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CHARACTERIZATION OF TALAGRAND’S TRANSPORT-ENTROPY
INEQUALITIES IN METRIC SPACES.

NATHAEL GOZLAN, CYRIL ROBERTO, PAUL-MARIE SAMSON

Abstract. We give a characterization of transport-entropy inequalities in met-
ric spaces. As an application we deduce that such inequalities are stable under
bounded perturbation (Holley-Stroock perturbation Lemma).

1. Introduction.

In their celebrated paper [22], Otto and Villani proved that, in a smooth Rie-
mannian setting, the log-Sobolev inequality implies the Talagrand’s transport-ent-
ropy inequalityT2. Later, Bobkov, Gentil and Ledoux [3] proposed an alternative
proof of this result. Both approaches are based on semi-group arguments. More
recently, the first named author gave a new proof, based on large deviation theory,
valid on metric spaces [11].

In this paper, on the one hand, we give yet another proof of Otto and Villani’s
theorem. This proof does not use any semi-group argument norlarge deviation and
requires very few structure on the space. We are thus able to recover and extend
the result of [11] in a general metric space framework.

On the other hand, we recently introduced [15] a new functional inequality,
called inf-convolution log-Sobolev inequality. We provedthat, in a Euclidean
framework, it is equivalent to the Talagrand transport-entropy inequalityT2, lead-
ing to a new characterization of such an inequality. The present paper establishes
the equivalence in a general metric space framework. As a byproduct, we prove
that the inequalityT2 is stable under bounded perturbation (Holley-Stroock pertur-
bation Lemma).

Our strategy is very general and applies for a very large class of transport-
entropy inequalities.

In order to present our results, we need first to fix some notation.

1.1. Notation and definitions. We first introduce the notion of optimal transport
cost. Then we give the definition of the transport-entropy inequality and of the
(τ)-log-Sobolev inequality.
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General assumption.In all this paper (X, d) will always be a complete, separa-
ble metric space such that closed balls are compact.

1.1.1. Optimal transport cost and transport-entropy inequality.Let α : R → R+

be a continuous function. Given two probability measuresν andµ onX, theoptimal
transport costbetweenν andµ (with respect to the cost functionα) is defined by

Tα(ν, µ) := inf
π

{"
α(d(x, y)) dπ(x, y)

}
,

where the infimum runs over all the probability measuresπ onX×X with marginals
ν andµ. The notion of optimal transport cost is very old (it goes back to Monge
[21]). It has been intensively studied and it is used in a wideclass of problems
running from geometry, PDE theory, probability and statistics, see [28]. Here we
focus on the following transport-entropy inequality.

In all the paper, the cost functionsα will be assumed to belong to the class of
Young functions.

Definition 1.1. (Young functions1) A functionα : R→ R+ is aYoung functionif α
is an even convex, increasing function onR+ such thatα(0) = 0 andα′(0) = 0.

Definition 1.2 (Transport-entropy inequalityTα). Let α be a Young function; a
probability measureµ on X is said to satisfy thetransport-entropy inequalityTα(C),
for some C> 0 if

(Tα(C)) Tα(ν, µ) ≤ CH(ν|µ), ∀ν ∈ P(X),

where

H(ν|µ) =

{ ∫
log dν

dµ dν if ν ≪ µ

+∞ otherwise
is the relative entropy ofν with respect toµ andP(X) is the set of all probability
measures on X.

Remark 1.3. It can be shown that ifα : R → R+ is an even convex function
such thatlim supx→0

α(x)
x2 = +∞ then the only probability measures that satisfy the

transport inequalityTα are Dirac masses (see e.g[12, Proposition 2]). This is the
reason why, in our definition of Young functions, we impose that α′(0) = 0.

Popular Young functions appearing in the literature, as cost functions in trans-
port-entropy inequalities, are the functionsαp1,p2 defined by

(1.4) αp1,p2(x) :=

{
|x|p1 if |x| ≤ 1
p1
p2
|x|p2 + 1− p1

p2
if |x| > 1 , p1 ≥ 2, p2 ≥ 1.

(the casep1 < 2 can be discarded according to the remark above). Whenp1 =

p2 = p, we use the notationαp instead ofαp,p.

Transport-entropy inequalities imply concentration results as shown by Marton
[19], see also [4], [17], and [13] for a full introduction to this notion.

1Note that, contrary to the definition of some authors, for us,a Young function cannot take infinite
values.
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The transport-entropy inequality related to the quadraticcostα2(x) = x2 is the
most studied in the literature. In this case, the transport-entropy inequality is often
referred to as the Talagrand transport-entropy inequalityand is denoted byT2.
Talagrand [27] proved that, on (Rn, | · |2) (where | · |2 stands for the Euclidean
norm), the standard Gaussian measure satisfiesT2 with the optimal constantC = 2.

1.1.2. Log-Sobolev type inequalities.The second inequality of interest for us is
the log-Sobolev inequality and more generally modified log-Sobolev inequalities.
To define these inequalities properly, we need to introduce additional notation.

Recall that the Fenchel-Legendre transformα∗ of a Young functionα is defined
by

α∗(y) = sup
x∈R
{xy− α(x)} ∈ R+ ∪ {∞}, ∀y ∈ R.

A function f : X → R is said to belocally Lipschitzif for all x ∈ X, there exists a
ball B centered at pointx such that

sup
y,z∈B, y,z

| f (y) − f (z)|
d(y, z)

< ∞.

When f is locally Lipschitz, we define

|∇+ f |(x) =

{
lim supy→x

[ f (y)− f (x)]+
d(y,x) if x is not an isolated point

0 otherwise,

and

|∇− f |(x) =

{
lim supy→x

[ f (y)− f (x)]−
d(y,x) if x is not an isolated point

0 otherwise,

where [a]+ = max(a; 0) and [a]− = max(−a; 0). Note that|∇+ f |(x) and |∇− f |(x)
are finite for allx ∈ X. When f is a smooth function on a smooth manifold,|∇+ f |
and|∇− f | equal the norm of the gradient off .

Finally, if µ is a probability measure onX, recall that the entropy functional
Entµ( · ) is defined by

Entµ(g) =
∫

g log
g∫
g dµ

dµ, ∀g > 0.

Definition 1.5 (Modified log-Sobolev inequalityLSI±α). Letα be a Young function;
a probability measureµ on X is said to satisfy themodified log-Sobolev inequality
plusLSI+α(A) for some A> 0 if

(LSI+α(A)) Entµ(e
f ) ≤ A

∫
α∗(|∇+ f |)ef dµ,

for all locally Lipschitz bounded function f: X→ R.
It verifies themodified log-Sobolev inequality minusLSI−α(A) for some A> 0 if

(LSI−α(A)) Entµ(e
f ) ≤ A

∫
α∗(|∇− f |)ef dµ,

for all locally Lipschitz bounded function f: X→ R.
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Again, the quadratic costα2(x) = x2 plays a special role since in this case
we recognize the usual log-Sobolev inequality introduced by Gross [16] (see also
[25]). In this case, we will use the notationLSI±.

Bobkov and Ledoux [5] introduced first the modified log-Sobolev inequality
with the functionα2,1, in order to recover the celebrated result by Talagrand [26]
on the concentration phenomenon for products of exponential measures. In par-
ticular these authors proved that, with this special choiceof function, the modi-
fied log-Sobolev inequality is actually equivalent to the Poincaré inequality. Af-
ter them, Gentil, Guillin and Miclo [8] established that theprobability measure
dνp(x) = e−|x|

p
/Zp, x ∈ R andp ∈ (1, 2) verifies the modified log-Sobolev inequal-

ity associated to the functionα2,p. In a subsequent paper [9] they generalized their
results to a large class of measures with tails between exponential and Gaussian
(see also [2, 10, 7] and [23]).

Finally, let us introduce the notion of inf-convolution log-Sobolev inequality. In
a previous work [15], we proposed the following inequality

(1.6) Entµ(e
f ) ≤

1
1− λC

∫
( f − Qλ

α f )ef dµ, ∀ f : X→ R, ∀λ ∈ (0, 1/C)

where
Qλ
α f (x) = inf

y∈X
{ f (y) − λα(d(x, y))} ∀x ∈ X.

We called it inf-convolution log-Sobolev inequality and weproved that it is equiva-
lent - in a Euclidean setting - to the transport-entropy inequality Tα(C′), for Young
functionsα such thatα′ is concave. Also, we get an explicit comparison between
the constantsC andC′, namelyC ≤ C′ ≤ 8C. Our proof relies in part on the
Hamilton-Jacobi semi-group approach developed by Bobkov,Gentil and Ledoux
[3].

Inequality (1.6) is actually a family of inequalities, witha constant having a spe-
cific form (i.e.1/(1− λC)) in the right hand side. In this paper, in order to broaden
this notion, we will call (τ)-log-Sobolev inequality rather than inf-convolution log-
Sobolev inequality the following inequality.

Definition 1.7 ((τ)-log-Sobolev inequality). Letα be a Young function; a probabil-
ity measureµ on X is said to satisfy the(τ)-log-Sobolev inequality (τ) − LSIα(λ,A)
for someλ,A > 0 if

((τ) − LSIα(λ,A)) Entµ(e
f ) ≤ A

∫
( f − Qλ

α f )ef dµ,

for all bounded locally Lipschitz function f: X → R, where the inf-convolution
operator Qλα is defined by

(1.8) Qλ
α f (x) = inf

y∈X
{ f (y) − λα(d(x, y))}, ∀x ∈ X.

Whenλ = 1, we use the notation Qα instead of Q1
α.

The notation (τ) − LSIα refers to the celebrated (τ)-Property introduced by Mau-
rey [20] (that uses the inf-convolution operatorQα and that is also closely related
to the transport-entropy inequality, see [13, Section 8.1]).
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Of course (1.6) implies (τ) − LSIα(λ, 1/(1 − λC)), for anyλ ∈ (0, 1/C). The
other direction is not clear,a priori (it would trivially be true ifA = 1), even if the
two inequalities have the same flavor. Thanks to Theorem 1.12below, they appear
to be equivalent, under mild assumptions onα.

1.1.3. ∆2-condition. In the next sections, our objective will be to relate the log-
Sobolev inequalitiesLSIα and (τ) − LSIα to the transport-entropy inequalityTα.
This program works well if we suppose thatα verifies the classical doubling con-
dition∆2. Recall that a Young functionα is said to satisfy the∆2-conditionif there
exists some positive constantK (that must be greater than or equal to 2) such that

α(2x) ≤ Kα(x), ∀x ∈ R.

The classical functionsαp1,p2 introduced in (1.4) enjoy this condition.
The following observation will be very useful in the sequel.

Lemma 1.9. If α is a Young function satisfying the∆2-condition, then

(1.10) rα := inf
x>0

xα′−(x)
α(x)

≥ 1 and 1 < pα := sup
x>0

xα′
+
(x)

α(x)
< +∞,

whereα′+ (resp.α′−) denotes the right (resp. left) derivative ofα.

The proof of this lemma is in the Appendix. To understand these exponents
rα and pα, observe that for the functionα = αp1,p2, defined by (1.4), we have
rα = min(p1, p2) andpα = max(p1, p2). Moreover, if 1≤ r ≤ p are given numbers,
andα is a Young function such thatrα = r and pα = p, then it is not difficult to
check that

α(1)αp,r ≤ α ≤ α(1)αr,p.

1.2. Main results. Our first result states that the modified log-Sobolev inequality
(plus or minus) implies the transport-entropy inequality associated to the sameα
(Otto-Villani theorem).

Theorem 1.11.Letµ be a probability measure on X andα a Young function satis-
fying the∆2-condition.

(i) If µ satisfiesLSI+α(A) for some A> 0, thenµ satisfiesTα(C+) with

C+ = max
(
((pα − 1)A)rα−1 ; ((pα − 1)A)pα−1

)
.

(ii ) If µ satisfiesLSI−α(A) for some A> 0, thenµ satisfiesTα(C−) with

C− = (1+ (pα − 1)A)pα−rα ((pα − 1)A)rα−1.

The numbers1 ≤ rα ≤ pα, pα > 1 are defined by(1.10).

Let us comment on this theorem. First observe thatC+ andC− are of the same
order since

C+ ≤ C− ≤ 2pα−rαC+.

For the quadratic caseα2(x) = x2, the constants reduce toC+ = C− = A. This
corresponds (whenX is a smooth Riemannian manifold) to the usual Otto-Villani
theorem [22] (see also [3]). Let us mention that Lott and Villani [18] general-
ized the result from Riemannian manifolds to length spaces,for α2(x) = x2, with
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an adaptation of the Hamilton-Jacobi semigroup approach developed by Bobkov,
Gentil and Ledoux [3]. But their statement requires additional assumptions, such
as a local Poincaré inequality, which are not needed in Theorem 1.11.

Also, in [8] the authors prove that the modified log-Sobolev inequality, in Eu-
clidean setting and withα = α2,p, with 1 ≤ p ≤ 2, implies the corresponding
transport inequalityTα, again using the Hamilton-Jacobi approach [3].

More recently, in [11], the first named author proved thatLSI+(A) impliesT2(A)
in the quadratic caseα2(x) = x2 and on an arbitrary complete and separable metric
space. His proof can be easily extended to more general functions such asαp(x) =
xp. The scheme of proof is the following. Talagrand’s inequality T2 is first shown
to be equivalent to dimension free Gaussian concentration.According to the well
known Herbst argument,LSI+ implies dimension free Gaussian concentration, so
it also impliesT2.

Finally, as shown by Cattiaux and Guillin [6], we mention that the Talagrand
transport-entropy inequalityT2 does not imply, in general, the log-Sobolev in-
equality. Hence, there is no hope to get an equivalence in theabove theorem.

However, the (τ)-log-Sobolev inequality appears to be equivalent to the trans-
port-entropy inequality. This is the main result of this paper.

Theorem 1.12.Letµ be a probability measure on X andα a Young function satisfy-
ing the∆2-condition and let pα > 1 be defined by(1.10). The following statements
are equivalent

(1) There exists C such thatµ satisfiesTα(C).
(2) There existλ, A > 0 such thatµ satisfies(τ) − LSIα(λ,A).

Moreover, the constants are related in the following way

(1)⇒ (2) for any λ ∈ (0, 1/C) and A=
1

1− λC
;

(2)⇒ (1) with C =
1
λ
κpα max(A; 1)pα−1

whereκpα =
ppα(pα−1)
α

(pα−1)(pα−1)2
.

Such a characterization appeared for the first time in [15], in a Euclidean setting
and withα between linear and quadratic. Here our result is valid not only for a
wider family of Young functionsα but also on very general metric spaces.

Due to its functional form, it is easy to prove a perturbationlemma for the in-
equality (τ) − LSIα. This leads to the following general Holley-Stroock perturba-
tion result for transport-entropy inequalities whose proof is given in Section 5.

Theorem 1.13.Letµ be a probability measure on X andα a Young function satis-
fying the∆2-condition and let pα > 1 be defined by(1.10). Assume thatµ satisfies
Tα(C) for some constant C> 0. Then, for any bounded functionϕ : X → R,
the measure d̃µ = 1

Zeϕ dµ (where Z is the normalization constant) satisfiesTα

(
C̃
)
,

with

C̃ = κ̃pαCe(pα−1)Osc(ϕ),
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whereOsc(ϕ) := supϕ − inf ϕ, andκ̃pα =
p

p2
α
α

(pα−1)pα(pα−1) .

This theorem fully extends the previous perturbation result [15, Corollary 1.8]
obtained in a Euclidean setting and for a Young functionα such thatα′ is concave.
Namely, for such anα, the functionα(x)/x2 is non-increasing [15, Lemma 5.6],
and sopα ≤ 2.

The paper is divided into five sections and one appendix. Section 2 is dedicated
to some preliminaries. In particular we will give a characterization of transport-
entropy inequalities (close from Bobkov and Götze one) that might be of indepen-
dent interest and that is one of the main ingredients in our proofs. For the sake of
completeness, we also recall how the transport-entropy inequality Tα implies the
(τ)-log-Sololev inequality ((1)⇒ (2) of Theorem 1.12), this argument had been
first used in [24] and then in [15]. In Section 4, we prove the other direction: the
(τ)-log-Sololev inequality implies the transport-entropy inequalityTα. In section
3, we give the proof of the generalized Otto-Villani result,Theorem 1.11. The
proof of the Holley-Stroock perturbation result is given inSection 5. Finally, most
of the technical results needed on Young functions are proved in the Appendix.

Contents
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2. Preliminaries

In this section, we first recall the proof of the first half of Theorem 1.12, namely
Tα ⇒ (τ) − LSIα. In a second part, we give a useful ”dimension” refinement of the
characterization of transport-entropy inequalities by Bobkov and Götze [4]. These
characterization provides sufficient conditions for transport-entropy inequality to
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hold. These conditions are the one obtained in the proofs ofLSI±α ⇒ Tα and
(τ) − LSIα ⇒ Tα.

2.1. From transport entropy to (τ)-log-Sobolev inequality. In [15, Theorem
2.1], we proved the following result which is the first half ((1) ⇒ (2)) of Theo-
rem 1.12. For the sake of completeness, its short proof is recalled below.

Theorem 2.1([15]). Letµ be a probability measure on X andα a Young function.
If µ satisfiesTα(C) for some constant C> 0, then, for allλ ∈ (0, 1/C), µ satisfies
(τ) − LSIα(λ, 1

1−λC ).

Proof. Take f : X → R a locally Lipschitz function such that
∫

ef dµ = 1 and
consider the probabilityν f defined byν f = ef µ. Jensen inequality implies that∫

f dµ ≤ 0. So, ifπ is an optimal coupling betweenν f (dx) andµ(dy), then it holds

H(ν f |µ) =
∫

f dν f ≤

∫
f dν f −

∫
f dµ =

∫
f (x) − f (y) π(dxdy).

By definition ofQλ
α f ,

f (x) − f (y) ≤ f (x) − Qλ
α f (x) + λα(d(x, y)).

Sinceπ is optimal, it holds

H(ν f |µ) ≤
∫

( f − Qλ
α f ) dν f + λTα(ν f , µ).

Plugging the inequalityTα(ν f , µ) ≤ CH(ν f |µ) in the inequality above withλ < 1/C
immediately gives (τ) − LSIα(λ, 1

1−λC ). �

2.2. Sufficient conditions for transport-entropy inequality. In this section, we
show that bounds on the exponential moment of the tensorizedinf-convolution or
sup-convolution operator allows to recover the transport-entropy inequality (see
Proposition 2.3 and Corollary 2.7 below). These results area key argument to
recover transport-entropy inequality either from modifiedlog-Sobolev or from (τ)-
log-Sobolev inequality.

It is known, since the work by Bobkov and Götze [4] (see also [28, 13]), that
transport-entropy inequalities have the following dual formulation.

Proposition 2.2([4]). Letµ be a probability measure on a complete and separable
metric space(X, d). Then the following are equivalent:

(i) The probability measureµ satisfiesTα(1/c);
(ii ) For any bounded continuous function f: X→ R, it holds∫

ecQα f dµ ≤ ecµ( f ).

In the next proposition we show, using the law of large numbers, that the bound
in Point (ii ) can be relaxed as soon as it holds in any dimension.

Proposition 2.3. Let µ be a probability measure on a complete and separable
metric space(X, d). Then the following are equivalent:

(i) The probability measureµ satisfiesTα(1/c);
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(ii ) There exist three constants a, b, c> 0 such that for any n∈ N∗, for any
bounded continuous function f: Xn→ R+, it holds

∫
ecQα,n f dµn ≤ aebµn( f ).

where

(2.4) Qα,n f (x) = inf
y∈Xn

 f (y) +
n∑

i=1

α(d(xi , yi))

 , ∀x = (x1, . . . , xn) ∈ Xn.

Remark 2.5. Note that the constants a and b do not play any role. On the other
hand, notice that f is only assumed to be non-negative.

Proof. Observe that the transport-entropy inequalityTα(1/c) naturally tensorises
(seee.g. [13]). Applying Bobkov and Götze result above, we see that (i) implies
(ii ) with a = 1 andb = c.

Now let us prove that (ii ) implies (i). For that purpose, fix a bounded continuous
function f : X→ Rwith mean 0 underµ and, following [14] (see also [11]), define
g on Xn asg(x) =

∑n
i=1 f (xi), x = (x1, . . . , xn) ∈ Xn. Then,

(∫
ecQα f dµ

)n

=

∫
ecQα,ng dµn ≤

∫
ecQα,ng+ dµn ≤ aebµn(g+)

where, as usual,g+ = max(g, 0). It follows that
∫

ecQα f dµ ≤ a
1
n ebµn(g+)/n.

Now, according to the strong law of large numbers,1
n

∑n
i=1 f (Xi)→ 0 in L1, where

theXi ’s are i.i.d. random variables with common lawµ. Hence,

µn
(g+

n

)
≤ E



∣∣∣∣∣∣∣
1
n

n∑

i=1

f (Xi)

∣∣∣∣∣∣∣

→ 0

whenn tends to infinity. We conclude that

(2.6)
∫

ecQα f dµ ≤ 1 = ecµ( f ).

Since the latter is invariant by changingf into f + e for any constante, we can
remove the assumptionµ( f ) = 0. This ends the proof. �

The next corollary will be used in the proofs of Theorems 1.11and 1.12. It gives
a sufficient condition for the transport-entropy inequalityTα to hold.

Corollary 2.7. Letµ be a probability measure on a complete and separable metric
space(X, d). Define, for all f : Xn→ R,

(2.8) Pα,n f (x) = sup
y∈Xn

 f (y) −
n∑

i=1

α(d(xi , yi))

 , ∀x = (x1, . . . , xn) ∈ Xn.
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Assume that there exist some constantsτ, a, b> 0 and c∈ [0, 1) such that, for all
integer n∈ N∗ and all bounded continuous functions f: Xn→ R+, it holds

∫
eτPα,n f dµn ≤ aebµn(Pα,n f )eτc‖ f ‖∞ .

Thenµ satisfiesTα

(
1

τ(1−c)

)
.

Proof. Let n ∈ N∗ and take a bounded continuous functiong : Xn → R+. In order
to apply Proposition 2.3, we need to remove the spurious term‖ f ‖∞. Observe on
the one hand that for anyβ ∈ (0, τ(1− c)), one has

∫
eβQα,ng dµn

= 1+ β
∫
+∞

0
eβrµn(Qα,ng ≥ r) dr

= 1+ β
∫
+∞

0
eβrµn(min(Qα,ng, r) ≥ r) dr.

On the other hand, setf = min(Qα,ng, r). It is bounded, non-negative and satisfies
‖ f ‖∞ ≤ r. Moreover, sincePα,n andQα,n are defined with the same cost function, it
is elementary to verify thatPα,n(Qα,ng) ≤ g. Henceµn(Pα,n f ) = µn(Pα,n(Qα,ng)) ≤
µn(g). Therefore, sincePα,n f ≥ f , by Tchebychev’s inequality and the assumption,
we have

µn(min(Qα,ng, r) ≥ r) ≤ µn(Pα,n f ≥ r) ≤ e−τr
∫

eτPα,n f dµn ≤ aebµn(Pα,n f )e−τ(1−c)r

≤ aebµn(g)e−τ(1−c)r .

Consequently, we get
∫

eβQα,ng dµn ≤ 1+ βaebµn(g)
∫
+∞

0
e−(τ(1−c)−β)r dr = 1+

βa
τ(1− c) − β

ebµn(g)

≤
τ(1− c) + β(a− 1)

τ(1− c) − β
ebµn(g).

Finally, Proposition 2.3 provides thatµ satisfiesTα(1/β). Optimizing overβ leads
to the expected result. �

3. From modified log-Sobolev inequality to transport-entropy inequality

In this section we prove Theorem 1.11. We have to distinguishbetween the mod-
ified log-Sobolev inequalities plus and minus. As in [11], the proofs of Theorems
1.11 and 1.12 use as a main ingredient the stability of log-Sobolev type inequalities
under tensor products.

Let us recall this tensorisation property. The entropy functional enjoys the fol-
lowing well known sub-additivity property (seee.g.[1, Chapter 1]): ifh : Xn →

R
+,

(3.1) Entµn(h) ≤
n∑

i=1

∫
Entµ(hi,x) dµn(x),
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where, for allx ∈ Xn, the applicationhi,x is thei-th partial application defined by

hi,x(u) = h(x1, . . . , xi−1, u, xi+1, . . . , xn), ∀u ∈ X.

Let us say thath : Xn → R
+ is separately locally Lipschitz, if all the partial

applicationshi,x 1 ≤ i ≤ n, x ∈ Xn are locally Lipschitz onX. Now, suppose that a
probabilityµ on X verifiesLSI+α(A) for someA > 0. Then, using (3.1), we easily
conclude thatµn enjoys the following inequality:

(3.2) Entµn(ef ) ≤ A
∫ n∑

i=1

α∗(|∇+i f |)ef dµn,

for all function f : Xn → R separately locally Lipschitz, where|∇+i f |(x) is defined
by

|∇+i f |(x) = |∇+ fi,x|(xi) = lim sup
y→xi

[ f (x1, . . . , xi−1, y, xi+1, . . . , xn) − f (x)]+
d(y, xi )

.

The same property holds forLSI−α.

3.1. Modified log-Sobolev inequality plus. The first part of Theorem 1.11, that
we restate below, says that the modified log-Sobolev inequality LSI+α implies the
transport-entropy inequalityTα. In fact we shall prove the following slightly stron-
ger result. To any Young functionα, we associate a functionξα defined by

(3.3) ξα(x) := sup
u>0

α∗(xα′
+
(u))

xα(u)
, x > 0.

whereα′+ is the right derivative ofα. Note thatξα is non-decreasing and may take
infinite values.

Theorem 3.4. Let µ be a probability measure on X andα a Young function sat-
isfying the∆2-condition. Ifµ satisfiesLSI+α(A) for some constant A> 0, thenµ
satisfiesTα(1/tA) with tA = sup{t ∈ R+; ξα(t) < 1/A}.

The following lemma gives an estimation ofξα.

Lemma 3.5. Let α be a Young function satisfying the∆2-condition, and let1 ≤
rα ≤ pα, pα > 1 be the numbers defined by(1.10). Then, it holds

(3.6) ξα(x) ≤ (pα − 1) max
(
x

1
pα−1 ; x

1
rα−1

)
, ∀x > 0,

with the convention x∞ = 0 if x ≤ 1 and∞ otherwise.

The proof of this result is in the Appendix.
Using Lemma 3.5, we easily derive point (i) of Theorem 1.11, with the explicit
constantC+ = max

(
((pα − 1)A)rα−1 ; ((pα − 1)A)pα−1

)
.

Before turning to the proof of Theorem 3.4, let us say that theestimation (3.6)
is satisfactory at least for the small values ofx (corresponding to the large values
of A), as shows the following exact calculation ofξα whenα is the functionαp1,p2

defined by (1.4).
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Lemma 3.7. Let p1 ≥ 2 and p2 > 1 and letα = αp1,p2; then pα = max(p1, p2) and
it holds

ξα(x) = (pα − 1)x
1

pα−1 , ∀x ≤ 1.

Moreover, for x≥ 1, it holds

ξα(x) =



p1

(
1
q2

x
1

p2−1 +

(
1
q1
− 1

q2

)
1
x

)
if p1 ≥ p2

max
(
(p1 − 1)x

1
p1−1 ; (p2 − 1)x

1
p2−1

)
if p1 ≤ p2,

where q1 = p1/(p1 − 1) and q2 = p2/(p2 − 1).

The proof of this lemma is in the appendix too.

Proof of Theorem 3.4.Our aim is to use Herbst’s argument together with Propo-
sition 2.3. Letn ∈ N∗; according to Lemma 3.8 below, for any bounded function
f : Xn → R, the functionQα,n f is separately locally Lipschitz (recall that the
inf-convolution operatorQα,n is defined by (2.4)). Fix a non-negative bounded
continuous functionf : Xn → R+. Applying (3.2) totQα,n f , t > 0, and using
Lemma 3.9 below together with the fact thatf ≥ 0, one gets

Entµn

(
etQα,n f

)
≤ A

∫ n∑

i=1

α∗
(
t|∇+i Qα,n f |

)
etQα,n f dµn

≤ Atξα(t)
∫

Qα,n f etQα,n f dµn.

Now, we proceed with the Herbst argument. SetH(t) =
∫

etQα,n f dµn, t > 0. Since

Entµn

(
etQα,n f

)
= tH′(t) − H(t) log H(t), the latter can be rewritten as

(t − Atξα(t))H′(t) ≤ H(t) log H(t), t > 0.

SetW(t) = 1
t log(H(t)), t > 0, so that the previous differential inequality reduces to

W′(t)t(1− Aξα(t)) ≤ Aξα(t)W(t).

Since limt→0 W(t) = µn(Qα,n f ), we get

H(t) ≤ exp
(
tC(t)µn(Qα,n f )

)
, ∀t ∈ (0, tA)

where we setC(t) = exp
∫ t

0
Aξα(u)

u(1−Aξα(u)) du (thanks to Lemma 3.5 above we are guar-
anteed thattA > 0 and thatC(t) < ∞ on (0, tα)). SinceQα,n f ≤ f , we finally
get ∫

etQα,n f dµn ≤ etC(t)µn( f ), ∀t ∈ (0, tA)

which leads to the expected result, thanks to Proposition 2.3 (and after optimization
overt ∈ (0, tA)). �

Lemma 3.8. Let α be a Young function. For any integer n∈ N∗, any bounded
function f : Xn→ R, the function Qα,n f is separately locally Lipschitz on Xn.
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Proof. Let h = Qα,n f ; then, for allx ∈ Xn and 1≤ i ≤ n, it holds

hi,x(u) = inf
yi∈X


inf

y1,...,yi−1,yi+1,...,yn


f (y) +

∑

j,i

α(d(x j , y j))


+ α(d(u, yi ))


= Qαg(u),

whereg : X → R is defined by the second infimum. Let us show thatu 7→ Qαg(u)
is locally Lipschitz onX. Observe thatg is bounded and definero = α

−1(2‖g‖∞).
For all u ∈ X, and ally ∈ X such thatd(y, u) > ro, we have

g(y) + α(d(u, y)) > −‖g‖∞ + α(ro) = ‖g‖∞.

SinceQαg ≤ ‖g‖∞, we conclude thatQαg(u) = infd(y,u)≤ro {g(y) + α(d(u, y))} . Let
uo ∈ X, and letBo be the closed ball of centeruo and radius 2ro. If u ∈ Bo, then
Qαg(u) = infy∈Bo {g(y) + α(d(u, y))} . Now, if y ∈ Bo, we see that for allu, v ∈ Bo,

|α(d(u, y)) − α(d(v, y))| ≤ |d(v, y) − d(u, y)| max
t∈[0,1]

α′+(td(u, y) + (1− t)d(v, y))

≤ Lod(u, v),

with Lo = α
′
+(4ro). The mapBo→ R : u 7→ Qαg(u) is an infimum ofLo-Lipschitz

functions onBo, so it isLo-Lipschitz onBo. This ends the proof. �

Lemma 3.9. Let α be a Young function. For any integer n, any t≥ 0 and any
bounded continuous function f: Xn→ R,

n∑

i=1

α∗
(
t|∇+i Qα,n f |

)
≤ tξα(t)(Qα,n f (x) − f (yx)),

where yx ∈ Xn is any point such that Qα,n f (x) = f (yx) +
∑n

j=1 α(d(x j , yx
j )).

Proof. Fix n, t ≥ 0 and a bounded functionf : Xn → R+. For x = (x1, . . . , xn) ∈
Xn, i ∈ {1, . . . , n} andz ∈ X, we shall use the following notation

x̄iz= (x1, . . . , xi−1, z, xi+1, . . . , xn).

Let x ∈ Xn; since f is bounded continuous and closed balls inX are assumed to be
compact, it is not difficult to show that there existsyx ∈ Xn such that

Qα,n f (x) = f (yx) +
n∑

j=1

α(d(x j , y
x
j )).

For allz ∈ X and all 1≤ i ≤ n, we have alsoQα,n f (x̄iz) ≤ f (yx)+
∑

j,i α(d(x j , yx
j ))+

α(d(z, yx
i )). Since the mapsu 7→ [u]+ andα are non-decreasing, it holds

[Qα,n f (x̄iz) − Qα,n f (x)]+ ≤ [α(d(z, yx
i )) − α(d(xi , yi))]+

≤ [α(d(z, xi ) + d(xi , y
x
i )) − α(d(xi , yi))]+.
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Therefore,

|∇+i Qα,n f |(x) ≤ lim sup
z→xi

[
α(d(z, xi ) + d(xi , yx

i )) − α(d(xi , yx
i )
]
+

d(z, xi )

= α′+(d(xi , y
x
i )).

Hence, by the very definition ofξα,

n∑

i=1

α∗
(
t|∇+i Qα,n f |

)
≤

n∑

i=1

α∗
(
tα′
+
(d(xi , y

x
i ))

)

≤ tξα(t)
n∑

i=1

α
(
d(xi , y

x
i )
)

= tξα(t)
(
Qα,n f (x) − f (yx)

)
.

�

3.2. Modified log-Sobolev inequality minus. In this section we prove the second
part of Theorem 1.11, that we restate (in a slightly strongerform) below, namely
that the modified log-Sobolev inequality minusLSI−α implies the transport-entropy
inequalityTα. Let us define (recall the defintion ofξα given in (3.3))

tα = sup
{
t ∈ R+, ξα(t) < +∞

}
.

Note that, by Lemma 3.5, ifα satisfies the∆2-condition, thentα ≥ 1.

Theorem 3.10. Let µ be a probability measure on X andα a Young function sat-
isfying the∆2-condition. Ifµ satisfiesLSI−α(A) for some constant A> 0, thenµ
satisfiesTα(B−) with B− = limt→tα

1
t exp

{∫ t

0
Aξα(u)

u(1+Aξα(u)) du
}
.

For more comprehension and to complete the proof of part (ii)of Theorem 1.11,
let us prove thatB− ≤ C−. If rα > 1 then by Lemma 3.5,tα = +∞. Moreover,
using that1t = exp

{
−

∫ t

1
1
udu

}
, t ≥ 1, one has

log B− =
∫ 1

0

Aξα(u)
u(1+ Aξα(u))

du−
∫
+∞

1

1
u(1+ Aξα(u))

du

≤

∫ 1

0

A(pα − 1)u
1

pα−1

u(1+ A(pα − 1)u
1

pα−1 )
du−

∫
+∞

1

1

u(1+ A(pα − 1)u
1

rα−1 )
du

= logC−,

with

C− = (1+ A(pα − 1))pα−rα(A(pα − 1))rα−1.

Whenrα = 1, sincetα ≥ 1 and using the fact that the function

t →
1
t

exp

{∫ t

0

Aξα(u)
u(1+ Aξα(u))

du

}
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is non-increasing, we get

B− ≤ exp

{∫ 1

0

Aξα(u)
u(1+ Aξα(u))

du

}
≤ (1+ A(pα − 1))pα−1

= C−.

Proof of Theorem 3.10.The proof of Theorem 3.10 follows essentially the lines
of the proof of Theorem 3.4. Letn ∈ N∗; thanks to the tensorisation property of
LSI−α(A), it holds

(3.11) Entµn(eg) ≤ A
∫ n∑

i=1

α∗(|∇−i g|)eg dµn

for any g : Xn → R separately locally Lipschitz and bounded. Take a non-
negative bounded continuous functionf : Xn → R

+. Recall thatPα,n f (x) =
supy∈Xn

{
f (y) −

∑n
i=1α(d(xi , yi))

}
. SincePα,n f = −Qα,n(− f ), it follows from Lem-

ma 3.8 thatPα,n f is separately locally Lipschitz. Applying (3.11) tog = tPα,n f ,
t > 0, one gets

Entµn(etPα,n f ) ≤ A
∫ n∑

i=1

α∗
(
t|∇−i Pα,n f |

)
etPα,n f dµn.

Observe thatPα,n f = −Qα,n(− f ) and that|∇−(−h)| = |∇+h|, for all h : X → R. So
applying Lemma 3.9, we see that for allx ∈ Xn, there is someyx ∈ Xn such that

n∑

i=1

α∗
(
t|∇−i Pα,n f |

)
(x) =

n∑

i=1

α∗
(
t|∇+i Qα,n(− f )|

)
(x)

≤ tξα(t)
(
Qα,n(− f )(x) + f (yx)

)

≤ tξα(t)
(
‖ f ‖∞ − Pα,n f (x)

)
.

So we get the following inequality

Entµn(etPα,n f ) ≤ Atξα(t)
∫

(‖ f ‖∞ − P fα,n)etPα,n f dµn.

As in the proof of Theorem 3.4, we proceed with the Herbst Argument. SetH(t) =∫
etPα,n f dµn, t ∈ (0, tα). Since Entµn(etPα,n f ) = tH′(t) − H(t) log H(t), the latter can

be rewritten as

(t + Atξα(t))H′(t) ≤ H(t) log H(t) + Atξα(t)‖ f ‖∞H(t), ∀t ∈ (0, tα).

SetW(t) = 1
t log H(t), t ∈ (0, tα), so that the previous differential inequality reduces

to

W′(t)t(1+ Aξα(t)) ≤ −Aξα(t)W(t) + Aξα(t)‖ f ‖∞.

Setc(t) = exp
{
−

∫ t

0
Aξα(u)

u(1+Aξα(u)) du
}

(which belongs to (0, 1) thanks to Lemma 3.5).
Since limt→0 W(t) = µn(Pα,n f ), solving the latter differential inequality, we easily
get that for allt ∈ (0, tα)

H(t) ≤ etc(t)µn(Pα,n f )et‖ f ‖∞(1−c(t)).
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Applying Corollary 2.7 yields thatTα(1/(tc(t)) holds for allt ∈ (0, tα). Observing
that the functiont → tc(t) is non-decreasing on (0, tα), the proof is completed by
optimizing in t. �

4. From (τ)-log-Sobolev inequality to transport-entropy inequality

In this section, we prove the second part ((2)⇒ (1)) of Theorem 1.12. Observe
thatTα(C/λ) is equivalent toTλα(C). Hence, changingα into λα, we can restate
the first part of Theorem 1.12 as follows.

Theorem 4.1. Letµ be a probability measure on X andα a Young function satisfy-
ing the∆2-condition. Let pα > 1 be defined by(1.10). If µ satisfies(τ) − LSIα(1,A)
for some A> 0, thenµ satisfiesTα(C) with

C = κpα max(A, 1)pα−1,

whereκpα =
ppα(pα−1)
α

(pα−1)(pα−1)2
.

Two proofs are given below. The first one exactly follows the lines of the proof
of LSI−α ⇒ Tα, whereas the second one uses the equivalence between transport-
entropy inequalities and dimension free concentration established in [11] together
with a change of metric argument.

In each proof, the first step is to tensorise the (τ)-log-Sobolev inequality. Let
n ∈ N∗ ; using the sub-additivity property (3.1) of the entropy functional, we see
that (τ) − LSIα(1,A) implies that

(4.2) Entµn(eh) ≤ A
∫ n∑

i=1

(h− Q(i)
α h)eh dµn, ∀h : Xn→ R,

whereQ(i)
α is the inf-convolution operator with respect to thei-th coordinate, nam-

ely

Q(i)
α h(x) = Qα(hi,x)(xi) = inf

y∈X

{
h(x̄iy) + α(d(xi , y))

}
,

(using the notation introduced in Section 3).
As in the proof of Theorem 3.10, applying (4.2) toh = tPα,ng, t ≥ 0 whereg

belongs to some class of functions, we get

Entµn(etPα,ng) ≤ A
∫ n∑

i=1

(
tPα,ng− Q(i)

α

(
tPα,ng

))
etPα,ng dµn.(4.3)

As a main difference, the class of functionsg differs in each proof. In the first one,
g is any non-negative bounded separately locally Lipschitz function, whereas in the
second proof,g is globally Lipschitz in some sense.

For both proofs, the next step is to bound efficiently the right-hand side of (4.3),
in order to use some Herbst argument. This bound will be givenby the following
lemma.
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Lemma 4.4. Letα be a Young function satisfying the∆2-condition and let pα > 1
be defined by(1.10). For any bounded continuous function g: Xn → R, for any
x ∈ Xn and t∈ [0, 1),

n∑

i=1

(
tPα,ng(x) − Q(i)

α (tPα,ng)(x)
)
≤ tε(t)


n∑

i=1

α(d(xi , y
x
i ))

 ,

where yx ∈ Xn is any point such that Pα,ng(x) = g(yx)−
∑n

i=1 α(d(xi , yx
i ), and where

ε(t) =
1

(
1− t

1
pα−1

)pα−1
− 1, ∀t ∈ [0, 1).

We postpone the proof of Lemma 4.4 to the end of the section.

4.1. A first proof. The first proof of Theorem 4.1 mimics the one of the implica-
tion LSI−α ⇒ Tα.

Proof of Theorem 4.1.Using (4.3), Lemma 4.4 ensures that for every non-negative
locally Lipschitz bounded functiong, for everyt ∈ [0, 1)

(t + Atε(t))H′(t) ≤ H(t) log H(t) + Atε(t)‖g‖∞H(t),

whereH(t) =
∫

etPα,ngdµn.
Solving this differential inequality, exactly as in the proof of Theorem 3.10(we

omit details), leads to
∫

ePα,ngdµn ≤ ecµn(Pα,ng)e‖g‖∞(1−c),

with c = 1/C,

C = exp
∫ 1

0

Aε(t)
t(1+ Aε(t))

dt.

The inequalityTα(C) then follows from Corollary 2.7.
Now, let us estimate the constantC. By convexity, one has for everyv ∈ [0, 1],

(1− v) − (1− v)pα ≤ (pα − 1)v.

This inequality easily implies that for allt ∈ [0, 1), ε(t)
t ≤ (pα − 1)ε′(t). Conse-

quently, we obtain for allu ∈ [0, 1),

logC ≤ (pα − 1)
∫ u

0

Aε′(t)
1+ Aε(t)

dt +
∫ 1

u

Aε(t)
t(1+ Aε(t))

dt

≤ (pα − 1) log(1+ Aε(u)) − logu

Optimizing inu, we get

C ≤ inf
u∈(0,1)

(1+ Aε(u))pα−1

u
≤ inf

u∈(0,1)

(1+ ε(u))pα−1

u
max(A, 1)pα−1

= κpα max(A, 1)pα−1.

with κpα =
ppα(pα−1)
α

(pα−1)(pα−1)2
. �
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4.2. A second proof. The idea of this second proof is to prove the theorem in the
particular case of the functionsαp(x) = xp and then to treats the general case by a
change of metric argument.

4.2.1. Tp inequalities. Let us introduce some notation and definitions. When
α(x) = αp(x) = |x|p, we will use the notationTp(C) and (τ) − LSIp instead of
Tαp(C) and (τ) − LSIαp . Let n ∈ N∗; a function f : Xn → R will said to be
(L, p)-LipschitzL > 0, p > 1, if

| f (x) − f (y)| ≤ L


n∑

i=1

dp(xi , yi)


1/p

, ∀x, y ∈ Xn.

We recall the following result from [11].

Theorem 4.5. The probabilityµ verifies the transport-entropy inequalityTp(C),
for some C> 0 if and only if it enjoys the following dimension free concentration
property: for all n∈ N∗ and all f : Xn→ R such that

| f (x) − f (y)| ≤ L


n∑

i=1

dp(xi , yi)


1/p

, ∀x, y ∈ Xn,

for some L> 0, it holds

µn( f ≥ µn( f ) + u) ≤ exp(−up/(LpC)), ∀u ≥ 0.

So to show that aTp inequality holds it is enough to prove the right concentration
inequality.

We will use the following result to estimate the right-hand side of (4.3).

Lemma 4.6. Let p> 1; there exists a constantωp ≥ 1 such that for all n∈ N∗ and
all (L, p)-Lipschitz function f: Xn→ R, and all x∈ Xn, the function

Xn→ R : y 7→ f (y) −
n∑

i=1

dp(xi , yi)

attains its maximum on the closed ball
y ∈ Xn;

n∑

i=1

dp(xi , yi) ≤

(
L
ωp

)q
 , with q=

p
p− 1

.

When(X, d) is geodesic (see below), then one can takeωp = p.

Recall that (X, d) is geodesic, if for allx, y ∈ X, there is a path (zt)t∈[0,1] join-
ing x to y and such thatd(zs, zt) = |s− t|d(x, y), for all s, t ∈ [0, 1]. This notion
encompasses the case of Riemannian manifolds.

The proof of the lemma is at the end of the section.

Theorem 4.7. Let p≥ 2; if µ verifies the(τ) − LSIp(1,A), then it verifiesTp(C),

with C =
(
ap max(1;A)

)p−1
, with ap = inf t∈(0,1)

{
1

tq−1

(
1+

(p/ωp)q

p−1

∫ t

0
ε(u)

u du
)}
.
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Remark 4.8. Let us compare the constants appearing in Theorems 4.1 and 4.7
for p = 2. When p= 2, Theorem 4.1 gives C1 = 4 max(1;A), and Theorem 4.7
gives C2 = a2 max(1;A). A simple calculation shows that when p= 2, a2 =

inf s∈(0,1)

{
1−(2/ω2)2 ln(1−s)

s

}
. If ω2 = 1, then a2 ≃ 7, 5 and C1 is smaller than C2. But

if ω2 = 2 (which is the case, when(X, d) is geodesic), then a2 ≃ 3, 14, and C2 is
smaller than C1.

Proof of Theorem 4.7.Take a (L, p) - Lipschitz functiong : Xn→ R. To bound the
right-hand side of (4.3), we use Lemmas 4.4 and 4.6:

n∑

i=1

(
tPαp,ng(x) − Q(i)

αp(tPαp,ng)(x)
)
≤ tε(t)

(
L/ωp

)q
.

So, lettingH(t) =
∫

etPαp,ng dµn, (4.3) provides

tH′(t) − H(t) log H(t) ≤ Atε(t)H(t)(L/ωp)q, ∀t ∈ [0, 1).

Equivalently, the functionK(t) = 1
t logH(t) verifiesK′(t) ≤ A(L/ωp)q ε(t)

t . Since
K(t)→ µn(Pαp,ng) whent → 0+, we conclude that

∫
etPαp,ng dµn ≤ exp

(
tµn(Pαp,ng) + tA(L/ωp)qk(t)

)
, ∀t ∈ [0, 1),

wherek(t) =
∫ t

0
ε(u)

u du, t ∈ [0, 1). Sinceg is (L, p) - Lipschitz, it holds

0 ≤ Pαp,ng(x) − g(x) ≤ sup
y∈Xn

L


n∑

i=1

dp(xi , yi)


1/p

−

n∑

i=1

dp(xi , yi)



= sup
r≥0
{Lr − r p} = (p− 1)(L/p)q .

So,∫
etg dµn ≤ exp

(
tµn(g) + t(p− 1)(L/p)q

+ tA
(
L/ωp

)q
k(t)

)
, ∀t ∈ [0, 1).

Applying this inequality tog = f /t with f a (L, p) - Lipschitz function, we get
∫

ef−µn( f ) dµn ≤ exp

(
(L/p)q

tq−1

(
p− 1+ A(p/ωp)qk(t)

))
, ∀t ∈ (0, 1).

So, optimizing overt ∈ (0, 1) yields

(4.9)
∫

ef−µn( f ) dµn ≤ exp
(
(L/p)q(p− 1) max(1;A)ap

)
,

with

ap = inf
t∈(0,1)

{
1

tq−1

(
1+

(p/ωp)q

p− 1

∫ t

0

ε(u)
u

du

)}
.

Using Chebychev’s argument we derive from (4.9) that

µn( f ≥ µn( f ) + u) ≤ exp(−up/(LpC)), ∀u ≥ 0,

with C =
(
ap max(A; 1)

)p−1
. Applying Theorem 4.5, we conclude thatµ verifies

Tp(C). �



20 NATHAEL GOZLAN, CYRIL ROBERTO, PAUL-MARIE SAMSON

4.2.2. Extension via a change of metric.A change of metric technique, which is
explained in the lemma below, enables us to reduce the study of the transport-
entropy inequalitiesTα to the study of the inequalitiesTp, p > 1.

Lemma 4.10. Letα be a Young function satisfying the∆2-condition and let pα > 1
be defined by(1.10). The function x7→ α(x)1/pα is subadditive onR+ :

α1/pα(x+ y) ≤ α1/pα(x) + α1/pα (y), ∀x, y ∈ R+.

As a consequence, dα(x, y) = α1/pα(d(x, y)), x, y ∈ X is a distance on X.

The proof of Lemma 4.10 is at the end of the section.

Proof of Theorem 4.1.Let α be a Young function andµ a probability onX. Ac-
cording to Lemma 4.10, the functiondα(x, y) = α1/pα(d(x, y)), x, y ∈ X is a metric
onX. Furthermore, it is clear thatµ verifies (τ) − LSIα(1,A) (resp.Tα(C)) on (X, d)
if and only if µ verifies (τ) − LSIpα(1,A) (resp. Tpα(C)) on (X, dα). We immedi-
ately deduce from Theorem 4.7 that ifµ verifies (τ) − LSIα(1,A), then it verifies
Tα(C), with C = (apα max(1;A))pα−1, where

apα = inf
t∈(0,1)

{
1

tqα−1

(
1+

pqα
α

pα − 1

∫ t

0

ε(u)
u

du

)}

(sinceωpα ≥ 1) andε defined in Lemma 4.4. Note that the constantC obtained
using this approach is in general bigger than the constant obtained in the first proof
of Theorem 4.1. �

4.3. Proofs of the technical lemmas.

Proof of Lemma 4.4.Fix t > 0, x ∈ Xn, andi ∈ {1, . . . , n}. Then,

tPα,ng(x) − Q(i)
α (tPα,ng)(x) = sup

z∈X

{
(tPα,ng(x) − tPα,ng(x̄iz)) − α(d(xi , z))

}
.

Let yx be such thatPα,ng(x) = g(yx)− c(x, yx), wherec(x, y) =
∑n

i=1α(d(xi , yi)). By
choosingw = yx in the expression below, it holds

Pα,ng(x) − Pα,ng(x̄iz) = g(yx) − c(x, yx) − sup
w∈Xn

{
g(w) − c(x̄iz,w)

}

≤ c(x̄iz, yx) − c(x, yx)

= α(d(z, yx
i )) − α(d(xi , y

x
i ))

= dpα
α (z, yx

i ) − dpα
α (xi , y

x
i )

≤ (dα(xi , y
x
i ) + dα(xi , z))

pα − dpα
α (xi , y

x
i ),
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where, in the last line, we used the triangular inequality for the distancedα defined
in Lemma 4.10. Hence, optimizing yields

tPα,ng(x) − Q(i)
α (tPα,ng)(x)

≤ sup
z∈X

{
t
[
(dα(xi , y

x
i ) + dα(xi , z))

pα − dpα
α (xi , y

x
i )
]
− dpα

α (xi , z)
}

= sup
r>0

{
t
[
(dα(xi , y

x
i ) + r)pα − dpα

α (xi , y
x
i )
]
− r pα

}

= tε(t)dpα
α (xi , y

x
i ) = tε(t)α(d(xi , y

x
i )).

Taking the sum, we get the result. �

Proof of Lemma 4.6.Let yx be a point where the functiony 7→ f (y)−
∑n

i=1 dp(xi , y)
reaches its maximum. Then, for allz∈ Xn, it holds

n∑

i=1

dp(xi , y
x
i ) ≤ f (z) − f (yx) +

n∑

i=1

dp(xi , zi)

≤ L


n∑

i=1

dp(zi , y
x
i )


1/p

+

n∑

i=1

dp(xi , zi).

Choosingz= x, we get
∑n

i=1 dp(xi , zi) ≤ Lq.

Now, assume that (X, d) is geodesic. Then the product space (Xn, d(n)) with

d(n)(x, y) =
(∑n

i=1 dp(xi , yi)
)1/p

is geodesic too. In the calculation above, take for

z a t-midpoint of x andyx i.e choosez ∈ Xn such thatd(n)(x, z) = td(n)(x, yx) and
d(n)(z, yx) = (1 − t)d(n)(x, yx), with t ∈ [0, 1]. Then, lettingℓ = d(n)(x, yx), it holds
ℓp ≤ L(1− t)ℓ + tpℓp, and so1−tp

1−t ℓ
p−1 ≤ L. Letting t → 1 gives the result. �

Proof of Lemma 4.10.Let ϕ(x) = α1/pα (x)/x, x > 0. Then, by definition ofpα

ϕ′+(x) =
α1/pα(x)

(
xα′+(x)
pαα(x) − 1

)

x2
≤ 0.

Soϕ is non-increasing on (0,+∞). Thus, if x > y,

α1/pα(x+ y) = (x+ y)ϕ(x(1+ y/x)) ≤ (x+ y)ϕ(x)

= α1/pα(x) + y
α1/pα (x)

x
≤ α1/pα(x) + α1/pα (y).

�

5. Holley-Stroock perturbation Lemma: proof of Theorem 1.13

In this section we prove Theorem 1.13.

Proof of Theorem 1.13.The proof follows the line of the original proof. Using the
following representation of the entropy

Entµ (g) = inf
t>0

{∫ (
g log

(g
t

)
− g+ t

)
dµ

}
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with g = ef , we see that (sinceg log
(

g
t

)
− g+ t ≥ 0)

Entµ̃ (g) ≤
esupϕ

Z
Entµ (g) .

Sinceµ verifiesTα(C), Theorem 2.1 implies that, for allλ ∈ (0, 1/C),

Entµ̃
(
ef

)
≤

esupϕ

Z
1

1− λC

∫
( f − Qλ

α f )ef dµ ≤
eOsc(ϕ)

1− λC

∫
( f − Qλ

α f )ef dµ̃.

In other words, ˜µ satisfies (τ) − LSIα(λ, eOsc(ϕ)

1−λC ), for anyλ ∈ (0, 1/C). Now, apply-

ing Theorem 1.12, we conclude that ˜µ verifiesTα

(
C̃
)
, with

C̃ = κpα inf
λ∈(0,1/C)

{
1
λ

1

(1− λC)pα−1

}
e(pα−1)Osc(ϕ)

= κpα
ppα
α

(pα − 1)pα−1
Ce(pα−1)Osc(ϕ)

= κ̃pαCe(pα−1)Osc(ϕ).

�

Appendix A. Technical results

In this appendix we prove the technical Lemmas on Young functions we used
during the paper. First, let us prove Lemma 1.9, that we restate below

Lemma A.1. If α is a Young function satisfying the∆2-condition, then

(A.2) rα := inf
x>0

xα′−(x)
α(x)

≥ 1 and 1 < pα := sup
x>0

xα′+(x)
α(x)

< +∞,

whereα′
+

(resp.α′−) denotes the right (resp. left) derivative ofα.

Proof. Using the convexity ofα, we see thatα(x)/x ≤ α′−(x). This shows that
rα ≥ 1. On the other hand, the functionα is convex, soα(2x) ≥ α(x) + xα′

+
(x),

for all x > 0. Sinceα verifies the∆2-condition, there is some constantK ≥ 2
such thatα(2x) ≤ Kα(x). So we getxα′

+
(x) ≤ (K − 1)α(x), for all x > 0. This

proves thatpα < +∞. Let us show thatpα > 1. Otherwise we would haverα = pα
(sinceα′− ≤ α

′
+
) and soxα′−(x)/α(x) = xα′

+
(x)/α(x) = 1 for all x > 0. This would

imply thatα is linear on [0,∞). This cannot happen, since by assumption Young
functions are increasing and such thatα′(0) = 0. Sopα > 1. �

Now let us prove Lemmas 3.5 and 3.7 whose statements is summarized below.
Recall that the functionξα is defined by

ξα(x) := sup
u>0

α∗(xα′+(u))
xα(u)

, x > 0.

Lemma A.3.
• Let α be a Young function satisfying the∆2-condition, and let1 ≤ rα ≤ pα,
pα > 1 be the numbers defined by(A.2). Then, it holds

(A.4) ξα(x) ≤ (pα − 1) max
(
x

1
pα−1 ; x

1
rα−1

)
, ∀x > 0,
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with the convention t∞ = 0 if t ≤ 1 and∞ otherwise.
• Let p1 ≥ 2 and p2 > 1 and letα = αp1,p2; then pα = max(p1, p2) and it holds

ξα(x) = (pα − 1)x
1

pα−1 , ∀x ≤ 1.

Moreover, for x≥ 1, it holds

ξα(x) =


p1

(
1
q2

x
1

p2−1 +

(
1
q1
− 1

q2

)
1
x

)
, if p1 ≥ p2

max
(
(p1 − 1)x

1
p1−1 ; (p2 − 1)x

1
p2−1

)
, if p1 ≤ p2

,

where q1 = p1/(p1 − 1) and q2 = p2/(p2 − 1).

Proof. Definingω(x) = supu>0
α∗(ux)
α∗(u) , for all x ≥ 0, we get

ξα(x) ≤
ω(x)

x
sup
u>0

α∗(α′
+
(u))

α(u)
, ∀x > 0.

From the convexity inequalityα(x) ≥ α(u) + (x − u)α′+(u), x, u ≥ 0, we deduce
immediately thatα∗(α′+(u)) = uα′+(u) − α(u), for all u ≥ 0. Thus

sup
u>0

α∗(α′+(u))
α(u)

= pα − 1.

So, all we have to show is thatω(x) ≤ max
(
x

pα
pα−1 ; x

rα
rα−1

)
, for all x ≥ 0.

Defineϕ(u) = α(u)/upα andψ(u) = α(u)/urα , for all u > 0. As in the proof of
Lemma 4.10, a simple calculation shows thatϕ is non-increasing andψ is non-
decreasing. As a result,

α(tu) ≤ tpαα(u), ∀u ≥ 0, ∀t ≥ 1,

α(tu) ≤ trαα(u), ∀u ≥ 0, ∀t ∈ [0, 1].

Taking the Fenchel-Legendre transform yields

α∗(v/t) ≥ tpαα∗(v/tpα), ∀v ≥ 0, ∀t ≥ 1,

α∗(v/t) ≥ trαα∗(v/trα ), ∀v ≥ 0, ∀t ∈ [0, 1].

Equivalently,

α∗(ux) ≤ x
pα

pα−1α∗(u), ∀u ≥ 0, ∀x ∈ [0, 1],

α∗(ux) ≤ x
rα

rα−1α∗(u), ∀u ≥ 0, ∀x ≥ 1.

And sincerα ≤ pα, we conclude thatω(x) ≤ max
(
x

pα
pα−1 ; x

rα
rα−1

)
, x ≥ 0.

Now, let us calculateξαp1,p2
, for p1 ≥ 2, p2 > 1. First observe thatξλα = ξα

for all λ > 0. It will be more convenient to do the calculation with the function
α := ᾱp1,p2 =

1
p1
αp1,p2. Let us denote byq1 =

p1
p1−1, q2 =

p2
p2−1, the conjugate

exponents ofp1 and p2. Then the following identity holds:α∗ = ᾱq1,q2. Let us
show that

ξα(x) = (pα − 1)x1/(pα−1),
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for x ≤ 1. The casex > 1 is similar and left to the reader. Define

ϕ(u) =
α∗(xu)

α ◦ α′−1(u)
, u > 0.

We have to distinguish three cases:

ξα(x) =
1
x

max

sup
u≤1

ϕ(u); sup
1≤u≤1/x

ϕ(u); sup
u≥1/x

ϕ(u)

 .

Case 1.0 < u ≤ 1.Thenϕ(u) = (p1 − 1)xq1.

Case 2.1 ≤ u ≤ 1/x. Then

ϕ(u) =
xq1

q1

uq1

uq2

p2
+

1
p1
− 1

p2

.

If p1 ≥ p2, then the functionϕ is non-increasing on [1, 1/x], and so

sup
1≤u≤1/x

= ϕ(1) = (p1 − 1)xq1.

If p1 ≤ p2, then the functionϕ is non-decreasing on [1, 1/x] and so

sup
1≤u≤1/x

= ϕ(1/x)

Case 3.u ≥ 1/x. Then

ϕ(u) =

(xu)q2

q2
+

1
q1
− 1

q2

uq2

p2
+

1
p1
− 1

p2

.

If p1 ≥ p2, the functionϕ is non-increasing on [1/x,∞) and so

sup
u≥1/x

= ϕ(1/x).

If p1 ≤ p2, the functionϕ is non-decreasing on [1/x,∞) and so

sup
u≥1/x

= lim
u→∞

ϕ(u) = (p2 − 1)xq2 .

Observe, in particular, thatϕ never reaches its supremum atu = 1/x. We conclude
that

sup
u>0

ϕ(u) = max((p1 − 1)xq1; (p2 − 1)xq2),

and so

ξα(x) = max
(
(p1 − 1)x1/(p1−1); (p2 − 1)x1/(p2−1)

)

= (max(p1; p2) − 1)x1/(max(p1;p2)−1).

Sincepα = max(p1; p2), the proof is complete. �



CHARACTERIZATION OF TRANSPORT-ENTROPY INEQUALITIES IN METRIC SPACES. 25

References
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