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LIMIT THEOREMS FOR SOME BRANCHING MEASURE-VALUED PROCESSES

BERTRAND CLOEZ

ABSTRACT. We consider a particle system in continuous time, discrete population, with spatial
motion and nonlocal branching. The offspring’s weights and their number may depend on the
mother’s weight. Our setting captures, for instance, the processes indexed by a Galton-Watson
tree. Using a size-biased auxiliary process for the empirical measure, we determine this as-
ymptotic behaviour. We also obtain a large population approximation as weak solution of a
growth-fragmentation equation. Several examples illustrate our results.
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1. INTRODUCTION

In this work, we study the evolution of a Markov process indexed by a tree in continuous time.
The tree can represent a population of cells, polymers or particles. On this population, we
consider the evolution of an individual characteristic. This characteristic can represent the size,
the age or the rate of a nutriment. During the life of an individual, its characteristic evolves
according to an underlying Markov process. At non-homogeneous time, the individuals die
and divide. When one divides, the characteristics of the offspring depend on those and their
number. This model was studied in [2, 5, 6, 7, 15, 20]. Here, we study the asymptotic behaviour
of the empirical measure which describes the population. Following [5], we begin to prove a
many-to-one formula (or spinal decomposition, tagged fragment ...) and then deduce its long
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2 BERTRAND CLOEZ

time behaviour. This formula looks like the Wald formula and reduces the problem to the study
of a "typical" individual. Closely related, we can find a limit theorem in discrete time in [11],
in continuous time with a continuous population in [16] and for a space-structured population
model in [15]. Our approach is closer to [5] and extends their law of large number to a variable
rate of division. This extension is essential in application [6]. In our model, the population is
discrete. It is the microscopic version of some deterministic equations studied in [27, 36, 37].
Following [17, 43], we scale our empirical measure and prove that these P.D.E. are macroscopic
versions of our model. Before expressing our main results, we begin by giving some notations.
If we start with one individual then we will use the Ulam-Harris-Neveu notation [5]:

• the first individual is labelled by ∅;
• when the individual u divides, then his K descendants are labelled by u1, ..., uK;
• we denote by T the random set of individuals which are dead, alive or will be alive;
• it is a subset of U = ∪m≥0 (N∗)m, where N = {0, 1, ...} and (N∗)0 = {∅};
• we denote by Vt the set of individuals which are alive at time t;
• for each u ∈ T , α(u) and β(u) denote respectively the birth and the death date of the

individual u;
• we denote by Nt the number of individuals alive at time t;
• for each u ∈ T and t ∈ [α(u), β(u)), the characteristic of the individual u is denoted by
Xu

t .

The dynamics of our model is then as follows.

• The characteristic of the first individual, (X∅
t )t∈[0,β(∅)) is distributed according to an un-

derlying càdlàg strong Markov process (Xt)t≥0. For sake of simplicity, we will assume
that X = (Xt)t≥0 takes values in a closed subset E of Rd and is generated by

Gf(x) = b(x) · ∇f(x) + σ∆f(x), (1)

where d ∈ N
∗, b : Rd → R

d is a smooth function and σ ∈ R+. Here, f belongs to the
domain D(G) of G. This domain is described in Section 2. Note that our approach is
available for another underlying Markov process.

• The death time β(∅) of the first individual verifies

P

(
β(∅) > t | X∅

s , s ≤ t
)

=

∫ t

0
r(X∅

s )ds,

where r is a non negative, measurable and locally bounded function. Notice that α(∅) =
0.

• At time β(∅), the first individual splits into a random number of children given by an
independent random variable K of law (pk)k∈N∗ . We have α(0) = ... = α(K − 1) =
β(∅).

• We assume that the mean offspring number, which is defined bym : x 7→ ∑
k≥0 kpk(x),

is locally bounded on E.

• The characteristics of the new individuals are given by (F
(K)
j (X∅

β(∅)−,Θ))1≤j≤K , where

Θ is a uniform variable on [0, 1]. The sequence (F
(k)
j )j≤k,k∈N∗ is supposed to be a

family of measurable functions.
• Finally, the children evolve independently from each other like the first individual.

The last point is the branching property. To obtain a limit theorem, we follow the approach of
[5]. In this paper, the cell’s death rate r and the law of the number of descendants (pk)k≥1 are
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constant. A many-to-one formula is proved:

1

E[Nt]
E


∑

u∈Vt

f(Xu
t )


 = E[f(Yt)], (2)

where Y is generated, for any smooth function f and x ∈ E, by

A0f(x) = Gf(x) + rm
∑

k≥1

kpk

m

∫ 1

0


1

k

k∑

j=1

f(F
(k)
j (x, θ)) − f(x)


 dθ. (3)

This process evolves as X, until it jumps, at an exponential time with mean 1/rm. We observe
that r is not the jump rate of the auxiliary process. There is a biased phenomenon. It is described
in [5, 20] and their references. We can interpret it by the fact that the faster the cells divide, the
more descendants they have. That is why a uniformly chosen individual has an accelerated rate
of division. A possible generalisation of (2) is a Feynman-Kac formula as in [20]:

E


∑

u∈Vt

f(Xu
t )


 = E

[
f(Yt)e

∫ t

0
r(Ys)(m(Ys)−1)ds

]
,

where Y is an auxiliary process starting from x0 and generated by (3). Using a Poisson point
process, in [6], we get also another representation of the empirical measure to prove the ex-
tinction of a parasite population. However, it is difficult to exploit these formulas. Inspired by
[16, 27, 36, 37], we follow an alternative approach. In (2), Y can be understood as a uniformly
chosen individual. The problem is: if r is not constant then a uniformly chosen individual does
not follow Markovian dynamics. Our solution is to choose this individual with an appropriate
weight. This weight is the eigenvector V of the following operator:

Gf(x) = Gf(x) + r(x)




∑

k≥0

k∑

j=1

∫ 1

0
f(F

(k)
j (x, θ))dθpk(x)


− f(x)


 .

It is not the generator of a Markov process on E. It is described in the next section. Under some
assumptions, we are able to prove the following weighted many-to-one formula:

1

E[
∑

u∈Vt
V (Xu

t )]
E


∑

u∈Vt

f(Xu
t )V (Xu

t )


 = E[f(Yt)], (4)

where Y is an auxiliary Markov process, starting from x0. It is generated by A = M +J , where
M describes the motion between the jumps and is defined by

Mf(x) =
G(f × V )(x) − f(x)GV (x)

V (x)
= Gf(x) + σ

∇V (x).∇f(x)

V (x)
,

and J describes the jump dynamics and is given by

Jf(x) = Λ(x)



∑

k∈N

∑k
j=1

∫ 1
0 V

(
F

(k)
j (x, θ)

)
f
(
F

(k)
j (x, θ)

)
dθpk(x)

∑
k∈N

∑k
j=1

∫ 1
0 V

(
F

(k)
j (x, θ)

)
dθpk(x)

− f(x)


 ,

where

Λ(x) =


∑

k∈N

k∑

j=1

∫ 1

0
V
(
F

(k)
j (x, θ)

)
dθ pk(x)


× r(x)

V (x)
.
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These formulas seem to be complicated but they are very simple when applied. We also observe
a biased phenomenon. But contrary to the previous formulas, the bias is present in the motion
and the branching mechanism. This bias has been already observed in another context [16].
Also note that we do not assume that λ0 is the first eigenvalue. So, it is possible to have different
many-to-one formulas as can be seen in Remark 3.7. We can find some criteria for existence of
eigenelements in [4, 12, 34, 38] and theirs references. If Y is ergodic with invariant measure π
then Formula (4) gives

lim
t→+∞

1

E
[∑

u∈Vt
V (Xu

t )
]E


∑

u∈Vt

f(Xu
t )V (Xu

t )


 =

∫
f dπ,

for all continuous and bounded function f . We improve this result:

Theorem 1.1 (Long time behaviour of the empirical measure). If the following assumptions

holds,

• X∅
0 is deterministic;

• the system is non explosive; namely Nt < +∞ a.s. for all t ≥ 0;

• there exists (V, λ0) such that GV = λ0V and V > 0;

• Y is ergodic with invariant measure π;

then for any measurable function g such that:

• there exists C > 0, such that for all x ∈ E, |g(x)| ≤ CV (x);

• there exists α < λ0, such that E[V 2(Yt)] ≤ Ceαt and

E



r(Yt)

V (Yt)

∫ 1

0

∑

a,b∈N∗

a 6=b

∑

k≥max(a,b)

pk(Ys)V
(
F (k)

a (Ys, θ)
)
V
(
F

(k)
b (Ys, θ)

)
dθ


 ≤ Ceαt;

then we have

lim
t→+∞

e−λ0t
∑

u∈Vt

g(Xu
t ) = W

∫
g

V
dπ,

where W = limt→+∞ e−λ0tV (x0)−1∑
u∈Vt

V (Xu
t ) and the convergences hold in probability.

If furthermore V is lower bounded by a positive constant then

lim
t→+∞

1W 6=0

Nt

∑

u∈Vt

g(Xu
t ) = 1W 6=0

∫
g

V
dπ/

∫
1

V
dπ in probability .

If r and (pk)k∈N are constant then V ≡ 1 is an eigenvector, and so this theorem generalises
[5, Theorem 1.1]. On the other hand, our model is microscopic and is a scaled version of some
deterministic models. More precisely, let (Zt)t≥0 be the empirical measure. It is defined, for all
t ≥ 0, by

Zt =
∑

u∈Vt

δXu
t
.

Now, let Z
(n) be distributed as Z and let us consider the following scaling X

(n) = 1
nZ

(n). We
have:

Theorem 1.2 (Law of large number for the large population). If the following assumptions hold

• T > 0;
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• r is upper bounded;

• there exist k̄ ≥ 0 such that pk ≡ 0 for all k ≥ k̄;

• either E ⊂ R and F
(k)
j (x, θ) ≤ x for all j ≤ k and θ ∈ [0, 1] or E is compact;

• The starting distribution X
(n)
0 converges in distribution to X0 ∈ M(E), embedded with

the weak topology;

• we have

sup
n≥0

E

[
X

(n)(E)
]
< +∞.

then X
(n) converges in distribution in D([0, T ],M(E)) to X which verifies

∫

E
f(x) Xt(dx) =

∫

E
f(x) X0(dx) +

∫ t

0

∫

E
Gf(x) Xs(dx)ds. (5)

Here, D([0, T ],M(E)) is the space of càd-làg functions embedded with the skohorod topology
[9, 24]. We observe that if X0 is deterministic then Xt is deterministic for any time t ≥ 0. The
equation (5) can be written as

∂tn(t, x) + ∇ (b(x)n(t, x)) + r(x)n(t, x) = σ∂xxn(t, x) +
∑

k≥1

k∑

j=1

Kk
j (r × pk × n(t, ·)) .

where Xt = n(t, x)dx and Kk
j is the adjoint operator of f 7→ ∫ 1

0 f(F
(k)
j (x, θ)dθ. This equa-

tion was studied in [27, 36, 37] and Theorem 1.1 is relatively close to their limit theorems. We
will see in the next section that it is also the Kolmogorov equation associated to Z. So, we
observe that X is equal to the mean measure of Z; that is f 7→ E[

∫
E f(x) Zt(dx)]. This average

phenomenon comes from the branching property. After a branching event, each cell evolves in-
dependently from each other, there is not interaction or mutation. Another reason is the linearity
of the operator G. From the many-to-one formula, we also deduce that, in large population, the
empirical measure behaves as the auxiliary process. The proof is based on the Aldous-Rebolledo
criterion [24, 42] and is inspired by [17, 31, 43].

In the end of the paper, these two theorems are applied to some structured population models.
Our main example is a size-structured population. In this example, the size of cells grows lin-
early and if a cell dies then it divides to two descendants. Thus, there is motion between the
branching events and discontinuity during division. This model is a branching version of the
well known TCP windows size process [10, 19, 28, 35]. For this example, we are able to give
some explicit formulas of the invariant distribution, the moments or the rate of convergence. We
also prove that, in large population, the empirical measure behaves according to the determinis-
tic equation (5) plus a Gaussian noise.

Outline. In the next section, we introduce some properties of the empirical measure. In Section
3, we focus our interest on the long time behaviour. We prove some many-to-one formulas and
deduce a general limit theorem which implies Theorem 1.1. Section 4 is devoted to the study
of large populations. In this one, we prove Theorem 1.2. Note that Section 3 and Section 4 are
independent. In Section 5, we give our main example, which describes the cell mitosis. More-
over, we give two theorems for the long time behaviour of our empirical measure in addition to
some explicit formulas. We also give a central limit theorem for asymmetric cell division for



6 BERTRAND CLOEZ

the macroscopic limit. In section 6, we finish by two classical examples which are branching
diffusions and self-similar fragmentation.

2. PRELIMINARIES

In this section, we describe a little more the empirical measure (Zt)t≥0. We recall that

∀t ≥ 0, Zt =
∑

u∈Vt

δXu
t
.

It belongs to in the space D(R+,M(E)) of càd-làg functions with values in M(E), which is
the set of finite measures on E. Let us add the following notations:

Zt(f) =

∫

E
f(x)Zt(dx) =

∑

u∈Vt

f(Xu
t ),

and

Zt(1 + xp) =

∫

E
1 + xp

Zt(dx) =
∑

u∈Vt

1 + (Xu
t )p.

We can describe the dynamics of the population with a stochastic differential equation. That is
given, for any smooth function f : (x, t) 7→ f(x, t) = ft(x) on E × R+, by

Zt(ft) =Z0(f0) +

∫ t

0

∫

E
Gfs(x) + ∂tfs(x)Zs(dx)ds

+

∫ t

0

∑

u∈Vs

√
2σ∂xfs(X

u
s )dBu

s

+

∫ t

0

∫

U×R+×N∗×[0,1]
[1{u∈Vs−,l≤r(Xu

s−)}

(
k∑

j=1

fs(F
(k)
j (Xu

s−, θ)) − fs(X
u
s−))] ρ(ds, du, dl, dk, dθ),

where (Bu)u∈U is a family of independent standard Brownian motions and ρ(ds, du, dl, dk, dθ)
is Poisson point process on R+ × U × R+ × N

∗ × [0, 1] of intensity

ρ̄(ds, du, dl, dk, dθ) = ds n(du) dl dpk dθ.

It is also independent from the Brownian motions. We have denoted by n(du) the counting
measure on U and ds, dl, dθ are Lebesgue measures. A necessary and sufficient condition for
the existence of our process is the non-explosion of Z:

Assumption 2.1 (Non explosion). For all t ≥ 0, Nt < +∞ a.s..

For instance, we have

Lemma 2.2 (Sufficient condition to non explosion). If r ≤ r̄ and pk = 0 for all k ≥ k̄, where

r̄, k̄ > 0, then Assumption 2.1 holds. Moreover, for any T > 0, we have

∀t ≤ T, E[Nt] ≤ E[N0] e(k̄−1)r̄T .

Proof. In this case, we can bound Nt by a branching process independent of the underlying
dynamics. �
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If there is no explosion then we have a semi-martingale decomposition. Before giving it, we
give some precisions and notations about the domain D(G) of G. If G is given by (1) then we
have D(G) = C2

b (E,R), which is the set of bounded and C2 functions with bounded derivatives.
We denote by Dt(G) the domain of the Markov process (Xt, t)t≥0 . Also, we have Dt(G) =

C1,2
b (R+ ×E,R). It is the set of bounded functions, which are C1 in their first coordinate, C2 in

their second, and which have bounded derivatives. Finally we denote by D(G2) (resp. Dt(G
2)

) the set of function f ∈ D(G) (resp. f ∈ Dt(G) ) such that f2 ∈ D(G)(resp. f ∈ Dt(G
2) ) .

Lemma 2.3 (Semi-martingale Decomposition). If Assumption 2.1 holds, then for all bounded

f = (ft)t≥0 ∈ Dt(G) and t ≥ 0, we have

Zt(ft) = Z0(f0) + Mt(f) + Vt(f)

where

Vt(f) =

∫ t

0
Zs(Gfs + ∂sfs)ds,

and if f ∈ D(G2) then the bracket of Mt(f) is given by

〈M(f)〉t =

∫ t

0
G(f2

s )(x) − 2fs(x)Gfs(x)Zs(dx)

+

∫

E
r(x)

∫ 1

0

∑

k∈N∗




k∑

j=1

fs(F
(k)
j (x, θ)) − fs(x)




2

pk(x)dθZs(dx)ds

Proof. It is an application of Dynkin and Itô formulas, see for instance [23, Lemma 3.68 p .487]
and [22, Theorem 5.1, p.67]. �

We define the mean measure (zt)t≥0, for any continuous and bounded function f on E, by

∀t ≥ 0, zt(f) = E(Zt(f)) = E


∑

u∈Vt

f(Xu
t )


 .

Corollary 2.4 (Evolution equation for the mean measure). Under Assumption 2.1, if f is a

continuous and bounded function on E then for any t ≥ 0, we have:

zt(f) = z0(f) +

∫ t

0
zs(Gf) +

∫

E
r(x)

∑

k≥1

k∑

j=1

∫ 1

0
f
(
F

(k)
j (x, θ)

)
dθ pk(x) − f(x) zs(dx)ds.

Furthermore, (zt)t≥0 is the unique solution of this integro-differential equation.

The previous equation can be written as

∂tn(t, x) + ∇ (b(x)n(t, x)) + r(x)n(t, x) = σ∂xxn(t, x) +
∑

k≥1

k∑

j=1

Kk
j (r × pk × n(t, ·)) .

where zt = n(t, x)dx and Kk
j is the adjoint of f 7→ ∫ 1

0 f(F
(k)
j (x, θ)dθ.
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Proof. We just have to prove the uniqueness. Consider two probability measure-valued pro-
cesses (µt)t≥0 and (νt)t≥0 solution of this P.D.E. with same starting distribution µ0 = ν0. Let
K be a compact subset of E and let us consider the following norm

‖m1 −m2‖ = sup
f∈FK

|m1(f) −m2(f)|,

where f ∈ C2
b (E,R) belongs to FK if and only if ‖Gf‖∞ ≤ 1 and f(x) = 0 when x /∈ K .

Now, let f ∈ FK , if x /∈ K then Gf(x) = 0. The functions r and m are bounded on K and thus
there exists CK > 0 such that ‖Gf‖∞ ≤ CK and then

|µt(f) − νt(f)| ≤ CK

∫ t

0
‖µs − νs‖ds.

Taking the supremum and using Gronwall Lemma we deduce that µt(f) = νt(f) for any
f ∈ FK . As there is no explosion, we can approach any continuous and bounded function
by dominated convergence, and then the equality holds for any continuous and bounded func-
tion. �

3. LONG TIME’S BEHAVIOUR

Let us recall that

Gf(x) = Gf(x) + r(x)


∑

k≥0

k∑

j=1

∫ 1

0
f(F

(k)
j (x, θ)) dθ pk(x) − f(x)


 .

In the following, we will prove some formulas which characterise the mean behaviour of our
model. Then we will use them to prove our limit theorems.

3.1. Eigenelements and auxiliary process. As said in introduction, the existence of eigenele-
ments is fundamental in our approach. Henceforth, we assume the following.

Assumption 3.1 (Existence of eigenelements). Assumption 2.1 holds, and there exist λ0 > 0
and V ∈ D(G) such that V > 0 and GV = λ0V .

Under this assumption, we introduce the martingale (Zt(V )e−λ0t)t≥0 which plays an important
role in the proof of theorem 1.1.

Lemma 3.2 (Martingale properties). If Assumption 3.1 holds and

z0(V ) < +∞,

then the process (Zt(V )e−λ0t)t≥0 is a martingale. Moreover, it converges almost surely to a

random variable W .

Proof. First, by corollary 2.4, we have

zt(V ) = z0(V ) +

∫ t

0
zs(GV )ds

= z0(V ) + λ0

∫ t

0
zs(V )ds.

Hence for all t ≥ 0, we have zt(V ) = z0e
λ0t. Then if Ft = σ{Zs | s ≤ t} then the Markov

properties, applied on Z, gives

E[Zt+s(V )|Fs] = E[Z̃t(V )|Z̃0 = Zs],
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where Z̃ is distributed as Z. Then E[Zt+s(V )|Fs] = Zs(V )eλ0t and thus

E[Zt+s(V )e−λ0(t+s) | Fs] = Zs(V )eλ0s.

Since (Zt(V )e−λ0t)t≥0 is a positive martingale, it converges almost surely. �

Lemma 3.3 (Weighted many-to-one formula). Under Assumption 3.1, if Z0 = δx0 , where x0 ∈
E, then we have

1

E
[∑

u∈Vt
V (Xu

t )
]E


∑

u∈Vt

V (Xu
t )f(Xu

t , t)


 = E[f(Yt, t) | Y0 = x0], (6)

for any non negative function f on E × R+ and t ≥ 0, where Y is a Markov process generated

by A.

Proof. If γt : f 7→ zt(f × V )e−λ0tV (x0)−1 then for all t ≥ 0 and smooth f we have

∂tγt(f) = zt(G(V f) + V ∂tf − fGV )e−λ0tV (x0)−1 = γt(Af + ∂tf).

Now, by Dynkin formula, the right hand side of (6) verifies the same equation. The uniqueness
can be proved as in the corollary 2.4. �

Remark 3.4 (The first characteristic can be random). If Z0 = δX∅
0

, where X∅
0 is random and

distributed according to a probability measure µ, then (6) holds, where Y starts form Y0 which

is distributed according to µ.

Remark 3.5 (Schrödinger operator and h−transform). G is not a Markov generator. As we have,

for all f smooth enough,

Gf = Bf − r(m− 1)f,

where B is a Markov generator and G a so-called a Schrödinger operator. Its study is con-

nected to the Feynman-Kac formula. The key point of our weighted many-to-one formula is an

h−transform (Girsanov type transformation) of the Feynman-Kac semigroup as in [39]. This

transformation is usual in the superprocesses study [16].

Remark 3.6 (Galton-Watson tree and Malthus parameter). If r and p are constant, then V ≡
1 is an eigenvector with respect to the eigenvalue λ0 = r(m − 1), where m =

∑
k≥0 kpk

denotes the mean offspring number. So, Zt(V ) = Nt and the population grows exponentially.

This result is already know for Nt. It is a continuous branching process [3, 5]. Furthermore,

since Thomas Malthus (1766-1834) has introduced the following simple model to describe the

population evolution:

∂tNt = birth − death = bNt − dNt = λ0Nt =⇒ Nt = eλ0t,

in biology and genetic population study, λ0 is sometimes called the Malthus parameter.

Remark 3.7 (Many eigenelements are possible!). In the previous lemmas, λ0 was not required to

be the first eigenvalue. So, it is possible to have different eigenelements and auxiliary processes.

Consider the example of [6], where some eigenelements are explicit; that is:

∀x > 0, Gf(x) = axf ′(x) + bxf ′′(x),

where a, b are two non-negative numbers. We also consider that p2 = 2 and for all j ∈ {1, 2},

E[f(F
(2)
j (x,Θ))] = E [f(Hx)] ,
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where H is a symmetric random variable on [0, 1] i.e. H
d
= 1 − H . This example models cell

division with parasite infection. In this case,

Gf(x) = axf ′(x) + bxf ′′(x) + r(x) (2E[f(Hx)] − f(x)) ,

where a is an eigenvalue of G and V (x) = x is its eigenvector. So, we should have

E


∑

u∈Vt

Xu
t f(Xu

t )


 = E[f(Yt)]e

atx0,

where Y is a Markov process, generated by

GY f(x) = (ax+ 2b) f ′(x) + bxf ′′(x) + r(x) (2E[Hf(Hx)] − f(x)) .

We can see a bias in the drift terms and jumps mechanism which is not observed in [5, 6]. When

r is affine, we obtain a second formula. Indeed, if r(x) = cx + d, with c ≥ 0 and d > a (or

d > 0 and c = 0) then V1(x) = x(c/(d−a))+1 is an eigenvector with respect to the eigenvalue

λ1 = d (⇒ λ1 > λ0 = a). Thus, we should also write

E


∑

u∈Vt

f(Xu
t )


 e−dt = E

[
f(Ut)

τUt + 1

]
(τx0 + 1),

where τ = c
d−a and U is generated by

GUf(x) =

(
ax+

2bxτ

τx+ 1

)
f ′(x)+bxf ′′(x)+

r(x)(τx+ 2)

τx+ 1

(
2E[(τHx+ 1)f(Hx)]

τx+ 2
− f(x)

)
.

3.2. Many-to-one formulas. In order to compute our limit theorem, we need to control the
second moment. As in [5], we begin by describing the population over the whole tree. Then we
give a many-to-one formula for forks. Let T be the random set representing cells that have lived
at a certain moment. It is defined by

T = {u ∈ U | ∃t > 0, u ∈ Vt}.

Lemmas 3.8 and 3.9, that follow, are respectively the generalisation of [5, proposition 3.5] and
[5, proposition 3.9].

Lemma 3.8 (Many-to-one formula over the whole tree). Under Assumption 3.1, if Z0 = δx0 ,

where x0 ∈ E, then for any non-negative measurable function f : E × R+ → R, we have

E

[
∑

u∈T
f
(
Xu

β(u)−, β(u)
)]

=

∫ +∞

0
E

[
f(Ys, s)

r(Ys)

V (Ys)

]
V (x0)eλ0sds

Proof. First we have, for all u ∈ U ,

E

[
1{u∈T }f

(
Xu

β(u)−, β(u)
)]

= E

[
1{u∈T }

∫ β(u)

α(u)
f(Xu

s , s)r(X
u
s )ds

]
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because

E

[
1{u∈T }

∫ β(u)

α(u)
f(Xu

s , s)r(X
u
s )ds

]

=E

[
1{u∈T }

∫ +∞

0

∫ τ

α(u)
f(Xu

s , s)r(X
u
s )ds r(Xu

τ )e
−
∫ τ

α(u)
r(Xu

t )dt
dτ

]

=E

[
1{u∈T }

∫ +∞

α(u)

∫ +∞

s
r(Xu

τ )e
−
∫ τ

α(u)
r(Xu

t )dt
dτ f(Xu

s , s)r(X
u
s )ds

]

=E

[
1{u∈T }

∫ +∞

α(u)
e

−
∫ s

α(u)
r(Xu

t )dt
f(Xu

s , s)r(X
u
s )ds

]

=E

[
1{u∈T }f

(
Xu

β(u)−, β(u)
)]
.

Thus,

E

[
1{u∈T }f

(
Xu

β(u)−, β(u)
)]

= E

[∫ +∞

0
1{u∈Vs}f(Xu

s , s)r(X
u
s )ds

]
,

and finally,

E

[
∑

u∈T
f
(
Xu

β(u)−, β(u)
)]

=

∫ +∞

0
E


∑

u∈Vs

f(Xu
s , s)r(X

u
s )


 ds

=

∫ +∞

0
E

[
f(Ys, s)

r(Ys)

V (Ys)

]
V (x0)eλ0sds.

�

If we set g(x, s) = f(x, s)/V (x) then we have:

E

[
∑

u∈T
g
(
Xu

β(u)−, β(u)
)
V
(
Xu

β(u)−
)]

=

∫ +∞

0
E [g(Ys, s)r(Ys)] × E[Zs(V )] ds.

This equality means that adding the contributions over all the individuals corresponds to inte-
grating the contribution of the auxiliary process over the average number of living individuals at
time s. Let (Pt)t≥0 be the semigroup of the auxiliary process; it is defined, for any continuous
and bounded f , by

Ptf(x) = E[f(Yt) | Y0 = x]

Lemma 3.9 (Many-to-one formula for forks). Under Assumption 3.1, if Z0 = δx0 , where x0 ∈
E, then for all non-negative and measurable function f, g on E, we have

E


 ∑

u,v∈Vt,u 6=v

f(Xu
t )V (Xu

t )g(Xv
t )V (Xv

t )




=E[Zt(V )]2
∫ t

0

1

E[Zs(V )]
E

[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
ds
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where J2 is defined by

J2(f, g)(x) =

∫ 1

0

∑

a6=b

∑

k≥max(a,b)

pk(x)f
(
F (k)

a (x, θ)
)
g
(
F

(k)
b (x, θ)

)
dθ.

The operator J2 describes the starting positions of two siblings picked at random.

Proof. Let u, v ∈ Vt be such that u 6= v, then there exists (w, ũ, ṽ) ∈ U3 and a, b ∈ N
∗, a 6= b

such that u = waũ and v = wbṽ. The cell w is sometimes called the most recent common
ancestor (MRCA). We have

E


 ∑

u,v∈Vt,u 6=v

f(Xu
t )V (Xu

t )g(Xv
t )V (Xv

t )




=
∑

w∈U

∑

a6=b

∑

ũ,ṽ∈U
E

[
1{u∈Vt}f(Xu

t )V (Xu
t )1{v∈Vt}g(X

v
t )V (Xv

t )
]
,

where u = waũ and v = wbṽ . Let Ft = σ{Zs | s ≤ t}. By the conditional independence
between descendants, we have

E


 ∑

u,v∈Vt,u 6=v

f(Xu
t )V (Xu

t )g(Xv
t )V (Xv

t )




=
∑

w∈U

∑

a6=b

E

[
E

[
∑

ũ∈U
1{u∈Vt}f(Xu

t )V (Xu
t )|Fβ(w)

]
E

[
∑

ṽ∈U
1{v∈Vt}g(X

v
t )V (Xv

t )|Fβ(w)

]]
.

Therefore, as β(w) is a stopping time, then using the strong Markov property and (6), we have

E


 ∑

u,v∈Vt,u 6=v

f(Xu
t )V (Xu

t )g(Xv
t )V (Xv

t )




=
∑

w∈U

∑

a6=b

E[1{wa,wb∈T ,t≥β(w)}Pt−β(w)f(Xwa
β(w))V (Xwa

β(w))

Pt−β(w)g(X
wb
β(w))V (Xwb

β(w))e
2λ0(t−β(w))]

=E

[
∑

w∈T
1{t≥β(w)}J2(V Pt−β(w)f, V Pt−β(w)g)(X

w
β(w)−) e2λ0(t−β(w))

]

=e2λ0tV (x0)

∫ t

0
E

[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
e−λ0sds.

�

3.3. Proof of Theorem 1.1. In this section, we give the main limit theorem which implies
Theorem 1.1.

Theorem 3.10 (General Condition for the convergence of the empirical measure). Under As-

sumption 3.1, if f is a measurable function defined on E and µ a probability measure such that

there exists a probability measure π, two constants α < λ0 and C > 0, and a measurable

function h such that
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(1) π(|f |) < +∞ and ∀x ∈ E, limt→+∞ Ptf(x) = π(f),

(2) µ(V ) < +∞ and µPt(f
2 × V ) ≤ Ceαt,

(3) Pt|f | ≤ h and µPs

(
J2(V h, V h) r

V

) ≤ Ceαt,

and Z0 = δX∅
0

, where X∅
0 ∼ µ, then we have

lim
t→+∞

1

E[Zt(V )]

∑

u∈Vt

f(Xu
t )V (Xu

t ) = W × π(f),

where the convergence holds in probability. If furthermore (Zt(V )e−λ0t)t≥0 is bounded in L2

then the convergence holds in L2.

Note that the constants and π may depend on f and µ! Also note that λ0 is not assumed to be
the largest eigenvalue.

Proof. As in [5, Theorem 4.2], we first prove the convergence for f such that π(f) = 0. We
have E[Zt(V )] = µ(V )eλ0t and so

E





 1

E[Zt(V )]

∑

u∈Vt

f(Xu
t )V (Xu

t )




2

 = E

[
Zt(f × V )2e−2λ0tµ(V )−2

]
= At +Bt,

where

At = e−2λ0tµ(V )−2
E


∑

u∈Vt

f2(Xu
t )V 2(Xu

t )


 = e−λ0tµ(V )−1

E

[
f2(Yt)V (Yt)

]
,

and

Bt = e−2λ0tµ(V )−2
E


 ∑

u,v∈Vt, u 6=v

f(Xu
t )V (Xu

t )f(Xv
t )V (Xv

t )




= µ(V )−1
∫ t

0
E

[
J2(V Pt−sf, V Pt−sf)(Ys)

r(Ys)

V (Ys)

]
e−λ0sds.

From (2), we get limt→+∞At = 0. Since π(f) = 0, from (1), we get limt→ Ptf = 0. Then, by
(3) and Lebesgue’s theorem, we obtain that, for all s ≥ 0 and x ∈ E,

lim
t→+∞

J2(V Pt−sf, V Pt−sf)(x) = 0.

And again by (3) and Lebesgue’s theorem, we obtain that limt→+∞Bt = 0. Now, if π(f) 6= 0
then we have

Zt(fV )e−λ0t −Wπ(f) = Zt ((f − π(f))V ) e−λ0t + π(f)
(
Zt(V )e−λ0 −W

)
.

Then, as a consequence of to the first part of the proof, the first term of the sum, in the right hand
side, converges to 0 in L2. Moreover, the second term converges to 0 in probability thanks to
lemma 3.2. �
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Proof of Theorem 1.1. If f = g/V then it is a continuous and bounded function. If h ≡ 1 then
all assumptions of the previous theorem hold and we get the first convergence. Now if V is lower
bounded, we can use the same argument with g = 1 and f = 1/V which is also a continuous
and bounded function. �

4. MACROSCOPIC APPROXIMATION

To prove Theorem 1.2, we need to use different topologies on M(E). Let (M(E), dv) (resp.
(M(E), dw)) be the set of finite measure when it is embedded with the vague (resp. weak)
topology. These topologies are defined as follow.

lim
n→+∞

dv(Xn,X∞) = 0 ⇐⇒ ∀f ∈ C0, lim
n→+∞

E[f(Xn)] = E[f(X∞)],

lim
n→+∞

dw(Xn,X∞) = 0 ⇐⇒ ∀f ∈ Cb, lim
n→+∞

E[f(Xn)] = E[f(X∞)],

where (Xn)6=0 is a sequence of M(E) and X∞ ∈ M(E). Here, C0 is the set of continuous
functions which vanish at infinity, and Cb is the set of continuous and bounded functions. Let
D([0, T ], E) and C([0, T ], E) be respectively the set of càd-làg functions embedded with the
Skohorod topology and continuous functions embedded with the uniform topology [9].

4.1. Proof of Theorem 1.2. Let (Z(n))n≥1 be a sequence of random measure-valued distributed
as Z. In this section, we consider the following scaling: X

(n) = 1
nZ

(n), and we describe the
behaviour of this scaled process when n goes to infinity.
To understand the behaviour of our model in a large population, we can consider that it starts
from a deterministic probability measure X0, and approach it by the interesting sequence defined
by

X
(n)
0 =

1

n

n∑

k=0

δYk
,

where (Yk)k≥1 is a sequence of i.i.d. random variable distributed according to X0. In other
words, we set

Z
(n)
0 =

n∑

k=0

δYk
.

Does X
(n) converge? Yes, it converges. Indeed, by the branching property, we have Z

(n) d
=∑n

k=0 Z
Yk , where Z

Yk
t are i.i.d., distributed as Z and starting from Z

Yk
0 = δYk

. Henceforth, if f
is a continuous and bounded function then the classical law of large number gives

∀t ≥ 0, lim
n→∞ X

(n)
t (f) = E

[
Z

Y1
t (f)

]
a.s.

So by corollary 2.4, it implies that X
(n) (pointwise) converges to the solution (µt)t≥0 of the

following integro-differential equation:

µt(f) = µ0(f) +

∫ t

0
µs(Gf) (7)

+

∫

E
r(x)

∑

k≥0

pk(x)

∫ 1

0

k∑

j=1

f(F
(k)
j (x, θ))dθ − f(x)µs(dx)ds.

Theorem 1.2 gives a stronger convergence.
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Lemma 4.1 (Semi-martingale decomposition). If Assumption 2.1, then for all f ∈ D(G2) and

t ≥ 0,

X
(n)
t (f) = X

(n)
0 (f) + M

(n)
t (f) + V

(n)
t (f),

where

V
(n)
t (f) =

∫ t

0

∫

E
Gf(x) + r(x)

∫ 1

0

∑

k∈N

k∑

j=1

f(F
(k)
j (x, θ)) − f(x)pkdθX

(n)
s (dx)ds,

and M
(n)
t (f) is a square-integrable and càdlàg martingale. Its bracket is defined by

〈M(n)(f)〉t =
1

n

∫ t

0
2X

(n)
s (Gf2) − 2X

(n)
s (f ×Gf)

+

∫

E
r(x)

∫ 1

0

∑

k∈N∗




k∑

j=1

f(F
(k)
j (x, θ)) − f(x)




2

pk(x)dθ X
(n)
s (dx)ds.

Proof. It is a direct consequence of Lemma 2.3. Indeed, if L(n) is the generator of X
(n) then it

verifies

L
(n)Ff (µ) = ∂tE[Ff (X(n))|X(n)

0 = µ] t=0 = ∂tE[Ff/n(Z(n))|Z(n)
0 = nµ]

t=0
= LFf/n(nµ),

where Ff (µ) = F (µ(f)), F, f are two test functions and L is the generator of Z. �

Remark 4.2 (Non explosion). Let us recall that, by Lemma 2.2, if the assumptions of Theorem

1.2 hold then Assumption 2.1 holds; that is there is no explosion.

Let us denote by L(U) the law of U , for any random variable U .

Lemma 4.3. Under the assumptions of Theorem 1.2 the sequence (L(X(n)))n≥1 is uniformly

tight in the space of probability measures on D([0, T ], (M(E), dv )).

Proof. We follow the approach of [17]. According to [42], it is enough to show that, for any
continuous bounded function f , the sequence of laws of X

(n)(f) is tight in D([0, T ],R). To
prove it, we will use the Aldous-Rebolledo criterion. Let C∞

c be the sef of functions of class
C∞ with finite support, we set S = C∞

c ∪ { 1}, where 1 is the mapping x 7→ 1. We have to
prove that, for any function f ∈ S, we have

(1) ∀t ≥ 0,
(
X

(n)
t (f)

)
n≥0

is tight;

(2) for all n ∈ N, and ε, η > 0, there exists δ > 0 such that for each stopping time Sn

bounded by T ,

lim sup
n→+∞

sup
0≤u≤δ

P(|V(n)
Sn+u(f) − V

(n)
Sn

(f)| ≥ η) ≤ ε.

lim sup
n→+∞

sup
0≤u≤δ

P(|〈M(n)(f)〉Sn+u − 〈M(n)(f)〉Sn | ≥ η) ≤ ε.
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The first point is the tightness of the family of time-marginals (X
(n)
t (f))n≥1 and the second

point, called the Aldous condition, gives a "stochastic continuity". It looks like the Arzelà-
Ascoli Theorem. Using Lemma 2.2, there exists C > 0 such that

P(|X(n)
t (f)| > k) ≤ ‖f‖∞ E[X

(n)
t (1)]

k

≤ ‖f‖∞ C E[X
(n)
0 (1)]

k
,

which tends to 0 as k tends to infinity. This proves the first point. Let δ > 0, we get for all
stopping times Sn ≤ Tn ≤ (Sn + δ) ≤ T , that there exist C ′, Cf > 0 such that

E[|V(n)
Tn

(f) − V
(n)
Sn

(f)|] = E

[∣∣∣∣∣

∫ Tn

Sn

X
(n)
s (Gf)

+

∫

E
r(x)

∫ 1

0

∑

k∈N

k∑

j=1

f
(
F

(k)
j (x, θ)

)
− f(x)pk(x)dθ X

(n)
s (dx)ds

∣∣∣∣∣∣




≤ C ′ [‖Gf‖∞ + ‖f‖∞] × E [|Tn − Sn|]
≤ Cf δ.

In the other hand, there exists C ′
f > 0 such that

E[|〈M(n)(f)〉Tn − 〈M(n)(f)〉Sn |]

=
1

n
E

[∣∣∣∣∣

∫ Tn

Sn

2X
(n)
s (Gf2) − 2X

(n)
s (fGf)

+

∫

E
r(x)

∫ 1

0

∑

k∈N

k∑

j=1

(
f
(
F

(k)
j (x, θ)

)
− f(x)

)2
pkdθ X

(n)
s (dx)ds

∣∣∣∣∣∣




≤
C ′

f δ

n.

Then, for a sufficiently small δ, the second point is verified and we conclude that (X(n))n≥1 is
uniformly tight in D([0, T ], (M(E), dv )). �

Proof of Theorem 1.2. Let us denote by X a limiting process of (X(n))n≥1; namely there exists
an increasing sequece (un)n≥1, on N

∗, such that (X(un))n≥1 converges to X. It is almost surely
continuous in (M(E), v) since

sup
t≥0

sup
‖f‖∞≤1

|X(n)
t− (f) − X

(n)
t (f)| ≤ k̄

n
. (8)

In the case where E is compact, the vague and weak topologies coincide. By Doob’s inequality,
there exists C > 0 such that

sup
f

E

[
sup
t≤T

∣∣∣M(n)
t (f)

∣∣∣
]

≤ 2 sup
f

E

[
〈M(n)(f)〉T

]
≤ C

n
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where the supremum is taken over all the function f ∈ D(G2) such that ‖f‖∞ ≤ 1. Hence,

lim
n→+∞

sup
f

E

[
sup
t≤T

∣∣∣M(n)
t (f)

∣∣∣
]

= 0. (9)

But as

M
(n)
t (f) = X

(n)
t (f) − X

(n)
0 (f)

−
∫ t

0

∫

E
Gf(x) + r(x)

∫ 1

0

∑

k∈N

k∑

j=1

f
(
F

(k)
j (x, θ)

)
− f(x) pk(x)dθ X

(n)
s (dx)ds,

we have

0 =Xt(f) − X0(f) −
∫ t

0
Xs(Gf)

+

∫

E
r(x)




k∑

j=1

f(F
(K)
j (x, θ)) pk(x) dθ − f(x)


Xs(dx)ds.

Since this equation has a unique solution, it ends the proof when E is compact. This approach
fails in the non-compact case. Nevertheless, we can use the Méléard-Roelly criterion [30]. We
have to prove that X is in C([0, T ], (M(E), w)) and X

(n)(1) converges to X(1). By (8), X is
continuous. To prove that X

(n)(1) converges to X(1), we use the following lemmas.

Lemma 4.4 (Approximation of indicator functions). For each k ∈ N, there exists ψk ∈ D(G)
such that:

∀x ∈ E, 1[k;+∞[(x) ≤ ψk(x) ≤ 1[k−1;+∞[(x) and ∃C, Gψk ≤ Cψk−1.

Proof. See [25, lemma 4.2] or [31, lemma 3.3]. �

Lemma 4.5 (Commutation of limits). Under the assumptions of Theorem 1.2,

lim
k→+∞

lim sup
n→+∞

E

[
sup
t≤T

X
(n)
t (ψk)

]
= 0,

where (ψk)k≥0 are defined as in the previous lemma.

The proof is postponed after. Hence, a same computation to [31] gives us the convergence in
D([0, T ], (M(E), w)). Thus, each subsequence converges to the equation (7). The end of the
proof follow with the same argument of the compact case.
We can give another argument, which does not use the Méléard-Roelly criterion [30]. As

sup
t≥0

sup
‖f‖∞≤1

|X(n)
t− (f) − X

(n)
t (f)| ≤ k̄

n
,
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X is continuous from [0, T ] to (M(E), dw). Let G be a Lipschitz function onC([0, T ], (M(E), dw)),
we get,

|E[G(X(un))] − G(X)| ≤ E

[
sup

t∈[0,T ]
dw

(
X

(un)
t ,Xt

)]

≤ E

[
sup

t∈[0,T ]
dw

(
X

(un)
t ,X

(un)
t (· × (1 − ψk))

)]

+ E

[
sup

t∈[0,T ]
dw

(
X

(un)
t (· × (1 − ψk)),Xt(· × (1 − ψk))

)]

+ sup
t∈[0,T ]

dw (Xt(· × (1 − ψk)),Xt) .

According to Lemma 4.5, we obtain that

lim
k→+∞

lim sup
n→+∞

E

[
sup

t∈[0,T ]
dw

(
X

(un)
t ,X

(un)
t (· × (1 − ψk))

)]
= 0

and

lim
k→+∞

sup
t∈[0,T ]

dw(Xt(· × (1 − ψk)),Xt) = 0.

Then, we have

dw

(
X

(un)
t (· × (1 − ψk)),Xt(· × (1 − ψk))

)

= dv

(
X

(un)
t (· × (1 − ψk)),Xt(· × (1 − ψk))

)
.

Thus,

lim
k→+∞

lim sup
n→+∞

E

[
sup

t∈[0,T ]
dw

(
X

(un)
t (· × (1 − ψk)),Xt(· × (1 − ψk))

)]
= 0,

by continuity of ν 7→ ν(1 − ψk) in D(M(E), dv). And finally,

lim
n→+∞

G

(
X

(un)
)

= G(X),

which completes the proof. �

proof of Lemma 4.5. If µn,k
t = E(X

(n)
t (ψk)) then we have

µn,k
t = E[X

(n)
0 (ψk)] +

∫ t

0
E

[∫

E
Gψk(x)

+r(x)


∑

k≥1

k∑

j=1

pk(x)

∫ 1

0
ψk(F

(k)
j (x, θ)) − ψk(x)


X

(n)
s (dx)


 ds

≤ µn,k
0 + C

∫ t

0
µn,k−1

s + µn,k
s ds.
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Now, by Gronwall’s Lemma, iteration and monotonicity, we deduce that

µn,k
t ≤ C1(µn,k

0 +

∫ t

0
µn,k−1

s ds)

≤ C1µ
n,k
0 + C2

1Tµ
n,k−1
0 +

∫ t

0

∫ s

0
µn,k−2

u duds

≤
k−1∑

l=0

µn,k−l
0 C1

(C1T )l

l!
+ C2 × (C1T )k

k!

≤ µ
n,⌊k/2⌋
0 C1e

C1T + C3

∑

l>⌊k/2⌋

(C1T )l

l!
+ C2 × (C1T )k

k!
,

where C1, C2 and C3 are three constants. Thus,

lim
k→+∞

lim sup
n→+∞

µn,k
t = 0.

And finally the following expression completes the proof,

E

[
sup
t≤T

|Xn
t (ψk)|

]
≤ µn,k

0 + C

∫ t

0
µn,k−1

s + µn,k
s ds+ E

[
sup
t≤T

|M(n)
t (ψk)|

]
.

�

5. MAIN EXAMPLE : A SIZE-STRUCTURED POPULATION MODEL

Let us introduce ourf main example. It is a size-structured population model which represents
the cell mitosis. It is described as follows: the underlying process X is deterministic and linear
and when a cell dies, it divides in two parts. Formally and with our notations, we have

E = [0,+∞), Gf = f ′ and p2 = 1, (10)

∀x ∈ E, ∀θ ∈ [0, 1], F
(2)
1 (x, θ) = F−1(θ)x and F

(2)
2 (x, θ) = (1 − F−1(θ))x, (11)

where F is the cumulative distribution function of the random variable in [0, 1]. It verifies
F (x) = 1 − F (1 − x). In this case, one cell lineage is generated by:

∀f ∈ C1,∀x ≥ 0, Lf = f ′(x) + r(x) [E[f(Hx)] − f(x)] ,

where H is distributed according to F . This process is sometimes called the TCP (Transmis-
sion Control Protocol) process in computer science [10, 19, 28, 35]. Firstly, we prove the non
explosion even if r is not bounded.

Lemma 5.1 (Non explosion). Let p ≥ 1. If for all x ∈ R
∗
+, r(x) ≤ C0(1+xp), and z0(1+xp) <

+∞, then our process is no, explosive. Moreover

E

[
sup

s∈[0,T ]
Zs(1 + xp)

]
≤ z0(1 + xp)eCpT ,

where Cp is constant and T > 0.
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Proof. We have

Zt(f) = Z0(f) +

∫ t

0

∫

E
f ′(x) Zs(dx) ds

+

∫ t

0

∫

U×R+×[0,1]
1{u∈Vs−,l≤r(Xu

s−)}f(θXu
s−) + f((1 − θ)Xu

s−) − f(Xu
s−)) ρ(ds, du, dl, dθ)

Using the same argument to [17, Theorem 3.1], we introduce τn = inf{ t ≥ 0 | Zt(1+xp) > n };
and we have

sup
u∈[0,t∧τn]

Zu(1 + xp) ≤Z0(1 + xp) +

∫ t∧τn

0
Zs(pxp−1)ds

+

∫ t∧τn

0

∫

U×R+×[0,1]
1u∈Vs−,l≤r(Xu

s−)

(1 + (θp + (1 − θ)p − 1)(Xu
s−)p) ρ(ds, du, dl, dθ)

≤Z0(1 + xp) +

∫ t∧τn

0
p× sup

u∈[0,s∧τn]
Zu(1 + xp)ds

+

∫ t

0

∫

U×R+×[0,1]
1{u∈Vs−,l≤r(Xu

s−)} ρ(ds, du, dl, dθ),

because (θp + (1 − θ)p − 1) ≤ 0. Thus there exist C > 0 such that

E

[
sup

u∈[0,t∧τn]
Zu(1 + xp)

]
≤ z0(1 + xp) +

∫ t

0
C E

[
sup

u∈[0,s∧τn]
Zu(1 + xp)

]
ds.

Finally, the Gronwall Lemma implies the existence of Cp such that

E

[
sup

s∈[0,t∧τn]
Zs(1 + xp)

]
≤ z0(1 + xp)eCpt.

We deduce that τn tends almost surely to infinity and that there is non explosion. �

5.1. Equal mitosis : long time behaviour. In this subsection, we establish the long time be-
haviour of Z. We assume that

∀x ≥ 0,∀θ ∈ [0, 1], F
(2)
1 (x, θ) = F

(2)
2 (x, θ) =

x

2
.

That is, the cells divide in two equal parts. In order to give a many-to-one formula, we recall a
theorem of [37]:

Theorem 5.2 (Sufficient condition for the existence of eigenelement). If there exist r, r̄ > 0
such that

r ≤ r ≤ r̄,

r is continuous and r(x) is constant equal to r∞ for x large enough, then there exists V ∈
C1(R+) such that

c(1 + xk) ≤ V (x) ≤ C(1 + xk),

where C, c are two constant and 2k = 2r∞
λ0+r∞

.
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So, we get a many-to-one formula with an auxiliary process generated by

Af(x) = f ′(x) + r(x)
2V (x/2)

V (x)
(f(x/2) − f(x)) .

Our main result gives the two following limit theorems.

Corollary 5.3 (Convergence of the empirical measure for a mitosis model ). If there exist r, r̄ >
0 such that

r ≤ r ≤ r̄,

r is continuous and r(x) is constant equal to r̄ for x large enough, then there exists a probability

measure π such that, for any continuous and bounded function g, we have

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫
g dπ in probability.

In particular for a constant rate r, π has Lebesgue density:

x 7→ 2r
∏+∞

n=1(1 − 2−n)

+∞∑

n=0

(
n∏

k=1

2

1 − 2k

)
e−2n+1rx. (12)

This explicit formula (12) is not new [36, 37], but here, the empirical measure convergences
in probability, while in the mentioned papers, the mean measure or the macroscopic process
converges (see Theorem 1.2).

Proof of corollary 5.3. By Theorem 5.2, the mapping x 7→ V (x/2)/V (x) is upper and lower
bounded. Thus, the auxiliary process is ergodic and admits a unique invariant law, as can be
checked using a suitable Foster-Lyapunov function [33, Theorem 6.1] (for instance, we can use
x 7→ 1 + x). See also [18]. Finally, we use Theorem 1.1 to conclude. The explicit formula is an
application of [35]. �

We can see that the assumptions of Theorem 5.2 are strong, and not necessary:

Corollary 5.4 (Convergence of the empirical measure when r is affine). If

∀x ≥ 0, r(x) = ax+ b,

where a, b ≥ 0 and a or b is positive then there exists a measure π such that

lim
t→+∞

1

Nt

∑

u∈Vt

g(Xu
t ) =

∫
g dπ.

The convergence holds in probability and for any continuous function g on E such that ∀x ∈
E, |g(x)| ≤ C(1 + x).

Proof. If r(x) = ax + b then V (x) = x
√

b2+4a−b
2 + 1 is an eigenvector and 2a√

b2+4a−b
is its

corresponding eigenvalue. Henceforth, this result is a direct application of Theorem 1.1 �

Remark 5.5 (Malthus parameter). We also deduce that

lim
t→+∞

Nt e
−λ0t = W

∫

E

1

V
dπ,

where λ0 = 2a√
b2+4a−b

is the Malthus parameter (see Remark 3.6).
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Remark 5.6 (Estimation of r for the Escherichia coli cell). We can find some estimates of the

division rate in the literature. An inverse problem was developed and applied with experimental

data in [14](see also [26]). More recently, [13] gives a nonparametric estimation of the division

rate.

5.2. Homogeneous case: moment and rate of convergence. When r is constant, the process
is easier to study since the auxiliary process has already been studied [10, 28, 35]. Here, we give
the moments and a first approach to estimate the rate of convergence.

Lemma 5.7 (Moments of the empirical measure). For all m ∈ N, and t ≥ 0, we have

E[Zt(x
m)] = E


∑

u∈Vt

(Xu
t )m




=

∫ +∞

0
ert


 m!∏m

i=1 θi
+m!

m∑

i=1




i∑

k=0

xk

k!

m∏

j=k,j 6=i

1

θj − θi


 e−θit


 z0(dx),

where θi = 2r
(
1 − 2−i

)
. In particular,

E[Zt(x)] = E


 ∑

u∈Vµ
t

Xu
t


 = ert

∫ +∞

0

1

r
−
(

1

r
− x

)
e−rt

z0(dx),

and

E[Zt(x
2)] = E


∑

u∈Vt

(Xu
t )2




= ert
∫ +∞

0

4

3r2
+ 2

[
e−rt

(−2

r2
+

2x

r

)
+ e−3rt/2

(
4

3r2
− 2x

3r
+
x2

2

)]
z0(dx).

Proof. Since r is constant, we have G1 = r1, where 1 is the constant mapping, which is equal
to 1. Lemma 3.3 gives

1

E[Nt]
E


∑

u∈Vt

f(Xu
t )


 = E[f(Yt)],

where Y is generated by

Af(x) = f ′(x) + 2r

(
f

(
x

2

)
− f(x)

)
.

Finally, we complete the proof using [28, Theorem 4]. �

Now, let us talk about the rate of convergence. To estimate the distance between two random
measures, we will use the Wasserstein distance[40, 44]:

Definition 5.8 (Wasserstein distance). Let µ1 and µ2 two finite measures on a Polish space

(F, dF ), the Wasserstein distance between µ1 and µ2 is defined by

WdF
(µ1, µ2) = inf

∫

F ×F
dF (x1, x2)Π(dx1, dx2),
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where the infimum runs over all the measures Π on F × F with marginals µ1 and µ2. In

particular, if µ1 and µ2 are two probability measures, we have

WdF
(µ1, µ2) = inf E[dF (X1,X2)],

where the infimum runs over all two random variables X1,X2, which are distributed according

to µ1, µ2.

So, if M1,M2 are two random measures then

Wd(L(M1),L(M2)) = inf E[d(M1,M2)],

where the infimum is taken over all the couples of random variables (M1,M2) such that M1 ∼
L(M1) and M2 ∼ L(M2), and d is a distance on the measures space. Here, we consider
d = W|·|. It is the Wasserstein distance on (E, | · |). We have

Theorem 5.9 (Quantitative bounds). If r is constant, then we have, for all t ≥ 0,

WW|·|

(
L
(

Z
x
t

E[Nt]

)
,L
(

Z
y
t

E[Nt]

))
≤ |x− y|e−rt,

WW|·|

(
L
(

Z
x
t

Nt

)
,L
(

Z
y
t

Nt

))
≤ |x− y| rte

−rt

1 − e−rt
,

where Z
x,Zy are distributed as Z and start from δx and δy.

This result does not give a bound forWW|·|
(L (Zt/E[Nt]) ,L (Wπ)) orWW|·|

(L (Zt/Nt) ,L (π)),
where π is the limit measure of Corollary 5.3.

proof of Theorem 5.9. By homogeneity, we can see our branching measure Z as a process in-
dexed by a Galton-Watson tree [5]. For our coupling, we take two processes indexed by the
same tree. More precisely, as the branching time does not depend on the position, we can set the
same times to our two processes. Let T =

⋃
n∈N{1, 2}n representing cells that have lived at a

certain moment. Let (du)u∈U be a family of i.i.d. exponential variables with mean 1/r, which
model the lifetimes. We build Z

x and Z
y by induction. First, for all t ∈ [0, d∅), X∅

t = x+ t and
Y ∅

t = y + t. We set α(∅) = 0. Then, for all u ∈ T and k ∈ {1, 2}, we set α(uk) = α(u) + du

and

∀t ∈ [α(uk), α(uk) + duk), Xuk
t =

1

2
Xu

α(uk)− + t− α(uk)

and Y uk
t = Y u

α(uk)−/2 + t − α(uk). Finally we have Vt = {u ∈ T | α(u) ≤ t < α(u) + du}
and

Z
x
t =

∑

u∈Vt

δXu
t

and Z
y
t =

∑

u∈Vt

δY u
t
.

We observe that, for any cell u, the trajectories of Xu and Y u are parallel (because they are
linear). When a branching occurs,

∑
u∈Vt

|Xu
t − Y u

t | is constant. Hence, we easily deduce that
∑

u∈Vt

|Xu
t − Y u

t | = |x− y|.
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Finally we have, for all t ≥ 0,

W|·|(Z
x
t ,Z

y
t ) ≤

∑

u∈Vt

|Xu
t − Y u

t |

≤ |x− y|.

Dividing by E[Nt] = e−rt, we obtain the first bound. For the second bound, a similar computa-
tion gives

WW|·|

(
L
(

Z
x
t

Nt

)
,L
(

Z
y
t

Nt

))
≤ E

[
1

Nt

]
|x− y|.

The process (Nt)t≥0 is know to be the Yule’s process. It is geometrically distributed with pa-
rameter e−rt, so we have

E

[
1

Nt

]
=

rte−rt

1 − e−rt
.

It ends the proof. �

Remark 5.10 (Generalisation of Theorem 5.9). In the proof of Theorem 5.9, we only need that,

for all n ∈ N
∗, θ ∈ [0, 1],t ≥ 0, and x, y ∈ E

n∑

j=1

|F (k)
j (Xt, θ) − F

(k)
j (Yt, θ)| ≤ |x− y|

where X,Y are generated by G and start respectively from x, y. For instance, we can consider

that X is a continuous lévy process and the division is a sub-critical fragmentation; namely

∀x ∈ E, ∀k ∈ N
∗,∀j ≤ k, F

(k)
j (x,Θ) = Θk

jx,

where (Θk
j )j,k is a family of random variable verifying

k∑

j=1

Θk
j ≤ 1 and ∀j ∈ {1, . . . , k}, Θk

j ∈ [0, 1].

Even if we do not find an explicit bound, we are able to prove a Wasserstein convergence.

Lemma 5.11 (Wasserstein convergence). Under the assumptions of Theorem 5.9, we have

lim
t→+∞

W|·|

(
Zt

Nt
, π

)
= 0 in probability.

Proof. As x 7→ 1 + x is a Lyapounov function for the auxiliary process, we have

lim
t→+∞

Zt

Nt
(f) = π(f) in probability,

for all function f such that |f(x)| ≤ C(1 + x). The convergence also holds in distribution. By
the Skorohod’s Theorem, in another probability space, we have,

lim
t→+∞

Zt

Nt
(f) = π(f) a.s.
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for all continuous bounded function and for f(x) = x. This convergence is equivalent to the
Wasserstein convergence. Thus, by a classical argument of discreteness (Varadarajan Theorem
type), we get,

lim
t→+∞

W|·|

(
Zt

Nt
, π

)
= 0 a.s..

Hence, in our probability space we get that limt→+∞W|·| (Zt/Nt, π) = 0 in distribution. And
as the convergence is deterministic, we get the result. �

5.3. Asymmetric mitosis : Macroscopic approximation. Now, we do not assume that the
division is symmetric. We assume that F (2)

1 (x, θ) = F−1(θ)x and F (2)
2 (x, θ) = (1−F−1(θ))x.

We recall that F (x) = 1 − F (1 − x). In this case, Equation (5) becomes

∂tn(t, x) + ∂xn(t, x) + r(x) n(t, x) = 2E[
1

Θ
r(x/Θ)n(t, x/Θ)],

where n(t, .) is the density of Xt. In particular, we deduce that the following P.D.E. has a weak
solution:

∂tn(t, x) + ∂xn(t, x) + r(x)n(t, x) =

∫ +∞

x
b(x, y)n(t, y)dy

where b verify the following properties:

b(x, y) ≥ 0, b(x, y) = 0 for y < x (13)
∫ +∞

0
b(x, y)dx = 2r(y) (14)

∫ +∞

0
xb(x, y)dx = yr(y) (15)

b(x, y) = b(y − x, y). (16)

This equation was studied in [36]. Here,

b(x, y) =
2

y
r(y)g(

x

y
), (17)

where g is the weak density of F . We easily prove the equivalence between to verify (17) and
(13 - 16). Our aim in this section is to describe the limit of the fluctuation process. It is defined
by:

∀t ∈ [0, T ],∀n ∈ N
∗, η(n)

t =
√
n(X

(n)
t − Xt).

Theorem 5.12 (Central limit Theorem for asymmetric size-structured population). Let T > 0.

Assume that η
(n)
0 converges in distribution and that

E

[
sup
n≥1

∫

E
(1 + x2) X

(n)
0 (dx)

]
< +∞. (18)
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Then the sequence (η(n))n≥1 converges in D([0, T ], C−2,0) to the unique solution of the evolu-

tion equation: for all f ∈ C2,0,

ηt(f) = η0(f) (19)

+

∫ t

0

∫ +∞

0
f ′(x) + r(x)

(∫ 1

0
f(qx) + f((1 − q)x)F (dq) − f(x)

)
ηs(dx)ds

+ M̃t(f),

where M̃(f) is a martingale and a Gaussian process with bracket:

〈M̃(f)〉t =

∫ t

0

∫ +∞

0
2f ′(x)f(x) + 2r(x)

∫ 1

0
(f(qx) − f(x))2F (dq) Xs(dx)ds.

And C2,0 is the set of C2 functions, such that f, f ′, f ′′ vanish to zero when x tends to infinity.

C−2,0 is its dual space.

Lemma 4.1 gives

∀ t ≥ 0, η
(n)
t = η

(n)
0 + Ṽ

(n)
t + M̃

(n)
t ,

where for any f smooth enough,

Ṽ
(n)
t (f) =

∫ t

0

∫ +∞

0
f ′(x) + r(x)

(∫ 1

0
f(qx) + f((1 − q)x)F (dq) − f(x)

)
η(n)

s (dx)ds,

and M̃
(n) is a martingale with bracket:

〈M̃(n)(f)〉t =

∫ t

0

∫ +∞

0
2r(x)

∫ 1

0
(f(qx) − f(x))2F (dq) X

(n)
s (dx) ds. (20)

As the set of signed measure is not metrizable, we can not adapt the proof of Theorem 1.2.
Following [29, 43], we consider η(n) as an operator in a Sobolev space, and use the Hilbertian
properties of this space to prove tightness. See for instance [32] for condition to prove tightness
on Hilbert spaces. Let us explain the Sobolev space that we will use. Let p > 0 and j ∈ N. The
set W j,p is the closure of C∞

c , which is the set of functions of class C∞ from R+ into R with
compact support, embedded with the following norm:

∀f ∈ W j,p, ‖f‖2
W j,p =

j∑

k=0

∫ ∞

0

(
f (k)(x)

1 + xp

)2

dx.

The set W j,p is an Hilbert space and we denote by W−j,p its dual space. Let Cj,p be the space
of function f of class Cj such that:

∀k ≤ j, lim
x→+∞

f (k)(x)

1 + xp
= 0.

We embed it with the following norm:

∀f ∈ Cj,p, ‖f‖Cj,p =
j∑

k=0

sup
x≥0

f (k)(x)

1 + xp
.

The set Cj,p is also a Banach space and we denote by C−j,p its dual space. These spaces verify
the following continuous injection [29, 1]:

Cj,p ⊂ W j,p+1 and W 1+j,p ⊂ Cj,p. (21)
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Or equivalently, if f is smooth enough,

‖f‖W j,p+1 ≤ C‖f‖Cj,p and ‖f‖Cj,p ≤ C‖f‖W j+1,p .

The first embedding/inequality prove that the tightness in W j,p+1 implies the tighness in Cj,p.
The second is useful for some upper bounds. For instance, we have

Lemma 5.13. If (ek)k≥1 is a basis of W 2,1 then we have, for all k ≥ 0 and x ∈ E,

∑

k≥1

ek(x)2 ≤ C(1 + x2).

Proof. δx : f 7→ f(x) is an operator on W 2,1. We have, for all f ∈ W 2,1,

|δxf | ≤ (1 + x)‖f‖C0,1 ≤ C(1 + x)‖f‖W 1,1 ≤ C(1 + x)‖f‖W 2,1

But, by Parseval’s identity we get,

‖δx‖2
W −2,1 =

∑

k≥1

ek(x)2,

which completes the proof. �

We introduce the trace
(
〈〈M̃(n)〉〉t

)
t≥0

of
(
M̃

(n)
t

)
t≥0

. It is defined such that

(
‖M̃

(n)
t ‖2

W −2,1 − 〈〈M̃(n)〉〉t

)
t≥0

is a local martingale. Then since
∥∥∥M̃(n)

t

∥∥∥
2

W −2,1
=
∑

k≥1

M̃
(n)
t (ek),

where (ek)k≥1 is a basis of W 2,1. Then by (20), we get

〈〈M̃(n)〉〉t =
∑

k≥1

∫ t

0

∫ +∞

0
2r(x)

∫ 1

0
(ek(qx) − ek(x))2F (dq)X(n)

s (dx)ds.

Now, we first prove the tightness of (η(n))n≥1 then Theorem 5.12

Lemma 5.14. (ηn)n≥1 is tight in D([0, T ],W−2,1)

Proof. By [24, Theorem 2.2.2] and [24, Theorem 2.3.2] (see also [29, Lemma C]), it is enough
to prove

(1) E

[
sups≤t ‖ηn

s ‖2
W −2,1

]
< +∞,

(2) ∀n ∈ N, ∀ε, ρ > 0, ∃δ > 0 such that for each stopping times Sn bounded by T

lim sup
n→+∞

sup
0≤u≤δ

P

(∥∥∥Ṽ(n)
Sn+u − ṼSn

∥∥∥
W −2,1

≥ η
)

≤ ε,

lim sup
n→+∞

sup
0≤u≤δ

P

(∣∣∣∣
〈〈

M̃
(n)
〉〉

Sn+u
−
〈〈

M̃
(n)
〉〉

Sn

∣∣∣∣ ≥ η

)
≤ ε.
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For the first point, using lemma 5.1, there exists C > 0 such that
∑

k≥1

〈
M̃

(n)
t (ek)

〉
≤
∫ t

0
2r̄

∫ 1

0
2
∑

k≥1

e2
k(qx) + 2

∑

k≥1

e2
k(x) F (dq)X(n)

s (dx)ds

≤ CX
(n)
0 (1 + x).

Then, since ∥∥∥M̃(n)
t

∥∥∥
2

W −2,1
=
∑

k≥1

(
M̃

(n)
t (ek)

)2
,

Doob’s inequality and (18) gives

E

[
sup

t∈[0,t]

∥∥∥M̃(n)
t

∥∥∥
2

W −2,1

]
≤ C ′,

where C ′ > 0. Then there exits C ′′ > 0 such that
∥∥∥η(n)

t

∥∥∥
2

W −2,1
≤
∥∥∥η(n)

0

∥∥∥
2

W −2,1
+
∥∥∥Ṽ(n)

t

∥∥∥
2

W −2,1
+
∥∥∥M̃(n)

t

∥∥∥
2

W −2,1
≤ C ′′ +

∥∥∥Ṽ(n)
t

∥∥∥
2

W −2,1
.

And as ∥∥∥Ṽ(n)
t

∥∥∥
2

W −2,1
≤ C

∫ t

0
sup
w≤s

∥∥∥η(n)
s

∥∥∥
2

W −2,1
ds,

the Gronwall Lemma gives

E

[
sup
s≤t

∥∥∥η(n)
s

∥∥∥
2

W −2,1

]
≤ K,

for a certain constant K . Finally for the second point, we have

E

[∥∥∥Ṽ(n)
Sn+u − Ṽ

(n)
Sn

∥∥∥
W −2,1

]
≤ E

[
K ′
∫ Sn+u

Sn

sup
s≤T

∥∥∥η(n)
s

∥∥∥
2

W −2,1

]

≤ K ′′u.

Here K ′,K ′′ are two constants. Using the Markov-Chebyshev inequality, we prove the Aldous
condition. We similarly prove that 〈〈M̃(n)〉〉 verifies the Aldous condition. We deduce that
(η(n))n≥1 is tight. �

Proof of Theorem 5.12. Let M̃ be a continuous Gaussian process with quadratic variation veri-
fying, for every f ∈ C2,0 (⊂ W 2,1) and t ∈ [0, T ],

〈M̃(f)〉t =
∑

k≥1

∫ t

0

∫ +∞

0
2r(x)

∫ 1

0
(f(qx) − f(x))2F (dq)Xs(dx).

Since there exists Cf such that

∀f ∈ C2,0, sup
t∈[0,T ]

|M̃(n)(f)| ≤ Cf√
n
,

and 〈M̃(n)〉t converges in law to 〈M̃〉t, then by [23, Theorem 3.11 p.473], M̃
(n)(f) converges

to M̃(f) in distribution, as n tends to ∞.
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By Lemma 5.14 and (21) , the sequence (η(n))n≥1 is also tight in C−2,0. Let η be an accumula-
tion point. Since its martingale part M̃ in its Doob’s decomposition is almost surely continuous,
then η is also almost surely continuous. Hence, η is a solution of (19). Using Gronwall’s in-
equality, we obtain the uniqueness of this equation, in C([0, T ], C−2,0), up to a Gaussian white
noise M̃. We deduce the announced result. �

6. ANOTHER TWO EXAMPLES

6.1. Space-structured population model. Here, we study an example which can models the
cells localisation. One cell moves following a diffusion on E ⊂ R

d, d ≥ 1, and when it dies, its
offspring is localised at the same place. Hence, in all this section the branching is local; that is

∀k ≥ 0,∀j ≤ k,∀x ∈ E,∀θ ∈ [0, 1], F
(k)
j (x, θ) = x.

6.1.1. Branching Ornstein Uhlenbeck. In this subsection, we consider the model of [15, Exam-
ple 10]. Assume that G is given by

Gf(x) =
1

2
σ2∆f(x) − gx.∇f(x),

where σ, g > 0, f is smooth, x ∈ R
d. Also assume that the division is dyadic, that is p2 = 1,

with rate
r(x) = bx2 + a,

where a, b ≥ 0 and a or b is not null. Here x2 = ‖x‖2 = x.x. If g >
√

2b then we add the
following notations:

Γ =
g −

√
g2 − 2bσ2

2σ2
and α =

√
g2 − 2bσ2.

We also denote by π∞ the Gaussian measure whose density is defined by

x 7→
(
α

πσ2

)
exp

(
− α

σ2
x2
)
.

From our main theorem, we deduce

Corollary 6.1 (Limit theorem for an branching Ornstein-Uhlenbeck process). If g > σ
√

2b and

X∅
0 = x ∈ R

d then, for any continuous and bounded f , we have

lim
t→+∞

1

Nt

∑

u∈Vt

f(Xu
t ) =

∫
Rd f(y)eΓy2

π∞(dy)∫
Rd eΓy2π∞(dy)

,

in probability. In particular,

E[Nt] = eλt+Γx2
(
α

πσ2

)∫

Rd
e−Γy2

exp

(
−α(y − xe−αt/σ2

)2

σ2(1 − e−2αt/σ2 )

)
dy,

where λ =
g−

√
g2−2bσ2

2 + a is the Malthus parameter.

Proof. If V : x 7→ eλx2
then it is an eigenvector of G, which is defined for any smooth f by

Gf(x) = Gf(x) + r(x)f(x).

We conclude the proof using Theorem 1.1 and Lemma 3.3. �
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Remark 6.2 (Another eigenelement). Note that if V2 : x 7→ eλ2x2
then it is an eigenvector of G,

associated to the eigenvalue

λ2 =
g +

√
g2 − 2bσ2

2
+ a.

But in this case, the auxiliary process is not ergodic and we are not able to deduce any conver-

gence from our main theorem.

6.1.2. General case. Let us assume that G is the generator of a diffusive Markov process. If
the state space E is bounded then we can find sufficient conditions to the eigenproblem in [38,
section 3] and [38, Theorem 5.5]. For instance, under some assumptions, we have

λ0 = lim
t→+∞

ln

(
sup
x∈E

E

[
Nt | X∅

0 = x
])

.

If E is not bounded then we can see [21, 41]. This example is developed in [15]. They prove a
strong law of large number, which is close to Theorem 1.1.

6.2. Self-similar fragmentation. Self-similar mass fragmentation processes are characterised
by

• the index of self-similarity α ∈ R;
• a so-called dislocation measure ν on S = {s = (si)i∈N | limi→+∞ si = 0, 1 ≥ sj ≥
si ≥ 0,∀j ≤ i} which satisfies

ν(1, 0, 0, ..) = 0 and
∫

S
(1 − s)ν(ds) < +∞.

If ν(S) < +∞ then the dynamics is as follows:

• a block of mass x remains unchanged for exponential periods of time with parameter
xαν(S);

• a block of mass x dislocates into a mass partition xs, where s ∈ S , at rate ν(ds);
• there are finitely many dislocations over any finite time horizon.

The last point is not verified when ν(S) = +∞. In this case, there is a countably infinite
number of dislocations over any finite time horizon. So, when ν(S) < +∞, our setting capture
this model with the following parameters:

G = 0, r(x) = xαν(S),

∫ 1

0

∑

k≥0

pk(x)
k∑

j=1

f(F k
j x, θ)dθ =

∫

S

∑

i≥0

f(six)
ν(ds)

ν(S)
.

Hence, in this case we have

Gf(x) = xαν(S)
∑

i≥0



∫

S

∑

i≥0

f(six)
ν(ds)

ν(S)
− f(x)


 ,

and V : x 7→ xp is an eigenevector. See [8] for further details.
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