u +oo 1 "
log 5 ‘/o a(l+ Aba(w)) / W0 T Aa(@)

1 — Dt/ (pa—1)
o u(l+ A(pq — 1ul/(Pa—1))

400 1
— du
/1 (14 A(pe — 1)ul/(ra—1))
=logC™,
with
C™ = (1 + A(pa - 1))pa_ra(A(pa - 1))7@—1'
When 7, =1, since t, > 1 and using the fact that the function

is nonincreasing, we get

_ ! A& (u) o=l _ ~—
B <exp{/0 mdu}<(l+A(pa—l))p =C".

PrOOF OF THEOREM 3.6. The proof of Theorem 3.6 follows essentially
the lines of the proof of Theorem 3.1. Let n € N*; thanks to the tensorisation
property of (LSI_ (A)), it holds

(3.5) Ent,n (e9) < A / S (|97 gl)ed dp?
=1
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for any ¢g: X™ — R separately locally Lipschitz and bounded. Take a non-
negative bounded continuous function f:X™ — RT. Recall that P, , f(x) =

supyexn {f (y) = 21y ald(zi, 4:))}. Since Pon f = —Qan(=f), it follows from
Lemma 3.4 that P, ,f is separately locally Lipschitz. Applying (3.5) to
g=1tPynf,t>0, one gets

n
Butn (7)) < A [ 30 (419, Panf NP0 dy
i=1

Observe that Py, f = —Qan(—f) and that [V~ (=h)| = |VTh|, forall h: X —
R. So applying Lemma 3.5, we see that for all x € X", there is some y* € X"
such that

DUV Panf (@) =) @tV Qaun(—F))(x)
i=1 i=1

< o (t)(Qan (=) () + f(¥7))

S t&a(t)([flloe — Panf(@)).
So we get the following inequality:

Entyn (/o) < At (t) / (I flloo = Panf)ePend dyr.

As in the proof of Theorem 3.1, we proceed with the Herbst argument. Set
H(t) = [etPant dum t € (0,t,). Since Entyn (e!Fonl) = tH'(t)— H(t) log H(t),
the latter can be rewritten as

(t+ Atga (D)) H'(t) < H(t) log H(t) + Atéa(t) | flocH(E) VL€ (0,ta):

Set W (t) = 1log H(t), t € (0,ta), so that the previous differential inequality
reduces to

W (t)t(1+ Aba(t)) < —AL(O)W () + Aa ()|l

Set c(t) = exp{— fg’ W‘fji% du} [which belongs to (0,1) thanks to Lem-
ma 3.2]. Since limy_,o W(t) = p"(Panf), solving the latter differential in-

equality, we easily get that for all ¢ € (0,t,),
H(t) < teOL" (Pon f) ot flloo (1—c(t))

Applying Corollary 2.5 yields that T, (1/(tc(t))) holds for all t € (0,t,).
Observing that the function ¢ — te(t) is nondecreasing on (0,t4), the proof
is completed by optimizing in ¢. [

4. From (7)-log-Sobolev inequality to transport-entropy inequality. In
this section, we prove the second part [(2) = (1)] of Theorem 1.8. Observe
that T (C/)) is equivalent to T, (C). Hence, changing « into Ao, we can
restate the first part of Theorem 1.8 as follows.
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THEOREM 4.1. Let i be a probability measure on X and o a Young
function satisfying the As-condition. Let p, > 1 be defined by (1.4). If p
satisfies (1) — LSI, (1, A) for some A >0, then p satisfies T (C) with

C = kp, max(A, 1)Pe—1

pga (pa—1)

where kp, = T

Two proofs are given below. The first one exactly follows the lines of the
proof of LSI, = T, whereas the second one uses the equivalence between
transport-entropy inequalities and dimension-free concentration established
in [11] together with a change of metric argument.

In each proof, the first step is to tensorise the (7)-log-Sobolev inequality.
Let n € N*; using the sub-additivity property (3.1) of the entropy functional,
we see that (1) — LSI, (1, A) implies that

(4.1) Ent, (e") < A/Z(h —QWn)erdu™  Vh:X" SR,
=1

where ij) is the inf-convolution operator with respect to the ith coordinate,
namely

Qi h(@) = Qalhiz) (@) = inf {h(3'y) + ald(zi,y))}

(using the notation introduced in Section 3).
As in the proof of Theorem 3.6, applying (4.1) to h =tP, g, t > 0 where
g belongs to some class of functions, we get

(42)  Entyn(etPon9) < A / > (tPang — QY (tPang))e!Trnd dp™.
=1

As a main difference, the class of functions g differs in each proof. In the
first one, g is any nonnegative bounded separately locally Lipschitz function,
whereas in the second proof, ¢ is globally Lipschitz in some sense.

For both proofs, the next step is to bound efficiently the right-hand side
of (4.2), in order to use some Herbst argument. This bound will be given by
the following lemma.

LEMMA 4.2. Let a be a Young function satisfying the As-condition,
and let po, > 1 be defined by (1.4). For any bounded continuous function
g: X" =R, for any x € X" and t €[0,1),

Y (tPang(x) = QY (tPang)(x)) < te(t) (Z a(d(z;, yf))) ;

=1 =1
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where y* € X™ is any point such that Py ng(z) = g(y*) — > iy ald(xi,y7)),
and where

1
e(t) = e -1 Vte[0,1).

We postpone the proof of Lemma 4.2 to the end of the section.

4.1. A first proof. The first proof of Theorem 4.1 mimics the one of the
implication LSI, = T,.

PrOOF OF THEOREM 4.1. Using (4.2), Lemma 4.2 ensures that for every
nonnegative locally Lipschitz bounded function g, for every ¢t € [0,1),

(t+ Ate(t))H'(t) < H(t)log H(t) + Ate(t)| gl H (1),

where H(t) = [ efond dym.
Solving this differential inequality, exactly as in the proof of Theorem 3.6
(we omit details), leads to

/ ePand gy < o (Pan) glglloe (1)

with c¢=1/C,
L Ae(t)
C= __ A8
eXp/O 1+ A= (1))

The inequality T, (C) then follows from Corollary 2.5.

Now, let us estimate the constant C. By convexity, one has for every
v e [0,1],

(1=v) = (1 =v)" < (pa —1)v.
This inequality easily implies that for all ¢ € [0,1), % < (pa — 1)é'(t). Con-
sequently, we obtain for all u € [0,1),
o AE(t) Lo Aeg(t)
logC < (pa — 1 7dt+/ ————dt
8C< (pa )/0 1+ As(t) L, t(1+ Az(t))
< (pa — 1) log(1 + Ae(u)) — logu.

Optimizing in u, we get

(1+ As(u)p—t _ (1+e(u))pa—?

C < inf < inf max (A, 1)Pe1
ue(0,1) u ue(0,1) U
= kp, max(A, 1)Po~1,
pga(Pozfl)

with xp, = g

(pa—l)(Pafl)Q :
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4.2. A second proof. The idea of this second proofis to prove the theorem
in the particular case of the functions oy (z) = 2P and then to treat the
general case by a change of metric argument.

4.2.1. T, inequalities. Let us introduce some notation and definitions.
When «(z) = ap(z) = |z|P, we will use the notation T,(C) and (7) — LSI,
instead of Ty, (C) and (1) — LSI,,. Let n € N*; a function f: X" — R is
said to be (L, p)-Lipschitz L > 0,p > 1, if

n 1/p
|f(96‘)—f(y)|<L<de($i,yi)> Vz,y€e X"
i=1
We recall the following result from [11].

THEOREM 4.3. The probability i verifies the transport-entropy inequal-
ity Tp(C), for some C >0 if and only if it enjoys the following dimension
free concentration property: for all n € N* and all f: X" — R such that

n 1/p
(@) — ()] < L(Z dpm,yi)) Va,ye X"
=1

for some L >0, it holds
pt(f 2 " (f) + u) <exp(=uP/(LPC))  Vu>0.

So to show that a T, inequality holds, it is enough to prove the right
concentration inequality.
We will use the following result to estimate the right-hand side of (4.2).

LEMMA 4.4.  Let p>1; there exists a constant w, > 1 such that for all
n € N* and all (L,p)-Lipschitz function f:X"™ — R, and all x € X™, the
function

X" R:y— f(y) —de(l‘i,yi)
i=1
attains its maximum on the closed ball
"\ L\* . p
{?JEX ;de(l‘uyi)§<w—p> }7 Wth@lZPTl'

i=1
When (X, d) is geodesic (see below), then one can take w, = p.

Recall that (X,d) is geodesic, if for all x,y € X, there is a path (2¢)e[o,1]
joining x to y and such that d(zs, z¢) = |s — t|d(z,y), for all s,t € [0,1]. This
notion encompasses the case of Riemannian manifolds.

The proof of the lemma is at the end of the section.
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THEOREM 4.5. Let p > 2; if p wverifies the (1) — LSI,(1,A), then it
verifies Tp(C), with C = (a,max(1; A))P~1, with a, = infte(o,l){tq%l(l +
w te(u
(pé,ﬁ) . (u)du)}'

REMARK 4.6. Let us compare the constants appearing in Theorems 4.1
and 4.5 for p =2. When p =2, Theorem 4.1 gives C1 = 4max(1;A), and
Theorem 4.5 gives Cy = ag max(1; A). A simple calculation shows that when
p=2, as = infse(o,l){%}. If we =1, then as ~ 7,5, and C is
smaller than Cy. But if wp =2 [which is the case, when (X, d) is geodesic],
then as ~ 3,14, and Csy is smaller than Cf.

PROOF OF THEOREM 4.5. Take a (L, p)-Lipschitz function ¢g: X™ — R.
To bound the right-hand side of (4.2), we use Lemmas 4.2 and 4.4.

n

D (tPayng(@) = QL) (tPa, n9)(x)) < te(t)(L/wp)”.

i=1
So, letting H(t) = [ e'Term9 dum, (4.2) provides
tH’(t) — H(t)log H(t) < Ate(t)H (t)(L/wp)?  Vte0,1).

Equivalently, the function K (t) = }log H(t) verifies K'(t) < A(L/wp)q#.
Since K (t) — pu"(Pa, ng) when t — 07, we conclude that

(43) [P < expltn” (Payng) + LA(L fp) k(1) V€ [0.1),

Ots(g) du, t €0,

1/p n
0< Pap,ng(x) - g( < sup { (Zd wza?/l)) - de(xuyz)}
i=1

where k(t) = 1). Since g is (L, p)-Lipschitz, it holds

yexn

= iliIO){LT -1} =(p—1)(L/p)*.

Plugging the inequalities g < Py, ng and pu™(Pa, ng) < u"™(g) + (p —1)(L/p)?
into (4.3), we get

/etg dp™ < exp(tp"(g) +t(p — 1)(L/p)* + LA(L/wp)?k(t))  VE€0,1).

Applying this inequality to g = f/t with f a (L,p)-Lipschitz function, we
get

/ef“"(f) dp™ < exp < (fq/_pl)q (p—1+ A(p/wp)qk(t))) vt € (0,1).
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So, optimizing over ¢ € (0,1) yields

(4.4) [0 dur < exp(L/p)1(p — 1) max(t; A)ay),

with
q t
ap— inf {1 (14 @) /E(U)du ,
te(0,1) | ta1 p—1 Jo u

Using Chebyshev’s argument, we derive from (4.4) that
WP(f = W () + ) < exp(—a/(IPC)) Vu0,

with C' = (a, max(A;1))P~L. Applying Theorem 4.3, we conclude that u ver-
ifies T(C). O

4.2.2. Eaxtension via a change of metric. A change of metric technique,
which is explained in the lemma below, enables us to reduce the study of
the transport-entropy inequalities T, to the study of the inequalities T,
p>1.

LEMMA 4.7. Let o be a Young function satisfying the As-condition,
and let po > 1 be defined by (1.4). The function x — a(z)'/P> is subadditive
on RT:

allPe(z 4 y) < al/Pe(z) + al/Pe(y) Vz,y € R,

As a consequence, do(x,y) = a'/P(d(z,y)), z,y € X is a distance on X.
The proof of Lemma 4.7 is at the end of the section.

PrROOF OF THEOREM 4.1. Let a be a Young function and p a probabil-
ity on X. According to Lemma 4.7, the function dy(z,y) = a'/P=(d(x,v)),
x,y € X is a metric on X. Furthermore, it is clear that p verifies (7) —
LSI,(1,A) [resp., To(C)] on (X,d) if and only if p verifies (1) — LSI,, (1, A)
[resp., T}, (C)] on (X,d,). We immediately deduce from Theorem 4.5 that
if pu verifies (1) — LSI, (1, A), then it verifies T((C), with C = (a,, max(1;
A))Pa=1 where

) 1 pl [te(u)
— inf 1 —=d
e tel(%,l){tqa1< T pa 1/0 w

(since wp, > 1) and e defined in Lemma 4.2. Note that the constant C
obtained using this approach is in general bigger than the constant obtained
in the first proof of Theorem 4.1. [

4.3. Proofs of the technical lemmas.

PrROOF OF LEMMA 4.2. Fixt >0, z€ X" and i€ {1,...,n}. Then

tPang(x) = QY (tPang)(z) = sup{(tFang(z) = tPang(7'2)) — a(d(wi,2))}-
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Let y* be such that P, ,,g(x) = g(y*) — c(z,y"), where c(z,y) = > i a(d(w;,
yi))- By choosing w = y* in the expression below, it holds

Pong(x) = Pang(Z'2) = g(y*) — c(z,y") — wsell)lgn{g(w) —c(T'z,w)}

<e(@z,y") — c(x,y")

= a(d(z,y})) — a(d(zi,y7))

=dp (z,y7) — di (w4, y7)

< (da(wi, y7) + dal@i, 2))7 — db2 (24, y7),

where, in the last line, we used the triangular inequality for the distance d,,
defined in Lemma 4.7. Hence, optimizing yields

tPa,ng(aj) - Qg) (tPa,ng)($)
< Sg)f;{t[(da(l’iayi )+ da(zi, 2))P — db (w4, y7)] — db> (24, 2)}

= sup{t[(da (i, y;) + )" — o> (25, 47)] — rP}
r>0

= te(t) do* (2, yi') = te(t)ald(wi, yi))-
Taking the sum, we get the result. [

PROOF OF LEMMA 4.4. Let y* be a point where the function y — f(y) —
S, dP(x;,y) reaches its maximum. Then, for all z € X™, it holds

de .I‘Z,yl <f +Zd .I‘Z,ZZ

=1

n l/p n
< L(de(zi,yf)> £ ().
=1 i=1

Choosing z =z, we get » ;' | dP(z;,2;) < LY.

Now, assume that (X,d) is geodesic. Then the product space (X™,d™)
with d™ (x,y) = (320, dP (i, ;) Y7 is geodesic too. In the calculation above,
take for z a t-midpoint of x and y*; that is, choose z € X™ such that
d™ (z,z) = td™ (z,y") and d"(z,y )—( )d(”)(m y*), with ¢t € [0, 1].
Then, letting £ = d™ (z,y"), it holds Ep < L(1—t)0+tP¢P, and so =271 <
L. Letting ¢t — 1 gives the result. [

PROOF OF LEMMA 4.7. Let ¢(z) = /P« (z)/z, x > 0. Then, by defini-
tion of pg,
al/pe () (zaly () / (pacr(z)) = 1)

/ —
S0+ ('/L‘) - .’,1;'2 S 0.
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So ¢ is nonincreasing on (0,+00). Thus, if z >y,

aMPe(z 4 y) = (z 4+ )zl +y/x)) < (z +y)p(z)

< ol (z) + /P (y). .
xT

= alPe(z) 4y

5. Holley—Stroock perturbation lemma: Proof of Theorem 1.9. In this
section, we prove Theorem 1.9.

ProOF OF THEOREM 1.9. The proof follows the line of the original
proof [18]; see also [26]. Using the following representation of the entropy,

Ent,(g) ﬂg%{/(glog(%) —g+t) du}

with g = e/, we see that [since glog(¢) — g+t > 0]

SUP Y
Entg(g) < — Ent,(g).

Since p verifies T(,(C'), Theorem 2.1 implies that, for all A € (0,1/C),

Osc()

(of) < — O Vel gy < £ —_0* el di.

Buta(e!) < g [ (- Qneldn< 5 [(1- Qe
Osc(p)

In other words, fi satisfies (7) — LSIo()\, §—¢ ), for any A € (0,1/C'). Now,

applying Theorem 1.8, we conclude that fi verifies T, (C), with

1 1
_ o JL 1 pa—10see)
C = P, /\6(101,11/0){ N (1 — AC)pa—T }e

ey ]

Do

= _ Pa (Pa—1)Osc(p) _ = (pa—1)O0sc(p)

K Ce =r, Ce .
Pa (pa _ 1)pa—1 Pa

APPENDIX: TECHNICAL RESULTS

In this appendix we prove the technical lemmas on Young functions we
used during the paper. First, let us prove Lemma 1.6, that we restate below.

LEMMA A.1. If« is a Young function satisfying the As-condition, then

/ /
(A1)  ro:=inf va(2) >1 and 1<p,:=sup va (2)
>0 or) 2>0 ()

where o', (resp., a’_) denotes the right (resp., left) derivative of a.

< +00,

PROOF. Using the convexity of a, we see that a(z)/x < o/ (). This
shows that 7, > 1. On the other hand, the function « is convex, so a/(2z) >
a(z) + za!, (x), for all & > 0. Since a verifies the As-condition, there is
some constant K > 2 such that «(2z) < Ka(x). So we get zd/, (v) < (K —
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1)a(x), for all x> 0. This proves that p, < +o0o. Let us show that p, > 1.
Otherwise we would have ro = p, (since o/ < ¢/, ) and so zo/_(x)/a(x) =
zo!, (x)/a(x) =1 for all x> 0. This would imply that « is linear on [0, c0).
This cannot happen, since by assumption Young functions are increasing
and such that o/(0) =0. So p, >1. O

Now let us prove Lemmas 3.2 and 3.3 whose statements are summarized
below. Recall that the function &, is defined by

o) = supOé*(L;(u))7 x> 0.

us0  za(u)
LEMMA A.2.

e Let a be a Young function satisfying the Ao-condition, and let 1 <1, < pq,
Pa > 1 be the numbers defined by (A.1). Then, it holds

(A.2) €a(z) < (po — 1) max(zV/ Pa=D, p1/ra=by vy s 0,

with the convention t*° =0 if t <1 and oo otherwise.
o Let p1 >2 and py > 1 and let o= oy, p,; then po, = max(p1,p2), and it
holds

£a(r) = (po — D/ P yp <1,
Moreover, for x> 1, it holds

1 1 1\1
p1 (-fb‘l/(ml) + <— - —> —>> if p1 > p2,

alr) = a2 o @)
max((p; — 1)z!/ 175 (py — 1)/ P71, if p1 < p2,

where q1 =p1/(p1 — 1) and g2 = p2/(p2 — 1).

PROOF. Defining w(z) = sup, &()) for all = >0, we get

(o) < 28y 202 10)
T u>0 (

Vo > 0.

)
From the convexity inequality o(x) > a(u) + (x — u)o/, (u), z,u >0, we de-
duce immediately that o*(o/, (u)) = uc/, (u) — a(u), for all u > 0. Thus

ar(ely(u)

sup = Ppa — L.

u>0 a(u)

So, all we have to show is that w(x) < max(zPe/Pa=1); gra/(ra=1)) for all
x> 0.

Define ¢(u) = a(u)/uP> and 9(u) = a(u)/u", for all v > 0. As in the

proof of Lemma 4.7, a simple calculation shows that ¢ is nonincreasing, and
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1) is nondecreasing. As a result,
atu) <tPea(u) Yu>0, Vt>1,
a(tu) <t'a(u) Yu >0, Vte|0,1].
Taking the Fenchel-Legendre transform yields
a(v/t) > tPea” (v/tPe) Yo >0, Vt>1,
o (v/t) >trear (v/t") Vv >0, Vtel0,1].
Equivalently,
o (uz) < zPe/ Pa=D) o (u) Yu >0, Vx € [0,1],
o (uz) < 2o/ Ta=D o (u) Vu >0, Ve > 1.

And since r4 < pa, we conclude that w(z) < max(zPe/Pa=1); gra/(ra=1))
x > 0.

Now, let us calculate &, ., for p; > 2, po > 1. First observe that &, =&,
for all A > 0. It will be more convenient to do the calculation with the
function a := @y, p, = pilamm. Let us denote by ¢1 = ;P go = 225, the
conjugate exponents of p; and ps. Then the following identity holds: a* =
Qg qo- Let us show that

fa(x) = (pa - 1)x1/(pa*1)
for x <1. The case x > 1 is similar and left to the reader. Define

o) = o (xu)

Saoa i@ 470

We have to distinguish three cases:
1
§a(r) = — max (sup @(u); sup (u); sup @(U)>-
T u<l 1<u<l/x u>1/x

Case 1. 0 <u <1. Then p(u) = (p; — 1)x?.
Case 2. 1 <u<1/x. Then

qu uql
g u®/pa+1/p1—1/py’

If p1 > po, then the function ¢ is nonincreasing on [1,1/z], and so

p(u)

sup  p(u) = (1) = (p1 — 1)z
1<u<l/z

If p1 < po, then the function ¢ is nondecreasing on [1,1/x], and so

sup  p(u) =p(1/z).
1<u<l/z
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Case 3. u>1/xz. Then

(zu)®/qo+1/q1 — 1/q2
u92 /pa +1/p1 —1/p2

If p1 > po, the function ¢ is nonincreasing on [1/x,00), and so

p(u) =

sup p(u) = @(1/x).
u>1/z

If p1 < po, the function ¢ is nondecreasing on [1/z,00), and so

sup p(u) = lim () = (p2 — a.

Observe, in particular, that ¢ never reaches its supremum at u=1/x. We
conclude that

sup ¢(u) = max((p1 — 1)z; (p2 — 1)z%),
u>0

and so
€o(x) =max((p1 — 1)x1/(p171); (ps — 1)$1/(p2—1))
= (max(py;pg) — 1)t/ (Max(pripz)=1)

Since p, = max(p1;p2), the proof is complete. [
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